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Introduction



Optimal transport

Probability measures 15 and i on and a cost function ¢ : Qs x Q; — R™.

Monge formulation
The Monge formulation [Monge, 1781] aim at finding a mapping f : Qs — Q: which
transports the measure s into u: with the less effort.

m | el £ (0 (1)

f(x) Inspired from Gabriel Peyré
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Non-existence / Non-uniqueness

[Brenier, 1991] proved existence and unicity of the Monge map for c(z,y) = ||z — y||?
and distributions with densities.

However with non regular distributions :
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Optimal transport (Kantorovich formulation)

Joint distribution y(x, y) = ps(x)iely)

— Target ji(y)
— ylxy)

e The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic
coupling m € P(Qs x ) between Qg and Q:

T = argmin/ c(x,y)mw(x,y)dxdy, (2)
Qs x Qs

™

st. well= {‘n >0, / 7 (x,y)dy = ,U,S,/ m(x,y)dx = Mt}
Q Qs

e 7T is a joint probability measure with marginals ;15 and .
e Linear Program that always have a solution.
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Wasserstein distance

Source distribution Divergences (scaled)

JR— Wll

J— W%

— h(TV)

—— [, (sq. eucl.)

Target distributions

_~

Wasserstein distance
W;) (:LI’S’ :u‘t) = min / C(X7 y)ﬂ'(X, Y)dXdy = E(x,y)Nﬂ‘ [C(Xa y)] (3)
Qo xQy

mell

where ¢(x,y) = ||x — y||? is the ground metric.

e AK.A. Earth Mover's Distance (1) [Rubner et al., 2000].
e Do not need the distribution to have overlapping support.

e Works for continuous and discrete distributions (histograms, empirical).
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Optimal transport with discrete distributions

Distributions Matrix M OT matrix y

[ Source s
I Target ye

L il
-

frs = 3252y @idyy and py =35, b6,

o = argmin
wEl

OT Linear Program {

(m, M)p=>_ m,le-,j}

0]
where M is a cost matrix with M; ; = (x5, 2}) and the marginals constraints are
= {ﬂ e RN X" nl,, =a, 7" 1,, = b}

Solved with Network Flow solver of complexity O(n®log(n)).
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Regularized optimal transport
my = argmin  (m, M) + XQ(m), 4 u
mell

Regularization term Q() , 'I-..

e Entropic regularization [Cuturi, 2013]. 7

Q) =Y (i, j)(log w(i, j) — 1)

¥

e Group Lasso [Courty et al., 2016a], KL, Itakura | T
Saito, (-divergences, [Dessein et al., 2016]. & i

I

Why regularize? ~

e Smooth the “distance” estimation:
WA(Hsal‘l’t) = <7r8\7]\4>F L E

e Encode prior knowledge on the data.

le-1

A

o Better posed problem (convex, stability).

e Fast algorithms to solve the OT problem.
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Resolving the entropy regularized problem

Entropy-regularized transport

The solution of entropy regularized optimal transport problem is of the form
7y = diag(u) exp(—M/\)diag(v)

Why ? Consider the Lagrangian of the optimization problem:

L(m, o, f) = Zﬂij]mj +Amii(logmiy — 1)+ aT (7wln, —a) + BT (7w 1,, — b)

ij

8£(7r,a,,8)/87ri]~ = AL] +)\10g71'” +C¥¢+ﬂj
oL (x,0,8)/0m =0 = iy = exp(S) exp(~ ) exp(F)

e Through the Sinkhorn theorem diag(u) and diag(v) exist and are unique.

e Can be solved by the Sinkhorn-Knopp algorithm (implementation in parallel,
GPU).
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Sinkhorn-Knopp algorithm

The Sinkhorn-Knopp algorithm performs alternatively a scaling along the rows and
columns of K = exp(—4!) to match the desired marginals.

Algorithm 1 Sinkhorn-Knopp Algorithm (SK).
Require: a,b, M, A
u® =1, K = exp(—M/)\)
foriinl,...,n; do
v =bo K ul~Y // Update right scaling
u? = a @ Kv® // Update left scaling
end for
return 7 = diag(u™*))Kdiag(v("i))

e Complexity O(kn?), where k iterations are required to reach convergence
e Fast implementation in parallel, GPU friendly

e Allows automatic-differentiation for any loss w.r.t w,a,b, M
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Sinkhorn as Bregman projections

Benamou et al. [Benamou et al., 2015] showed that solving for the reg OT problem is
actually a Bregman projection
OT as a Bregman projection
7" is the solution of the following Bregman projection
7 = argmin KL(m, ¢), (5)
well
where ¢ = exp(—4L).

Sinkhorn in this case is an iterative projection scheme, with alternative projections on
marginal constraints.
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Three aspects of optimal transport

; ‘g, Transporting with optimal transport
g %\\ e Color adaptation in image [Ferradans et al., 2014a].
/ i e Domain adaptation [Courty et al., 2016b].
-ﬁ{::‘:;’\g%‘ :3,» e OT mapping estimation [Perrot et al., 2016].
Divergence between distributions
B e Use the ground metric to encode complex relations
between the bins.
Optimal dvtribation e Loss for multilabel classifier [Frogner et al., 2015]
<4 e Loss for spectral unmixing [Flamary et al., 2016b].
< o

e Non parametric divergence between non overlapping
distributions.

e Objective function for GAN [Arjovsky et al., 2017].

2 0 2

e Estimate discriminant subspace [Flamary et al., 2016a].
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Optimal Transport on structured data



Structured data

[Harchaoui and Bach, 2012]

Structured data

e A structure data is viewed as a combination of features informations linked within
each other by some structural information.

e Example : labeled graph.

Meaningful distances on structured data
e Us both features (labels) and structure (graph).
e Allows for comparison, classification.
e Data science (statistics, means)
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Structured data as distributions

eooce .
eoe * soce

10’8 K= Zz hi(;(ffiyai)
X; :';: } na = Zz hi(sai

h Ef } px =22 hiba,

Graph data representation
n
H= Z hié(xi,ai)
i=1

e Nodes are weighted by their mass h;.

o for two ps =377 | hideya; and pe = D770, iy, b,
e Features values a; and b; can be compared through the common metric
e But no common between the structure points x; and y;.
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Structured data as distributions

Wasserstein distance deals with distribution but can not leverage the specific relation

among the component of the distribution.

( no distance !

e How to include this structural information in the optimal transportation
formulation 7
e How to use the new formulation in order to compare structured data (graphs,

times series...)
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Almost saved: Gromov-Wasserstein
distance




Gromov-Wasserstein distance

Yy

ldx (z,2") = dy (y,4/)

Inspired from Gabriel Peyré

GW distance [Mémoli, 2011]
X = (X,dx,pux) and Y = (Y,dy, 1y ), two mesurable metric spaces.

=

GW,(px, py) = ( wen(iﬂz.uy) ldx (z,2") — dy (y,y)|Pdn(z,y)dn(z',y))

XXYXXXY

e Distance over measures with no common ground space.
e Compare the intrinsic distances in each space.

e Invariant to rotations and translation in either spaces. 1638



Mathematical properties

GWV is a distance over the space of all mesurable metric spaces quotient by the
measure preserving isometries (called isomorphisms) :

e GW is symmetric and satisfies the triangle inequality.
e GW,(ux,py) = 0 iff there exists a Monge Map f : X — Y such that :

o f#px = py (measure preserving).
o Vr,2' € X2 dx(x,2') = dy(f(x), f(2')) (isometry between X and )).

Figure 1: Two isometric objects

V4
x| x4 Vi
X2 X3 Y2 y3

Figure 2: Two isometric but not isomorphic objects

ro—@1 yO———@Y
3 1 1

4 2 2

=
w
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Gromov-Wasserstein distance in discrete case

GW in discrete case

mEM(pnx,py) <
’ i,5,k,1

1
GW(Cs. o) = (| min 5 [C(k) = ol )P s )

px =3, hide, and py =37, g;0y; and C1(i, k) = dx (zi,zx), C2(4, 1) = dy (y;, w1)
e This is related to a Quadratic Assignment Problem (QAP), opposed to the linear
assignment problem as with the classical OT problem.
e Soft QAP : non-convex problem, often NP-hard

e Similarity measure between pair to pair distances :
L(Cix, C51) = |C1(i k) — C2(5, D)
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Computing GW coupling (I) : entropic reguarization

Peyré and colleagues consider the entropic regularization of this
problem [Peyré et al., 2016] :

QWp(CLCQ,Mxqu):aTgéHHiH ( > LGy, CF i — AH(""))

0,5,k,1
One can easily compute GW by using projected gradient descent where each iteration
can be solved using a Sinkhorn algorithm !

Algorithm 2 Sinkhorn-Knopp Algorithm for GW
Require: g, h,Cq,C, A

™o :ghT

for kinl,...,n; do
u® =1, K = exp(—L(C1,Co) @ 7r_1/N)
foriinl,...,n; do

v =h @K u""" // Update right scaling
u” = g o Kv® // Update left scaling
end for
end for
return 7 = diag(u™*))Kdiag(v(™i))
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Computing GW coupling (1) : Frank-Wolfe




Applications in ML

e Metric alignment and shape matching [Solomon et al., 2016]

e Barycenter of domains with different dimension [Peyré et al., |

e Heterogeneous domain adaptation [Yan et al., 2018]

e Unsupervised word embeddings alignment [Alvarez-Melis and Jaakkola, 2018]
CNN on 3D point clouds [Ezuz et al., 2017]

21/38



lllustration of applications of GW [Solomon et al., 2016]

Source Targets

Figure 3: Shape matching between 3D and 2D objects



Gromov-Wasserstein : for 3D mesh classif [Ezuz et al., 2017]

How to handle unstructured geometric data such as 3D mesh ?

e Converting point clouds, meshes, or polygon soups into regular representations
(multi-view images, volumetric grids or planar parameterizations..)

e Leads to fixed pre-process disconnected from the machine learning tool

Idea : use GW to optimize the geometric representation during the network learning
process

Memc omer oo

Alignment CNN layers
(network layer)

Descriptor
Computation
(pre-process)
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Fused Gromov-Wasserstein distance




Get back to the roots

( N .ai
o000 ecse

Eﬁ } = Zz hi(g(miyai)
g T; .. } HA = Zz hida,

°-00, S5} ax = Enid,
'Y I I

Graph data representation
n
H = Z hié(xi,ai)
i=1

e Nodes are weighted by their mass h;.
o Features values a; and b; can be compared through the common metric

e But no common between the structure points z; and y;.
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Fused Gromov-Wasserstein distance

k
‘01(Z k) C2 ],
G1 - —--- %

d(az,b )

Fused Gromov Wasserstein distance

Parameters ¢ > 1, p > 1.

=

]:ng,q,a(ChC%llls,Ht) = ( el'[n(nn ) Z ((1-0&)]\1;1’]--‘1-0401(2‘, k)_c2(jvl)|q)p7ri,j 7rk,l>
mEM (s i) S )

Hs = 217:1 hibz;,a; and pg = Z;n:1 g]";yj,bj
e M, ; = d(as,bj) is the distance betweens the features
o C1(i,k) =dx(zi,xr),C2(j,1) = dy (y;, y1) distances in the manifolds of the
structures (e.g shortest path)

e o €[0,1] is a trade off parameter between structure and features.
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FGW Properties (1)

(1—a) M j+a|C1 (i, k) =C2(5,1)|7) P 5 ﬂ’k,t)

S|

FGWp.q,a(C1, C2, s, pit) = < min
mE(ps,pt) T

Metric properties
e FGWV defines a metric over structured data with measure and features
preserving isometries as invariants.
e FGW is a metric for ¢ = 1 a semi metric for ¢ > 1, Vp > 1.

e The distance is nul /ff :

e There exists a Monge map T#s = pt.
e Structures are equivalent through this Monge map (isometry).
e Features are equal through this Monge map.

(va. 1)
(x1,a1) (24,24 (v1.b1)

(x2,a2) (x3,a3) (y2,b2) (v3,b3)
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FGW Properties (2)

Other properties for sontinuous distributions

e Interpolation between W (a = 0) and GW (« = 1) distances.

e Geodesic properties (constant speed, unicity).

Bounds and convergence to finite samples
e The following inequalities hold:
FOW (s i) 2 (1 = )W (pa, ps)?
FGW (s, ) 2 aGW(px, py)?

e Bound when X = Y-
FGW (s, pe)” < 2V (s, pur)”

e Convergence of finite samples when X = Y with d = Dim(X) + Dim(2) :
E[FGW (1, )] = O (n )
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Computing FGW (and GW!)

7 = argmin  vec(n)? Qvec(r) + vec((1 — a) M) T vec(r) (6)
TE (s, pt)

where Q = —2aCs ® C1
Algorithmic resolution (p = 1)
e Non convex QP : we use CG [Ferradans et al., 2014b] with OT solver.

e Convergence to a local minima [Lacoste-Julien, 2016].

e With entropic regularization, projected gradient descent [Peyré et al., 2016].

Algorithm 3 Conditional Gradient (CG) for FGW
t 7 oy
2. fori=1,...,do
3 (G < Gradient from Eq. (6) w.r.t. 70*~%
4. 7@ « Solve OT with ground loss G
5. 7 « Line-search for loss with 7 € (0,1)
6 1@ (1—7D)pl-D 4 Oz
7: end for

28/38



Illustration of FGW distance
] [

-
] = = [
- [ =
= = B
dy =0 drgw >0 dew =0

FGW maps on toy tree
e Uniform weights on the leafs of the tree.
e Structure distance taken as shortest path on the tree.

e Only FGW can encode both features and structures.



Application of FGW distance

Graph classification

e We want to classify of a dataset of labeled graphs : (Gi,yi):
e Discrete labels : e.g atoms, continuous labels : e.g R¢ vectors
e We use shortest path for C'1, Cs to encode the structure

e We use /5 for continuous attributes and distance based on Weisfeler-Lehman
labeling for discrete attributes.

MUTAG dataset : couplings between graphs from two different classes
FGW coupling, dist : 2.242 W coupling, dist : 0.07 GW coupling, dist : 1.378
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Application of FGW distance

VECTOR ATTRIBUTES BZR COX2 CUNEIFORM ENZYMES PROTEIN SYNTHETIC
FGW sp 85.124+4.15 77.23+4.86 76.67+7.04 71.00+6.76 74.55+2.74  100.0040.00
HOPPERK 84.154+5.26 79.57+3.46 32.594+8.73 45.3344.00 71.96+3.22  90.674+4.67
PROPAK 79.514£5.02 77.66£3.95 12.5946.67 71.67+5.63 61.34+4.38  64.67£6.70
PSCN k=10 80.0044.47 71.704£3.57 25.194+7.73 26.67+4.77 67.95+11.28 100.00+0.00
PSCN k=5 82.20%+4.23 71.914£3.40 24.8147.23 27.33+4.16 71.79£3.39  100.00+0.00

Graph classification

e Classifiation accuracy on classical graph datasets.

e Comparison with state-of-the-art graph kernel approaches and Graph CNN.

e We use exp(—yFGW) as a non-positive kernel for an SVM [Loosli et al., 2016]

(FGW).
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Application of FGW distance

WitHouT ATTRIBUTE IMDB-B IMDB-M

GW sp 63.804+3.49 48.00+3.22
GK k=3 56.00+3.61 41.1344.68
SPK 55.8042.93 38.9345.12

DISCRETE ATTR.  MUTAG NCI1 PTC

FGW RrRaw sp 83.264+10.30 72.82+1.46 55.71+£6.74
FGW wL H=2 sp 86.42+7.81 85.824+1.16 63.20+7.68
FGW wL H=4 sp 88.424+5.67 86.42+1.63 65.31+£7.90
GK k=3 82.424+8.40  60.78+2.48 56.46+8.03
RWK 79.474£8.17  58.63+2.44 55.0947.34
SPK 82.95+8.19  74.26£1.53 60.05%7.39
WLK 86.214+8.48  85.77+£1.07 62.86+7.23
WLK H=2 86.214+8.15  81.85+£2.28 61.60+8.14
WLK n=4 83.684+9.13  85.13£1.61 62.17£7.80
PSCN k=10 83.474+10.26 70.65+2.58 58.34+7.71
PSCN k=5 83.054+10.80 69.85+1.79 55.37+8.28

Graph classification

e Classifiation accuracy on classical graph datasets.

e Comparison with state-of-the-art graph kernel approaches and Graph CNN.
e We use exp(—yFGW) as a non-positive kernel for an SVM [Loosli et al., 2016]

(FGW).

31/38



FGW barycenter

Euclidean vs FGW barycenter
e Euclidean barycenter :
i, SNl
e FGW barycenter (Fréchet means) :

i AN FGW ([, i
mﬂmzi: GW(ji, pi)

Equivalent to find the structure and the feature minimizing the Fréchet means
FGW barycenter p = 1,q = 2

e Barycenter optimization solved via block coordinate descent (on 7, C, {d;}:).

e Can chose to fix the structure (C') or the features {d;}; in the barycenter.

e {d;};, and C updates are weighted averages using .
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FGW barycenter on labeled graphs

Noiseless graph Noisy graphs samples Barycenter

2B EE RGP
SIESHN 35S

e We select a clean graph, change the number of nodes and add label noise and
random connections.

Barycenter of noisy graphs

e We compute the barycenter on n = 15 and n = 7 nodes.

e Barycenter graph is obtained through thresholding of the C' matrix.
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FGW for graphs based clustering

e Clustering of multiple real-valued graphs. Dataset composed of 40 graphs (10
graphs X 4 types of communities)

e k-means clustering using the FFGW barycenter

Centroids
Training dataset examples »iter

w® & ®
ﬁ@@

cluster 1

cluster 2

cluster 3

cluster 4
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FGW barycenter for mesh interpolation

Mesh interpolation

e Two meshes (deer and cat).
e Fix structure from cat, estimate barycenter for the positions of the edges.
e Wasserstien (o = 0) do not respect the graph (mesh neighborhood).

e FGW conserve the graph, regularized FGW smoothes the surface.
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FGW for community clustering

Graph with bimodal communities Approximate Graph Clustering with transport matrix

Graph approximation and comunity clustering
min - FGW(C, Co, i, o)
S
e Approximate the graph (Co, p10) with a small number of nodes.

e OT matrix give the clustering affectation.

e Works for signle and multiple modes in the clusters.

36/38



FGW barycenter for time series

Euclidean barycenter (N = 275) DBA barycenter (N = 20)

0 50 100 150 200 250 0 50 100 150 200 250

Time series averaging

e Comparsion with Euclidean, DBA [Petitjean et al., 2011] and Soft-DTW
[Cuturi and Blondel, 2017].

e Structure is time position of samples, fetaure value of the signal.

e Temporal position of nodes recovered with a MDS of C.

e Barycenter have non-regular sampling.
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Conclusion for FGW

. } p=230hid, a)

i k
tel = . l
g e it 11 B) = €G] d
gl ./ g2

= } px =3, hida, d(as, by)

J

Fused Gromov-Wasserstein distance [Vayer et al., 2018],[Vayer et al., 2018]

Model structured data as distributions.

New versatile and differentiable method for comparing structured data

e Many desirable distance properties
e New notion of barycenter of structured data such as graphs or time series
e No need for embeddings and same sized graphs
e Interpretable distance via optimal map
What next ?
e Devise efficient optimization shemes for large structures.

Add interpretability to deep neural networks on graph. )
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