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Graphs for data science and ML 

Machine Learning for graphs and with graphs
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Data Science & Machine Learning
• I came to ML from Data Science <- Data Processing in fact





	 	 Data processing and networks: Basics in Graph Signal Processing  


The question for this lecture: how to mimic Signal Processing for data on graphs ?



Hence, in 1 slide: what is Signal processing ? 
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Key lessons from Signal processing: 
 

Representation of data is important •
 
 
 
 
 

Know how to write observation models •
  
 
 
 
 

Two types of tools are required: •
 

Exploratory data analysis (know how to better display information) ◦
 

Exact tools for inference (know to best extract information, with statistical confidence)  ◦
 
. The golden triangle of Signal processing 
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Why dealing with graphs ?

4

Lecture on graph-based clustering (2) 
 
2) How and why convert data points into graph-based data 
 
Some graphical illustrations 
 

 
 
 
 
 
 
 
 
 

 
because proximity is important	 
 
 
 
 
 
How to map the data points to a  graph?




create a graph that clusters (or classifies)  data points
•
model the local neighbourhood relationships between the data points  •
learn a graph so that data is well modelled on it (see a later lecture) •

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

data on nonlinear manifold

because space is sometime 
better represented by close 
proximity only


data on graph

• Data is generally in non-linear spaces


• Some data are first and foremost relational 


• Often, proximity is important

Lecture on graph-based clustering (2) 
 
2) How and why convert data points into graph-based data 
 
Some graphical illustrations 
 

 
 
 
 
 
 
 
 
 

 
because proximity is important	 
 
 
 
 
 
How to map the data points to a  graph?




create a graph that clusters (or classifies)  data points
•
model the local neighbourhood relationships between the data points  •
learn a graph so that data is well modelled on it (see a later lecture) •
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proximity only


data on graph



Why dealing with graphs ?Introduction Graph Signal Processing Data as Graphs Typical problems References

Introduction: on signals and graphs
Why data analysis and processing is useful for networks?

• Many examples of data having both:
labels and/or attributes (a.k.a. “signals”)
and structures or relational properties (graphs)

• Many data sets in high dimension, or large dataset, are
best encoded with graphs

• Non-trivial estimation issues (e.g., non repeated measures;
variables with large distributions (or power-laws); ...)

! advanced statistical approaches

• large networks
! multiscale approaches

• dynamical networks
! nonstationary methods

p. 4
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Lecture on graph-based clustering (2) 
 
2) How and why convert data points into graph-based data 
 
Some graphical illustrations 
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How to map the data points to a  graph?
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Introduction Graph Signal Processing Data as Graphs Typical problems References

Examples of networks from our digital world

LinkedIn Network Citation Graph Sociopatterns graphs

USA Power grid Web Graph Protein Network

p. 5
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Introduction Graph Signal Processing Data as Graphs Typical problems References

Data as graphs
• A graph G = (V , E), set of nodes in V and edges in E

V = {blue, green, orange, red} and
E = {(b, g), (g, o), (o, b), (b, r)}

• Good to represent relations (2 E) between entities (2 V )4

FIG. 3: Structure of flows at 20% and 40% of the total flow. At 20% of the total flow, we observe sources (represented as squares)
with outdegree kout = 3 such as London Bridge, Stratford, or Waterloo connecting to three different centers (represented as
circles), as well as sources with kout = 2 (eg. Victoria) and kout = 1 (eg. Elephant and Castle). We also show how the pattern of
flows is constructed iteratively when we go to larger fraction of the total flow (from 20% shown in black to 40% shown in red).
We represent in red the new sources, centers and connections. The new sources connect to the older centers (eg. West End,
City, etc) and the existing sources (eg. Victoria) connect to new centers (eg. Northern stations, Museums, and Parliament).

tailing a map starting with highways, then concentrat-
ing on roads, and then on streets. If we consider the
flows up to W = 20% of the total flow, we obtain the
structure that we show in Figure 3.

At this scale, it is clear that we have three main cen-
ters and sources (with various outdegree values), which
mostly correspond to intermodal rail-subway connec-
tions. Adding more links, we reach a fraction W = 40%
of the total flow and we then investigate smaller flows
at a smaller scale. We see that we have new sources ap-
pearing at this level and new connections from sources
that were present at W = 20%. We can quantify in a
more precise way how the structure of flows evolves
when we investigate smaller flows by exploring the list
of flows wiC in decreasing order and by introducing the
transition matrix T , which describes how the outdegree
of a source varies with increasing W (see Appendix C).
Essentially, we observe that there is a continuous ad-
dition of new sources along with connections to new
and old centers. Besides, for a total flow less than 50%,
there is a relatively stable proportion of sources (about
20%) where outdegree varies when W increases. More
precisely, when we zoom into finer scales (i.e., smaller
values of total flows), new sources appear and connect
preferentially to the existing largest centers, while the
existing sources connect to the new centers through
secondary connections. This yields two types of con-
nection only. The first type goes from new sources to
old centers, and the second type from old sources to
new centers. We can summarize this result with the

graph shown in Figure 4 where we divide the centers
into three groups according to their inflow (decreasing
from first Group I to the last Group III). When we ex-
plore smaller flows, we see that the pattern of connec-
tions from sources to centers becomes richer and more
complex, but can nonetheless be described by the sim-
ple iterative process described above: the most impor-
tant link of a source goes to the most important cen-
ters, the second most important link connects to the
second most important centers, and so on. It is in-
teresting to note that even if the organization of flows
follows a simple iterative scheme, it leads to a com-
plex and rich structure, which is not strictly hierarchi-
cal since it mixes different levels of flows consisting of
different orders of magnitude. In addition, the fact that
the most important flows always connect to the same
center naturally leads to the question of efficiency and
congestion in such a system. In this respect, London
appears as a ‘natural’ city as opposed to an ‘artificial’
city for which flows would be constructed according to
an optimized, hierarchical schema [16, 17].

World cities such as London have tended to defy un-
derstanding hitherto because simple hierarchical sub-
division has ignored the fact that their polycentric-
ity subsumes a pattern of nested urban movements.
These movements define a series of subcenters at dif-
ferent levels where complex pattern of flows can be un-
packed using our simple iterative scheme based on the
representation of ever smaller scales defined by smaller
weights. Casual observation suggests that this kind of

has been conducted into the Bluetooth-based data collection, for improving the estimation of these 
matrices. From the Bluetooth-based travel time analysis, Barceló, Montero et al., amongst others, 
presented a methodology for estimating Origin-Destination Matrices, along corridors (Barceló, 
Montero et al. 2010) (freeway with 11 entries and 12 exits) and in urban networks (Barceló, Montero 
et al. 2012), by using a limited number of detectors(48). Analogous work was conducted by Blogg, 
Semler et al. (2010), who presented two cases studies in the Brisbane metropolitan area: one with 
two OD pairs and one with 29 detectors. Yucel, Tuydes-Yaman et al. (2012) presented a case study 
in Ankara for an open system composed of 10 intersections and 4 major roads, equipped with 4 
Bluetooth devices. Carpenter, Fowler et al. (2012), discussed a new opportunity offered by Bluetooth 
sensors concerning the route specific Origin-Destination matrices estimation. Their work was based 
on a single case study in Jacksonville with 14 detection devices spread along one corridor. Most of 
these works are based on the data collected by a limited number of Bluetooth sensors, scattered 
throughout the network. Therefore, the Origin Destination issues have only been considered over a 
limited geographical area, or it was studied by aggregating several data sources (e.g. traffic counts). 
The availability of more than 260 Bluetooth scanners, within the Brisbane urban area, may create new 
opportunities, as far as concerns the retrieval of Origin Destination matrices. This paper aims to 
present these new challenges and the difficulties that come with them. 
 
First, this dense network of sensors can directly be used for the ‘zoning’ of the studied area. Each 
sensor is considered as a centroid and a geographical zone is then associated with it (for example 
based on Voronoi partitions). Through this description of the network, it becomes easy to assign the 
origin and destination of trips for individual drivers, from the first and last detections observed in the 
Bluetooth data collected. These first and last detections, however, might not correspond to the actual 
origin and destination, as the trips might continue outside the Bluetooth covered area. Nevertheless, 
the missing information about the complete trip is not relevant to our work, as our aim is the analysis 
of the OD patterns within the urban context. 
 
If the sensors are deployed at the most crucial intersections, graphs can be used to accurately 
describe the road network covered by the Bluetooth sensors (c.f. Figure 1). Such graphs will have 
sensor as vertexes and links indicating the road links between sensors. 

 Figure 1: Brisbane's road networks with Bluetooth sensors (blue circles) and the infered networks 
(blue links). 

[Roth et al., 2011] [Michau et al., 2017]p. 6 7



Introduction Graph Signal Processing Data as Graphs Typical problems References

Data as graphs: many uses
• Good to detect groups in the data (' clustering)

Modules often overlap with 

properties/functions of nodes

Data mining perspective:

Uncovering communities might 

help to uncover hidden properties 

between nodes

Why looking for modules?

Blogosphere US 2004 Mobile phones BSS Vélo’v in Lyon
[Adamic et al. 2005] [Blondel et al., 2008] [Borgnat et al., 2013]

• Good to code irregular shapes
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TP : Mesh denoising

1 Degradation model

A mesh can be viewed as a weighted graph G = (V, E), where V = {v(i) | i 2 {1, . . . , M}} denotes
the set of vertices and E = {e(i,j) | (i, j) 2 E} the set of edges, having cardinality of M and P ,
respectively. This graph is weighted in the sense that weights are included on both the edges and
nodes. At each node of index i 2 {1, . . . , M}, we measure a 3D coordinates of the i-th vertex that

is denoted by y(i) = (y(i)
1 , y(i)

2 , y(i)
3 ) 2 R3. This observation results from an original unknown object

x = (x(i))1�i�M 2 RN (with N = 3M), the measure being degraded by a noise � � N (0, �2IN ).
An illustration of such a mesh is provided in Figure 1. An edge weight is a value assigned to each
e(i,j), and it is denoted by �i,j 2]0, +�[.
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Figure 1: Example of a graph G.

We propose here to find an estimate �x 2 RN of the original mesh x by solving the following
nonsmooth minimization problem involving only the knowledge of y:

�x = arg min
x�RN

1

2

M�

i=1

�x(i) � y(i)�2
2 + �g(x), (1)

where g 2 �0(RN ) denotes a regularization term and � > 0.

2 Analysis of the data

1. Load x and its associated triangulation mesh:

1

[R. Hamon et al., 2016] [Cours, N. Pustelnik & P.B., ENSL]
p. 7
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Introduction Graph Signal Processing Data as Graphs Typical problems References

Examples of graph signals
• Given a graph G, let’s consider a signal x on the nodes V .

If N = |V |, we have x 2 RN (could be in CN or multivariate)

USA Temperature Minnesota Roads fMRI Brain Network

Image Grid Color Point Cloud Image Database
p. 8 9
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Introduction Graph Signal Processing Data as Graphs Typical problems References

Typical problems for graph signal processing
• Often, the graph is not a regular (yet it could be)
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has been conducted into the Bluetooth-based data collection, for improving the estimation of these 
matrices. From the Bluetooth-based travel time analysis, Barceló, Montero et al., amongst others, 
presented a methodology for estimating Origin-Destination Matrices, along corridors (Barceló, 
Montero et al. 2010) (freeway with 11 entries and 12 exits) and in urban networks (Barceló, Montero 
et al. 2012), by using a limited number of detectors(48). Analogous work was conducted by Blogg, 
Semler et al. (2010), who presented two cases studies in the Brisbane metropolitan area: one with 
two OD pairs and one with 29 detectors. Yucel, Tuydes-Yaman et al. (2012) presented a case study 
in Ankara for an open system composed of 10 intersections and 4 major roads, equipped with 4 
Bluetooth devices. Carpenter, Fowler et al. (2012), discussed a new opportunity offered by Bluetooth 
sensors concerning the route specific Origin-Destination matrices estimation. Their work was based 
on a single case study in Jacksonville with 14 detection devices spread along one corridor. Most of 
these works are based on the data collected by a limited number of Bluetooth sensors, scattered 
throughout the network. Therefore, the Origin Destination issues have only been considered over a 
limited geographical area, or it was studied by aggregating several data sources (e.g. traffic counts). 
The availability of more than 260 Bluetooth scanners, within the Brisbane urban area, may create new 
opportunities, as far as concerns the retrieval of Origin Destination matrices. This paper aims to 
present these new challenges and the difficulties that come with them. 
 
First, this dense network of sensors can directly be used for the ‘zoning’ of the studied area. Each 
sensor is considered as a centroid and a geographical zone is then associated with it (for example 
based on Voronoi partitions). Through this description of the network, it becomes easy to assign the 
origin and destination of trips for individual drivers, from the first and last detections observed in the 
Bluetooth data collected. These first and last detections, however, might not correspond to the actual 
origin and destination, as the trips might continue outside the Bluetooth covered area. Nevertheless, 
the missing information about the complete trip is not relevant to our work, as our aim is the analysis 
of the OD patterns within the urban context. 
 
If the sensors are deployed at the most crucial intersections, graphs can be used to accurately 
describe the road network covered by the Bluetooth sensors (c.f. Figure 1). Such graphs will have 
sensor as vertexes and links indicating the road links between sensors. 

 Figure 1: Brisbane's road networks with Bluetooth sensors (blue circles) and the infered networks 
(blue links). 

• How to answer typical signal/image processing questions?

Denoising? Compression + Coarsening ? Estimation ?

1 23

3

1 2

4
28

14

18

p. 9



Introduction Graph Signal Processing Data as Graphs Typical problems References

Typical problems
[P. Vandergheynst, EPFL, 2013]

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Some Typical Processing Problems
3

Semi-Supervised Learning

Analysis / Information Extraction

Denoising

Compression / Visualization

Earth data source: Frederik Simons

p. 10
11
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Introduction Graph Signal Processing Data as Graphs Typical problems References

Examples of solutions in
signal/data processing for graph signals

• Translations on graphs [Shuman et al., 2013]

(a) (b) (c)

Figure 7: The translated signals (a) T200f , (b) T1000f , and (c) T2000f , where f , the signal shown in Figure 1(c), is a normalized

heat kernel satisfying f̂(��) = Ce�5�� . The component of the translated signal at the center vertex is highlighted in magenta.

4.3. Properties of the Generalized Translation Operator
Some expected properties of the generalized translation operator follow immediately from the generalized

convolution properties of Proposition 1.

Corollary 1: For any f, g 2 RN and i, j 2 {1, 2, . . . , N},
1. Ti(f � g) = (Tif) � g = f � (Tig).

2. TiTjf = TjTif .

3.
�N

n=1(Tif)(n) =
�

Nf̂(0) =
�N

n=1 f(n).

However, the niceties end there, and we should also point out some properties that are true for the
classical translation operator, but not for the generalized translation operator for signals on graphs. First,
unlike the classical case, the set of translation operators {Ti}i�{1,2,...,N} do not form a mathematical group;
i.e., TiTj �= Ti+j . In the very special case of shift-invariant graphs [24, p. 158], which are graphs for which
the DFT basis vectors (9) are graph Laplacian eigenvectors (the unweighted ring graph shown in Figure 5(c)
is one such graph), we have

TiTj = T��
(i�1)+(j�1)

�
mod N

�
+1

, �i, j 2 {1, 2, . . . , N}. (26)

However, (26) is not true in general for arbitrary graphs. Moreover, while the idea of successive translations
TiTj carries a clear meaning in the classical case, it is not a particularly meaningful concept in the graph
setting due to our definition of generalized translation as a kernelized operator.

Second, unlike the classical translation operator, the generalized translation operator is not an isometric
operator; i.e., �Tif�2 �= �f�2 for all indices i and signals f . Rather, we have

Lemma 1: For any f 2 RN ,

|f̂(0)| � �Tif�2 �
�

N�i�f�2 �
�

Nµ�f�2. (27)

Proof.

�Tif�2
2 =

N�

n=1

�
�

N
N�1�

�=0

f̂(��)�
�
� (i)��(n)

�2

= N
N�1�

�=0

N�1�

��=0

f̂(��)f̂(���)��
� (i)�

�
��(i)

N�

n=1

��(n)���(n)

= N
N�1�

�=0

|f̂(��)|2 |��
� (i)|

2 (28)

� N�2
i �f�2

2. (29)
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• Denoising on arbitrary graph [Tremblay, Borgnat, 2016]
Noisy graph signal (SNR = 12) Denoised with filterbanks (SNR = 23.3)

p. 11



Introduction Typical examples Graph Signal Processing Cuts, clustering and communities Other examples End

Empirical mode decomposition on graphs

• Objective: decompose a graph signal in various
“elementary” modes in a data-driven and non stationary
approach

[N. Tremblay, P. Flandrin, P. Borgnat, 2014]

p. 13
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On Graphs, signals, matrices and spectrum
Graphs: Notations and some useful definitions

• Formal def. of a graph :    ;  V set of N nodes and E of M edges


• Adjacency matrix    (warning: convention for the 
direction).  Note that 


• Degree of a node :   ; matrix of degrees 


• Incidence matrix : 

𝒢 = (V, E)

A s.t. Aij = 1 if ( j, i) ∈ E
A ∈ ℝN×N

di = ∑
i∼j

Aij D = diag (d1, . . . , dN)

Orientation-agnostic definitions

8

d(v) = |{u 2 V s.t. (u, v) 2 E or (v, u) 2 E}|

D(G) = diag(d1, . . . dN )

V = {v1, . . . , vN} E = {e1, . . . , eM}

S(i, j) =

8
<

:

+1 if ej = (vi, vk) for some k
�1 if ej = (vk, vi) for some k
0 otherwise

Incidence Matrix:

Degrees and Degree Matrix:

16

14

S(i, j) =

8
<

:

+1 if ej = (vi, vk) for some k
�1 if ej = (vk, vi) for some k
0 otherwise

Incidence Matrix: S 2 RN⇥M N = |V |, M = |E|

[i]

[k]

edge j [i]

[k]

j

+1

-1 S



Graphs: Some useful definitions

• Walk / Trail / Path   ; (un-)directed edges ; multiple edges or simple 


• Diameter:  is the length of the longest path


• Volume of a subset  of nodes : 


• Symmetric graphs :  


• Weighted graphs  (weight) remplaces   (sometimes :  (strength) 
remplaces )

diam (𝒢)

S vol(S) = ∑
i∈S

d(i)

Aij = Aji

W A K
D

17



Graph Laplacian
with orientation agnostic definitions 

Orientation-agnostic definitions

12

With these definitions we have:

SST = D�A

L = D - A is called unnormalized  Laplacian of G

L is a symmetric, positive semi-definite matrix

L does not depend on the orientation (so OK for undirected)

For a weighted graph we have L = D - W (attention to degrees)

18



Graph Laplacian
is positive semi-definite for undirected graphs 

Graph Laplacian

13

Proposition: L is positive semi-definite

For any N-by-N weight matrix W, if L = D-W where D is the 
degree matrix of W, then

xTLx =
1

2

X

i,j

W(i, j)(x[i]� x[j])2 > 0 8x 2 RN

Rem: to ease notations we will sometimes use wij = W(i, j)
x is a (component of) a node attribute

19



Graph Laplacian
is positive semi-definite for undirected graphs 

20 15

(ST f)[j] = f [i]� f [k]

Attribute, signal (function) f defined on the vertices f 2 RN

derivative of f along edge j

gradient of f (F = edge-based signal)

L = SST fTLf = fTSST f

= kST fk22
=

X

i⇠k

(f [i]� f [k])2

fTLf =
X

i⇠k

W(i, k)(f [i]� f [k])2In general for a weighted graph:

This quadratic (Dirichlet) form is a measure of how smooth the signal is

[i]

[k]

edge j
<latexit sha1_base64="EaGrw3+yCy/iGKtR89305SdG6MA="></latexit>

F = ST f 2 RM

<latexit sha1_base64="DMP92c2AzNNwVStjBksMl4ULv3s="></latexit>

g = SG 2 RN divergence of g (G = edge-based signal)



Graph Laplacian: Properties
Graph Laplacian

16

Since L is real, symmetric and PSD:

• It has an eigen decomposition into real eigenvalues and 
eigenvectors 

• The eigenvalues are non-negative
�i, ui

0 = �1 6 �2 6 . . . 6 �N

L1 = 0

What can be learned from eigenvectors and eigenvalues ?

21



Graph Laplacian: Some examplesSome examples

17

Path graph

�k = 2� 2 cos
⇡k

N
= 4 sin2

⇡k

2N
, k = 0, ..., N � 1

uk[`] = cos
�
⇡k(`+

1

2
)/N

�
, ` = 0, ..., N � 1

DCT II transform

22



Graph Laplacian: Some examplesSome examples

18

Ring graph

�k = 2� 2 cos
⇡k

N
= 4 sin2

⇡k

2N
, k = 0, ..., N � 1

DCT transform

0

BBB@

2 �1 �1
�1 2 �1

. . .
�1 �1 2

1

CCCA

us
k[`] = sin

�
2⇡k`/N

�
, ` = 0, ..., N � 1

uc
k[`] = cos

�
2⇡k`/N

�
, ` = 0, ..., N � 1

23



Graph Laplacian: An AnalogyIntroduction Graph SP First examples Cuts, clustering GSP on directed graphs Other Examples End

Fourier transform of signals
“Signal processing 101”
The Fourier transform is of paramount importance:
Given a times series xn, n = 1, 2, ..., N, let its Discrete Fourier
Transform (DFT) be

8k 2 Z x̂k =
N�1X

n=0

xne�i2⇡kn/N

Why ?
• Inversion: xn = 1

N
PN�1

k=0 x̂ke�i2⇡kn/N

• Best domain to define Filtering (operator is diagonal)
• Definition of the Spectral analysis (FT of the

autocorrelation)
• Alternate representation domains of signals are useful:

Fourier domain, DCT, time-frequency representations,
wavelets, chirplets,...p. 12

Introduction Graph SP First examples Cuts, clustering GSP on directed graphs Other Examples End

Fourier modes: examples in 1D and in graphs

LOW FREQUENCY: HIGH FREQUENCY:

p. 17

Introduction Graph SP First examples Cuts, clustering GSP on directed graphs Other Examples End

Fourier modes: examples in 1D and in graphs

LOW FREQUENCY: HIGH FREQUENCY:

p. 17
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Graph Laplacian: An Analogy

Introduction Graph SP First examples Cuts, clustering GSP on directed graphs Other Examples End

Fourier modes: examples in 1D and in graphs

LOW FREQUENCY: HIGH FREQUENCY:

p. 17

Introduction Digraph FT Learning / SSL Learning / parametric Learning / combination Ending

A Fundamental analogy for undirected graphs
[Shuman et al., IEEE SP Mag, 2013]

A fundamental analogy
On any graph, the eigenvectors �i of the Laplacian matrix L will be
considered as the Fourier modes, and its eigenvalues �i the associated
(squared) frequencies.

Hence, a Graph Fourier Transform is defined as:
x̂ = �> x

where � = (�0|�1| . . . |�N�1).

• Two ingredients:
• Fourier modes = Eigenvectors �i (with increasing oscillations)
• Frequencies = The measures of variations of an eigenvector is linked to its

eigenvalue:
||r�i ||2

||�i ||2
= �i

because: 8x 2 RN
X

e=(i,j)2E

Aij (xi � xj )
2 = x>Lx is the Dirichlet norm

p. 3
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Graph Laplacian: An Analogy

 
Examples of Fourier modes ; oscillation and smoothness  
 
[Tremblay, PB] 
 
 
 
 
 
 
 
 
 
 
 
 
 
[Tremblay, Gonçalves, PB, 2017] 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

[Vandergheynst & Shuman, 2013] 
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Graph Laplacian: An Analogy

 
Examples of Fourier modes ; oscillation and smoothness  
 
[Tremblay, PB] 
 
 
 
 
 
 
 
 
 
 
 
 
 
[Tremblay, Gonçalves, PB, 2017] 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

[Vandergheynst & Shuman, 2013] 
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More Fourier modes

�1

�14

�3

�73

p. 18

Graph Laplacian: An Analogy
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Graph Laplacian: Properties

• Multiplicity of eigenvalue  is equal to the number of connected components


• Oscillation of the Laplacian eigenvalues: 


• Property: 


• hence  is always the functions = oscillations of the smallest global variation 
a.k.a. frenquency 

λ0

uk = arg min
s∈Span(u0,...,uk−1

s†Ls
s†s

uk
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Graph Laplacian: Properties
(maybe)

• Prop: No non-negative local minimum nor non-positive local maximum 

• The (Discrete Local Theorem) 
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