Graphs for data science and ML

P. Borgnat, CNRS, LP ENSL (1)

Machine Learning for graphs and with graphs

1

Data Science & Machine Learning

came to ML from Data Science <- Data Processing in fact

The question for this lecture: how to mimic Signal Processing for data on graphs?

Hence, in 1 slide: what is Signal processing?

annation x Music (or Speech) Need to define what N is information, hav it affects the data, what is interesting...

Data Science & Machine Learning

Key lessons from Signal processing:

Representation of data is important

.ow to write .cn signal o(t) = x(t-T) + n(t) delag I moise Know how to write observation models Observation

- Two types of tools are required:
 - Exploratory data analysis (know how to better display information)
- . The golden triangle of Signal processing

• Exact tools for inference (know to best extract information, with statistical confidence)

Premico Data Processing Mathematico

Why dealing with graphs ?

Data is generally in non-linear spaces \bullet

Some data are first and foremost relational

• Often, proximity is important

data on nonlinear manifold

data on graph

because proximity is important

because space is sometime better represented by close proximity only

Why dealing with graphs?

Introduction: on signals and graphs

Why data analysis and processing is useful for networks?

- Many examples of data having both: labels and/or attributes (a.k.a. "signals") and structures or relational properties (graphs)
- Many data sets in high dimension, or large dataset, are best encoded with graphs
- Non-trivial estimation issues (e.g., non repeated measures; variables with large distributions (or power-laws); ...) \rightarrow advanced statistical approaches
- large networks
- dynamical networks

\rightarrow multiscale approaches

\rightarrow nonstationary methods

data on nonlinear manifold

data on graph

Examples of networks from our digital world

LinkedIn Network

USA Power grid

Web Graph

Citation Graph

Sociopatterns graphs

Protein Network

Data as graphs • A graph G = (V, E), set of nodes in V and edges in E

$V = \{blue, green, orange, red\}$ and $E = \{(b,g), (g,o), (o,b), (b,r)\}$

• Good to represent relations ($\in E$) between entities ($\in V$)

[Roth et al., 2011]

[Michau et al., 2017]

Figure 1: Brisbane's road networks with Bluetooth sensors (blue circles) and the infered networks

• Good to detect groups in the data (\simeq clustering)

Blogosphere US 2004 Mobile phones [Adamic et al. 2005] [Blondel et al., 2008]

Good to code irregular shapes

[R. Hamon et al., 2016]

[Cours, N. Pustelnik & P.B., ENSL]

 $\sum_{a=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$

Examples of graph signals

USA Temperature

Image Grid

• Given a graph G, let's consider a signal x on the nodes V. If N = |V|, we have $x \in \mathbb{R}^N$ (could be in \mathbb{C}^N or multivariate)

Minnesota Roads

Color Point Cloud

fMRI Brain Network

Image Database

Typical problems for graph signal processing • Often, the graph is not a regular (yet it could be)

• How to answer typical signal/image processing questions? Estimation ? Denoising? Compression + Coarsening ?

road networks with Bluetooth sensors (blue circles) and the sensors (blue circles) are sensors (blue circles).

Typical problems Some Typical Processing^t, Problems

Compression / Visualization

Denoising

Earth data source: Frederik Simons

Examples of solutions in signal/data processing for graph signals • Translations on graphs [Shuman et al., 2013]

Denoising on arbitrary graph [Tremblay, Borgnat, 2016] Noisy graph signal (SNR = 12) Denoised with filterbanks (SNR = 23.3)

Empirical mode decomposition on graphs

• Objective: decompose a graph signal in various "elementary" modes in a data-driven and non stationary approach

[N. Tremblay, P. Flandrin, P. Borgnat, 2014]

Some bibliography Books

- Antonio Ortega, Introduction to Graph Signal Processing, CUP 2022
- Academic Press, 2018
- for Computational Science), Springer, 2010
- Fan R.K. Chung, Spectral Graph Theory, AMS, 197

Cooperative and Graph Signal Processing, Ed. P. Djuric and C. Richard,

• William H. Hamilton, Graph Representation Learning, M&C Publishers, 2020

• Leo Grady, Jonathan Polimeni, Discrete Calculus (Applied Analysis on Graphs

Some bibliography **Articles - surveys or historical landmarks**

- A. Ortega; P. Vandergheynst, IEEE Signal Processing Mag., May 2013
- Signal Processing, April 2013
- 828, 2018.
- Rendus Physique 20 (5), 474-488, 2019
- "Graph Signal Processing: History, development, impact, and outlook", G Leus, AG 49-60, 2023

• "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains" D.I. Shuman; S.K. Narang; P. Frossard;

"Discrete Signal Processing on Graphs" A. Sandryhaila, J.M.F. Moura IEEE Transactions on

• "Graph signal processing: Overview, challenges, and applications." A. Ortega, P. Frossard, J. Kovacevic, J.M.F. Moura, and P. Vandergheynst. Proceedings of the IEEE, 106(5):808-

• "Fourier could be a data scientist: From graph Fourier transform to signal processing on graphs" B Ricaud, P Borgnat, N Tremblay, P Gonçalves, P Vandergheynst, Comptes

Marques, JMF Moura, A Ortega, DI Shuman, IEEE Signal Processing Magazine 40 (4),

On Graphs, signals, matrices and spectrum

Graphs: Notations and some useful definitions

- Formal def. of a graph : $\mathscr{G} = (V, E)$; V set of N nodes and E of M edges
- Adjacency matrix A s.t. $A = \{ i \text{ if } (j, i) \in E \text{ (warning: convention for the } E \}$ direction). Note that $\mathbf{A} \in \mathbb{R}^{N \times N}$
- Degree
- Incide

$$\begin{aligned} \mathbf{S}(i,j) &= \begin{cases} +1 & \text{if } e_j = (v_k, v_k) \text{ for some } k \\ 0 & \text{otherwise} \end{cases} \\ \begin{aligned} \mathbf{S}(i,j) &= \begin{cases} +1 & \text{if } e_j = (v_k, v_k) \text{ for some } k \\ -1 & \text{if } e_j = (v_k, v_i) \text{ for some } k \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

Graphs: Some useful definitions

- Walk / Trail / Path ; (un-)directed edges ; multiple edges or simple
- Diameter: diam (\mathscr{G}) is the length of the longest path Volume of a subset *S* of nodes : vol
- Symmetric graphs : $A_{ii} = A_{ii}$
- Weighted graphs W (weight) remplaces A (sometimes : K (strength) remplaces **D**)

$$l(S) = \sum_{i \in S} d(i)$$

Graph Laplacian with orientation agnostic definitions

With these definitions we have:

$\mathbf{S}\mathbf{S}^T = \mathbf{D} - \mathbf{A}$

 $\mathbf{L} = \mathbf{D} - \mathbf{A}$ is called unnormalized Laplacian of G

L does not depend on the orientation (so OK for undirected)

For a weighted graph we have $\mathbf{L} = \mathbf{D} - \mathbf{W}$ (attention to degrees)

L is a symmetric, positive semi-definite matrix

Graph Laplacian is positive semi-definite for undirected graphs

Proposition: \mathbf{L} is positive semi-definite

For any N-by-N weight matrix \mathbf{W} , if $\mathbf{L} = \mathbf{D}-\mathbf{W}$ where \mathbf{D} is the degree matrix of \mathbf{W} , then

$$x^T \mathbf{L} x = \frac{1}{2} \sum_{i,j} \mathbf{W}(i,j) (x[i] - \sum_{i,j} \mathbf{W}(i,j)) (x[i] -$$

$$w_{ij} = \mathbf{W}(i,j)$$

Graph Laplacian is positive semi-definite for undirected graphs

Attribute, signal (function) f defined on the vertices $f \in \mathbb{R}^N$

In general for a weighted graph: $f^T \mathbf{L} f =$

This quadratic (Dirichlet) form is a measure of how smooth the signal is

- $g = \mathbf{S}G \in \mathbb{R}^N$ divergence of g (G = edge-based signal)

$$\|\mathbf{S}\mathbf{S}^T f\|_2^2$$

 $\int_{k}^{T} (f[i] - f[k])^2$

$$\sum_{i \sim k} \mathbf{W}(i,k) (f[i] - f[k])^2$$

20

Graph Laplacian: Properties

Since L is real, symmetric and PSD:

- It has an eigen decomposition into real eigenvalues and eigenvectors λ_i, u_i
- The eigenvalues are non-negative $0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_N$ L1 = 0

What can be learned from eigenvectors and eigenvalues ?

Graph Laplacian: Some examples

Path graph

$$\lambda_k = 2 - 2\cos\frac{\pi k}{N} = 4\sin^2\frac{\pi k}{2N}, \ k = 0, ..., N - 1$$
$$u_k[\ell] = \cos\left(\pi k(\ell + \frac{1}{2})/N\right), \ \ell = 0, ..., N - 1$$

DCT II transform

Graph Laplacian: Some examples

$$\lambda_{k} = 2 - 2\cos\frac{\pi k}{N} = 4\sin^{2}\frac{\pi k}{2N}, \ k = 0, ..., N - 1$$
$$u_{k}^{c}[\ell] = \cos\left(2\pi k\ell/N\right), \ \ell = 0, ..., N - 1$$
$$DCT \ translate{local}$$

 $u_{k}[\ell] = \sin(2\pi\kappa\ell/N), \ \ell = 0, ..., N - 1$

ansform

Fourier transform of signals

"Signal processing 101"

The Fourier transform is of paramount importance: Given a times series x_n , n = 1, 2, ..., N, let its Discrete Fourier Transform (DFT) be

$$\forall k \in \mathbb{Z} \quad \hat{x}_k = \sum_{n=0}^{N-1} x_n e^{-i2x_n}$$

Why?

- Inversion: $x_n = \frac{1}{N} \sum_{k=0}^{N-1} \hat{x}_k e^{-i2\pi kn/N}$
- Best domain to define **Filtering** (operator is diagonal)
- Definition of the Spectral analysis (FT of the autocorrelation)
- Alternate representation domains of signals are useful Fourier domain, DCT, time-frequency representations, wavelets, chirplets,...

A fundamental analogy

On any graph, the eigenvectors χ_i of the Laplacian matrix L will be **considered as the Fourier modes**, and its eigenvalues λ_i the associated (squared) frequencies.

Hence, a Graph Fourier Transform is defined as:

where
$$\chi = (\chi_0 | \chi_1 | \dots | \chi_{N-1}).$$

- Two ingredients:
 - Fourier modes = Eigenvectors χ_i (with increasing oscillations)
 - **Frequencies** = The measures of variations of an eigenvector is linked to its eigenvalue:

e

$$\frac{||\nabla \boldsymbol{\chi}_i||^2}{||\boldsymbol{\chi}_i||^2} = \lambda_i$$

because: $\forall \mathbf{x} \in \mathbb{R}^N$

$$\sum_{i,j)\in E} A_{ij} (\mathbf{x}_i - \mathbf{x}_j)^2 = \mathbf{x}^\top \mathbf{L} \mathbf{x}$$
 is

$$\hat{x} = \chi^{\top} x$$

LOW FREQUENCY:

HIGH FREQUENCY:

the Dirichlet norm

[Tremblay, Gonçalves, PB, 2017]

Figure 1: Two graph signals and their GFTs. Plots a) and b) represent respectively, a low-frequency and a high-frequency graph signal on the binary Karate club graph [21]. Plots c) and d) are their corresponding GFTs computed for three reference operators: \mathbf{L} , \mathbf{L}_{n} and \mathbf{L}_{d} (equivalent to the GFT defined via the adjacency matrix).

[Vandergheynst & Shuman, 2013]

Illustration on the smoothness of graph signals

More Fourier modes

Graph Laplacian: Properties

• Multiplicity of eigenvalue λ_0 is equal to the number of connected components

- **Oscillation of the Laplacian eigenvalues:**
 - Property: $u_k = \arg \min_{s \in \text{Span}(u_0,...,u_{k-1})} \frac{s^{\dagger}Ls}{s^{\dagger}s}$
 - hence u_k is always the functions = oscillations of the smallest global variation a.k.a. frenquency

Graph Laplacian: Properties (maybe)

• **Prop:** No non-negative local minimum nor non-positive local maximum

The (Discrete Local Theorem)