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Introduction



Optimal transport

Probability measures µs and µt on and a cost function c : Ωs × Ωt → R+.

Monge formulation

The Monge formulation [Monge, 1781] aim at finding a mapping f : Ωs → Ωt which

transports the measure µs into µt with the less effort.

inf
T#µs=µt

∫
Ωs

c(x, f(x))µs(x)dx (1)

Inspired from Gabriel Peyré
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Non-existence / Non-uniqueness

[Brenier, 1991] proved existence and unicity of the Monge map for c(x, y) = ‖x− y‖2

and distributions with densities.

However with non regular distributions :
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Optimal transport (Kantorovich formulation)

y

x

Joint distribution (x, y) = s(x) t(y)

Source s(x)

Target t(y)

(x, y)

• The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic

coupling π ∈ P(Ωs × Ωt) between Ωs and Ωt:

π0 = argmin
π

∫
Ωs×Ωt

c(x,y)π(x,y)dxdy, (2)

s.t. π ∈ Π =

{
π ≥ 0,

∫
Ωt

π(x,y)dy = µs,

∫
Ωs

π(x,y)dx = µt

}
• π is a joint probability measure with marginals µs and µt.

• Linear Program that always have a solution.
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Wasserstein distance

Source distribution

Target distributions

Divergences (scaled)
W1

1
W2

2
l1 (TV)
l2 (sq. eucl.)

Wasserstein distance

W p
p (µs, µt) = min

π∈Π

∫
Ωs×Ωt

c(x,y)π(x,y)dxdy = E(x,y)∼π[c(x,y)] (3)

where c(x,y) = ‖x− y‖p is the ground metric.

• A.K.A. Earth Mover’s Distance (W 1
1 ) [Rubner et al., 2000].

• Do not need the distribution to have overlapping support.

• Works for continuous and discrete distributions (histograms, empirical).
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Optimal transport with discrete distributions

Distributions

Source s

Target t

Matrix M OT matrix                   

µs =
∑ns
i=1 aiδxsi and µt =

∑nt
j=1 bjδxtj

OT Linear Program
π0 = argmin

π∈Π

{
〈π,M〉F =

∑
i,j

πi,jMi,j

}
where M is a cost matrix with Mi,j = c(xsi , x

t
j) and the marginals constraints are

Π =
{
π ∈ (R+

)
ns×nt | π1nt = a,π

T
1ns = b

}
Solved with Network Flow solver of complexity O(n3 log(n)).
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Regularized optimal transport

πλ0 = argmin
π∈Π

〈π,M〉F + λΩ(π), (4)

Regularization term Ω(π)

• Entropic regularization [Cuturi, 2013].

Ω(π) =
∑
i,j

π(i, j)(logπ(i, j)− 1)

• Group Lasso [Courty et al., 2016a], KL, Itakura

Saito, β-divergences, [Dessein et al., 2016].

Why regularize?

• Smooth the “distance” estimation:

Wλ(µs, µt) =
〈
πλ0 ,M

〉
F

• Encode prior knowledge on the data.

• Better posed problem (convex, stability).

• Fast algorithms to solve the OT problem.
=0

=1
e-

2
=1

e-
1
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Resolving the entropy regularized problem

Entropy-regularized transport

The solution of entropy regularized optimal transport problem is of the form

πλ0 = diag(u) exp(−M/λ)diag(v)

Why ? Consider the Lagrangian of the optimization problem:

L(π, α, β) =
∑
ij

πijMij + λπij(logπij − 1) + αT(π1nt − a) + βT(πT1ns − b)

∂L(π, α, β)/∂πij = Mij + λ logπij + αi + βj

∂L(π, α, β)/∂πij = 0 =⇒ πij = exp(
αi
λ

) exp(−Mij

λ
) exp(

βj
λ

)

• Through the Sinkhorn theorem diag(u) and diag(v) exist and are unique.

• Can be solved by the Sinkhorn-Knopp algorithm (implementation in parallel,

GPU).
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Sinkhorn-Knopp algorithm

The Sinkhorn-Knopp algorithm performs alternatively a scaling along the rows and

columns of K = exp(−M
λ

) to match the desired marginals.

Algorithm 1 Sinkhorn-Knopp Algorithm (SK).

Require: a,b,M, λ

u(0) = 1,K = exp(−M/λ)

for i in 1, . . . , nit do

v(i) = b�K>u(i−1) // Update right scaling

u(i) = a�Kv(i) // Update left scaling

end for

return T = diag(u(nit))Kdiag(v(nit))

• Complexity O(kn2), where k iterations are required to reach convergence

• Fast implementation in parallel, GPU friendly

• Allows automatic-differentiation for any loss w.r.t π,a,b,M
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Sinkhorn as Bregman projections

Benamou et al. [Benamou et al., 2015] showed that solving for the reg OT problem is

actually a Bregman projection

OT as a Bregman projection

π? is the solution of the following Bregman projection

π? = argmin
π∈Π

KL(π, ζ), (5)

where ζ = exp(−M
λ

).

Sinkhorn in this case is an iterative projection scheme, with alternative projections on

marginal constraints.

11 / 38



Three aspects of optimal transport

Transporting with optimal transport

• Color adaptation in image [Ferradans et al., 2014a].

• Domain adaptation [Courty et al., 2016b].

• OT mapping estimation [Perrot et al., 2016].

µt

µ
s

Optimal distribution γ

-2 0 2

-2

-1

0

1

2

Divergence between distributions

• Use the ground metric to encode complex relations

between the bins.

• Loss for multilabel classifier [Frogner et al., 2015]

• Loss for spectral unmixing [Flamary et al., 2016b].

• Non parametric divergence between non overlapping

distributions.

• Objective function for GAN [Arjovsky et al., 2017].

• Estimate discriminant subspace [Flamary et al., 2016a].

12 / 38



Optimal Transport on structured data



Structured data

[Harchaoui and Bach, 2012]

Structured data

• A structure data is viewed as a combination of features informations linked within

each other by some structural information.

• Example : labeled graph.

Meaningful distances on structured data

• Us both features (labels) and structure (graph).

• Allows for comparison, classification.

• Data science (statistics, means)
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Structured data as distributions

}
}

}
Graph data representation

µ =

n∑
i=1

hiδ(xi,ai)

• Nodes are weighted by their mass hi.

• for two µs =
∑n
i=1 hiδxi,ai and µt =

∑m
j=1 gjδyj ,bj

• Features values ai and bj can be compared through the common metric

• But no common between the structure points xi and yj .
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Structured data as distributions

Wasserstein distance deals with distribution but can not leverage the specific relation

among the component of the distribution.

no distance !

• How to include this structural information in the optimal transportation

formulation ?

• How to use the new formulation in order to compare structured data (graphs,

times series...)
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Almost saved: Gromov-Wasserstein

distance



Gromov-Wasserstein distance

Inspired from Gabriel Peyré

GW distance [Mémoli, 2011]

X = (X, dX , µX) and Y = (Y, dY , µY ), two mesurable metric spaces.

GWp(µX , µY ) =
(

inf
π∈Π(µX ,µY )

∫
X×Y×X×Y

|dX(x, x′)− dY (y, y′)|pdπ(x, y)dπ(x′, y′)
) 1

p

• Distance over measures with no common ground space.

• Compare the intrinsic distances in each space.

• Invariant to rotations and translation in either spaces. 16 / 38



Mathematical properties

GW is a distance over the space of all mesurable metric spaces quotient by the

measure preserving isometries (called isomorphisms) :

• GW is symmetric and satisfies the triangle inequality.
• GWp(µX , µY ) = 0 iff there exists a Monge Map f : X → Y such that :

• f#µX = µY (measure preserving).

• ∀x, x′ ∈ X2 dX(x, x′) = dY (f(x), f(x′)) (isometry between X and Y).

Figure 1: Two isometric objects

Figure 2: Two isometric but not isomorphic objects
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Gromov-Wasserstein distance in discrete case

GW in discrete case

GWp(C1, C2, µX , µY ) =

(
min

π∈Π(µX ,µY )

∑
i,j,k,l

|C1(i, k)− C2(j, l)|pπi,j πk,l
) 1

p

µX =
∑
i hiδxi and µY =

∑
j gjδyj and C1(i, k) = dX(xi, xk), C2(j, l) = dY (yj , yl)

• This is related to a Quadratic Assignment Problem (QAP), opposed to the linear

assignment problem as with the classical OT problem.

• Soft QAP : non-convex problem, often NP-hard

• Similarity measure between pair to pair distances :

L(C1
i,k, C

2
j,l) = |C1(i, k)− C2(j, l)|p
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Computing GW coupling (I) : entropic reguarization

Peyré and colleagues consider the entropic regularization of this
problem [Peyré et al., 2016] :

GWp(C1, C2, µX , µY )=argmin
π∈Π

 ∑
i,j,k,l

L(C1
i,k, C

2
j,l)πi,jπk,l − λH(π)


One can easily compute GW by using projected gradient descent where each iteration

can be solved using a Sinkhorn algorithm !

Algorithm 2 Sinkhorn-Knopp Algorithm for GW

Require: g, h, C1, C2, λ

π0 = ghT

for k in 1, . . . , nit do

u(0) = 1,K = exp(−L(C1, C2)⊗ πk−1/λ)

for i in 1, . . . , n′it do

v(i) = h�K>u(i−1) // Update right scaling

u(i) = g �Kv(i) // Update left scaling

end for

end for

return T = diag(u(nit))Kdiag(v(nit))
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Computing GW coupling (II) : Frank-Wolfe
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Applications in ML

• Metric alignment and shape matching [Solomon et al., 2016]

• Barycenter of domains with different dimension [Peyré et al., ]

• Heterogeneous domain adaptation [Yan et al., 2018]

• Unsupervised word embeddings alignment [Alvarez-Melis and Jaakkola, 2018]

• CNN on 3D point clouds [Ezuz et al., 2017]
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Illustration of applications of GW [Solomon et al., 2016]

Figure 3: Shape matching between 3D and 2D objects
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Gromov-Wasserstein : for 3D mesh classif [Ezuz et al., 2017]

How to handle unstructured geometric data such as 3D mesh ?

• Converting point clouds, meshes, or polygon soups into regular representations

(multi-view images, volumetric grids or planar parameterizations..)

• Leads to fixed pre-process disconnected from the machine learning tool

Idea : use GW to optimize the geometric representation during the network learning

process
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Fused Gromov-Wasserstein distance



Get back to the roots

}
}

}
Graph data representation

µ =

n∑
i=1

hiδ(xi,ai)

• Nodes are weighted by their mass hi.

• Features values ai and bj can be compared through the common metric

• But no common between the structure points xi and yj .
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Fused Gromov-Wasserstein distance

Fused Gromov Wasserstein distance

Parameters q ≥ 1, p ≥ 1.

FGWp,q,α(C1, C2, µs, µt) =

(
min

π∈Π(µs,µt)

∑
i,j,k,l

(
(1−α)Mq

i,j+α|C1(i, k)−C2(j, l)|q
)p
πi,j πk,l

) 1
p

µs =
∑n
i=1 hiδxi,ai and µt =

∑m
j=1 gjδyj ,bj

• Mi,j = d(ai, bj) is the distance betweens the features

• C1(i, k) = dX(xi, xk), C2(j, l) = dY (yj , yl) distances in the manifolds of the

structures (e.g shortest path)

• α ∈ [0, 1] is a trade off parameter between structure and features.
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FGW Properties (1)

FGWp,q,α(C1, C2, µs, µt) =

(
min

π∈Π(µs,µt)

∑
i,j,k,l

(
(1−α)Mq

i,j+α|C1(i, k)−C2(j, l)|q
)p
πi,j πk,l

) 1
p

Metric properties

• FGW defines a metric over structured data with measure and features

preserving isometries as invariants.

• FGW is a metric for q = 1 a semi metric for q > 1, ∀p ≥ 1.

• The distance is nul iff :

• There exists a Monge map T#µs = µt.

• Structures are equivalent through this Monge map (isometry).

• Features are equal through this Monge map.
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FGW Properties (2)

Other properties for sontinuous distributions

• Interpolation between W (α = 0) and GW (α = 1) distances.

• Geodesic properties (constant speed, unicity).

Bounds and convergence to finite samples

• The following inequalities hold:

FGW(µs, µt) ≥ (1− α)W(µA, µB)q

FGW(µs, µt) ≥ αGW(µX , µY )q

• Bound when X = Y:

FGW(µs, µt)
p ≤ 2W(µs, µt)

p

• Convergence of finite samples when X = Y with d = Dim(X ) +Dim(Ω) :

E[FGW(µ, µn)] = O
(
n−

1
d

)
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Computing FGW (and GW!)

π∗ = argmin
π∈Π(µs,µt)

vec(π)TQvec(π) + vec((1− α)M)T vec(π) (6)

where Q = −2αC2 ⊗ C1

Algorithmic resolution (p = 1)

• Non convex QP : we use CG [Ferradans et al., 2014b] with OT solver.

• Convergence to a local minima [Lacoste-Julien, 2016].

• With entropic regularization, projected gradient descent [Peyré et al., 2016].

Algorithm 3 Conditional Gradient (CG) for FGW

1: π(0) ← µXµ
>
Y

2: for i = 1, . . . , do

3: G← Gradient from Eq. (6) w.r.t. π(i−1)

4: π̃(i) ← Solve OT with ground loss G

5: τ (i) ← Line-search for loss with τ ∈ (0, 1)

6: π(i) ← (1− τ (i))π(i−1) + τ (i)π̃(i)

7: end for
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Illustration of FGW distance

FGW maps on toy tree

• Uniform weights on the leafs of the tree.

• Structure distance taken as shortest path on the tree.

• Only FGW can encode both features and structures.
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Application of FGW distance

Graph classification

• We want to classify of a dataset of labeled graphs : (Gi, yi)i
• Discrete labels : e.g atoms, continuous labels : e.g Rd vectors

• We use shortest path for C1, C2 to encode the structure

• We use `2 for continuous attributes and distance based on Weisfeler-Lehman

labeling for discrete attributes.
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Application of FGW distance

Vector attributes BZR COX2 CUNEIFORM ENZYMES PROTEIN SYNTHETIC

FGW sp 85.12±4.15 77.23±4.86 76.67±7.04 71.00±6.76 74.55±2.74 100.00±0.00

HOPPERK 84.15±5.26 79.57±3.46 32.59±8.73 45.33±4.00 71.96±3.22 90.67±4.67
PROPAK 79.51±5.02 77.66±3.95 12.59±6.67 71.67±5.63 61.34±4.38 64.67±6.70

PSCN k=10 80.00±4.47 71.70±3.57 25.19±7.73 26.67±4.77 67.95±11.28 100.00±0.00

PSCN k=5 82.20±4.23 71.91±3.40 24.81±7.23 27.33±4.16 71.79±3.39 100.00±0.00

Graph classification

• Classifiation accuracy on classical graph datasets.

• Comparison with state-of-the-art graph kernel approaches and Graph CNN.

• We use exp(−γFGW) as a non-positive kernel for an SVM [Loosli et al., 2016]

(FGW).
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Application of FGW distance

Discrete attr. MUTAG NCI1 PTC

FGW raw sp 83.26±10.30 72.82±1.46 55.71±6.74
FGW wl h=2 sp 86.42±7.81 85.82±1.16 63.20±7.68
FGW wl h=4 sp 88.42±5.67 86.42±1.63 65.31±7.90

GK k=3 82.42±8.40 60.78±2.48 56.46±8.03
RWK 79.47±8.17 58.63±2.44 55.09±7.34
SPK 82.95±8.19 74.26±1.53 60.05±7.39
WLK 86.21±8.48 85.77±1.07 62.86±7.23
WLK h=2 86.21±8.15 81.85±2.28 61.60±8.14
WLK h=4 83.68±9.13 85.13±1.61 62.17±7.80

PSCN k=10 83.47±10.26 70.65±2.58 58.34±7.71
PSCN k=5 83.05±10.80 69.85±1.79 55.37±8.28

Without attribute IMDB-B IMDB-M

GW sp 63.80±3.49 48.00±3.22

GK k=3 56.00±3.61 41.13±4.68
SPK 55.80±2.93 38.93±5.12

Graph classification

• Classifiation accuracy on classical graph datasets.

• Comparison with state-of-the-art graph kernel approaches and Graph CNN.

• We use exp(−γFGW) as a non-positive kernel for an SVM [Loosli et al., 2016]

(FGW).
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FGW barycenter

Euclidean vs FGW barycenter

• Euclidean barycenter :

min
x̂∈Rd

∑
i

λi‖x̂− xi‖2

• FGW barycenter (Fréchet means) :

min
µ̂

∑
i

λiFGW(µ̂, µi)

Equivalent to find the structure and the feature minimizing the Fréchet means

FGW barycenter p = 1, q = 2

• Barycenter optimization solved via block coordinate descent (on π, Ĉ, {âi}i).

• Can chose to fix the structure (Ĉ) or the features {âi}i in the barycenter.

• {âi}i, and Ĉ updates are weighted averages using π.
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FGW barycenter on labeled graphs

Noiseless graph BarycenterNoisy graphs samples

Barycenter of noisy graphs

• We select a clean graph, change the number of nodes and add label noise and

random connections.

• We compute the barycenter on n = 15 and n = 7 nodes.

• Barycenter graph is obtained through thresholding of the Ĉ matrix.
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FGW for graphs based clustering

• Clustering of multiple real-valued graphs. Dataset composed of 40 graphs (10

graphs × 4 types of communities)

• k-means clustering using the FGW barycenter
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Training dataset examples 
Centroids

iter
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FGW barycenter for mesh interpolation

Mesh interpolation

• Two meshes (deer and cat).

• Fix structure from cat, estimate barycenter for the positions of the edges.

• Wasserstien (α = 0) do not respect the graph (mesh neighborhood).

• FGW conserve the graph, regularized FGW smoothes the surface.
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FGW for community clustering

Graph with bimodal communities Approximate Graph Clustering with transport matrix

Graph approximation and comunity clustering

min
C,µ

FGW(C,C0, µ, µ0)

• Approximate the graph (C0, µ0) with a small number of nodes.

• OT matrix give the clustering affectation.

• Works for signle and multiple modes in the clusters.
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FGW barycenter for time series

−2

0

Euclidean barycenter (N = 275)

−2

0

DBA barycenter (N = 20)

0 50 100 150 200 250

−2

0

Soft-DTW barycenter (γ = 1, N = 20)

0 50 100 150 200 250

−2

0

FGW barycenter (α = 10−6, N = 20)

Time series averaging

• Comparsion with Euclidean, DBA [Petitjean et al., 2011] and Soft-DTW

[Cuturi and Blondel, 2017].

• Structure is time position of samples, fetaure value of the signal.

• Temporal position of nodes recovered with a MDS of C.

• Barycenter have non-regular sampling.
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Conclusion for FGW

}
}

}

Fused Gromov-Wasserstein distance [Vayer et al., 2018],[Vayer et al., 2018]

• Model structured data as distributions.

• New versatile and differentiable method for comparing structured data

• Many desirable distance properties

• New notion of barycenter of structured data such as graphs or time series

• No need for embeddings and same sized graphs

• Interpretable distance via optimal map

What next ?

• Devise efficient optimization shemes for large structures.

• Add interpretability to deep neural networks on graph.
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