Graphs for data science and ML

Machine Learning for graphs and with graphs

P. Borgnat, CNRS, LP ENSL

(1)

Data Science \& Machine Learning

- I came to ML from Data Science <- Data Processing in fact

The question for this lecture: how to mimic Signal Processing for data on graphs ?
Hence, in 1 slide: what is Signal processing?

Observations Noise/nissing
egg.
9: Climate change? Temperature (G) Samples at opeoffec tomes/pheso
\times Gene Expression profiling? DNA microancey Images of spots.

* Music (or Speed) Sound Noisy sound, sampled ... $\stackrel{\uparrow}{s}$
Need to defmie what is cmbinmation, how it affects the data, what is interesting....

Need a model of measurement and obsavation The way Frack = Signal Processing!

Data Science \& Machine Learning

Key lessons from Signal processing:

- Representation of data is important

$$
x(t) \circlearrowleft\left(F_{x}\right)(v) \circlearrowleft x(t, v)
$$

- Know how to write observation models

Obsenvation

$?$

- Two types of tools are required:
- Exploratory data analysis (know how to better display information)
- Exact tools for inference (know to best extract information, with statistical confidence)
. The golden triangle of Signal processing

Why dealing with graphs ?

- Data is generally in non-linear spaces
- Some data are first and foremost relational
- Often, proximity is important

because space is sometime better represented by close

Why dealing with graphs ?

Introduction: on signals and graphs

Why data analysis and processing is useful for networks?

- Many examples of data having both: labels and/or attributes (a.k.a. "signals") and structures or relational properties (graphs)

- Many data sets in high dimension, or large dataset, are best encoded with graphs
- Non-trivial estimation issues (e.g., non repeated measures;

data on graph variables with large distributions (or power-laws); ...)
\rightarrow advanced statistical approaches
- large networks
\rightarrow multiscale approaches
- dynamical networks
\rightarrow nonstationary methods

Examples of networks from our digital world

LinkedIn Network

USA Power grid

Citation Graph

Web Graph

Sociopatterns graphs

Protein Network

Data as graphs

- A graph $G=(V, E)$, set of nodes in V and edges in E

$$
\begin{aligned}
& V=\{\text { blue, green, orange, red }\} \text { and } \\
& E=\{(b, g),(g, o),(o, b),(b, r)\}
\end{aligned}
$$

- Good to represent relations $(\in E)$ between entities $(\in V)$

[Roth et al., 2011]

[Michau et al., 2017]

Data as graphs: many uses

- Good to detect groups in the data (\simeq clustering)

Blogosphere US 2004 [Adamic et al. 2005]

Mobile phones [Blondel et al., 2008]

BSS Vélo'v in Lyon [Borgnat et al., 2013]

- Good to code irregular shapes

[R. Hamon et al., 2016]

[Cours, N. Pustelnik \& P.B., ENSL]

Examples of graph signals

- Given a graph G, let's consider a signal x on the nodes V. If $N=|V|$, we have $x \in \mathbb{R}^{N}$ (could be in \mathbb{C}^{N} or multivariate)

USA Temperature

Image Grid

Minnesota Roads

Color Point Cloud

fMRI Brain Network

Image Database

Typical problems for graph signal processing

- Often, the graph is not a regular (yet it could be)

- How to answer typical signal/image processing questions?

Denoising? Compression + Coarsening ? Estimation?

Typical problems
 [P. Vandergheynst, EPFL, 2013]

Compression / Visualization

Denoising

Examples of solutions in

signal/data processing for graph signals

- Translations on graphs [Shuman et al., 2013]

- Denoising on arbitrary graph [Tremblay, Borgnat, 2016]

Noisy graph signal $(S N R=12) \quad$ Denoised with filterbanks $(S N R=23.3)$

Empirical mode decomposition on graphs

- Objective: decompose a graph signal in various "elementary" modes in a data-driven and non stationary approach

[N. Tremblay, P. Flandrin, P. Borgnat, 2014]

Some bibliography

Books

- Antonio Ortega, Introduction to Graph Signal Processing, CUP 2022
- Cooperative and Graph Signal Processing, Ed. P. Djuric and C. Richard, Academic Press, 2018
- William H. Hamilton, Graph Representation Learning, M\&C Publishers, 2020
- Leo Grady, Jonathan Polimeni, Discrete Calculus (Applied Analysis on Graphs for Computational Science), Springer, 2010
- Fan R.K. Chung, Spectral Graph Theory, AMS, 197

Some bibliography

Articles - surveys or historical landmarks

- "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains" D.I. Shuman ; S.K. Narang ; P. Frossard ; A. Ortega ; P. Vandergheynst, IEEE Signal Processing Mag., May 2013
- "Discrete Signal Processing on Graphs" A. Sandryhaila, J.M.F. Moura IEEE Transactions on Signal Processing, April 2013
- "Graph signal processing: Overview, challenges, and applications." A. Ortega, P. Frossard, J. Kovacevic, J.M.F. Moura, and P. Vandergheynst. Proceedings of the IEEE, 106(5):808828, 2018.
- "Fourier could be a data scientist: From graph Fourier transform to signal processing on graphs" B Ricaud, P Borgnat, N Tremblay, P Gonçalves, P Vandergheynst, Comptes Rendus Physique 20 (5), 474-488, 2019
- "Graph Signal Processing: History, development, impact, and outlook", G Leus, AG Marques, JMF Moura, A Ortega, DI Shuman, IEEE Signal Processing Magazine 40 (4), 49-60, 2023

On Graphs, signals, matrices and spectrum

Graphs: Notations and some useful definitions

- Formal def. of a graph : $\mathscr{G}=(V, E) ; V$ set of N nodes and E of M edges
- Adjacency matrix \mathbf{A} s.t. $\mathbf{A}_{i j}=1$ if $(j, i) \in E$ (warning: convention for the direction). Note that $\mathbf{A} \in \mathbb{R}^{N \times N}$
- Degree of a node : $d_{i}=\sum_{i \sim j} \mathbf{A}_{i j}$; matrix of degrees $\mathbf{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{N}\right)$
- Incidence matrix :

$$
\mathbf{S}(i, j)=\left\{\begin{array}{cl}
+1 & \text { if } e_{j}=\left(v_{i}, v_{k}\right) \text { for some } k \\
-1 & \text { if } e_{j}=\left(v_{k}, v_{i}\right) \text { for some } k \\
0 & \text { otherwise }
\end{array}\right.
$$

Graphs: Some useful definitions

- Walk / Trail / Path ; (un-)directed edges ; multiple edges or simple
- Diameter: $\operatorname{diam}(\mathscr{G})$ is the length of the longest path
- Volume of a subset S of nodes $: \operatorname{vol}(S)=\sum_{i \in S} d(i)$
- Symmetric graphs : $\mathbf{A}_{i j}=\mathbf{A}_{j i}$
- Weighted graphs \mathbf{W} (weight) remplaces \mathbf{A} (sometimes : \mathbf{K} (strength) remplaces D)

Graph Laplacian
 with orientation agnostic definitions

With these definitions we have:

$$
\mathbf{S S}^{T}=\mathbf{D}-\mathbf{A}
$$

$\mathbf{L}=\mathbf{D}-\mathbf{A}$ is called unnormalized Laplacian of G
\mathbf{L} does not depend on the orientation (so OK for undirected)
For a weighted graph we have $\mathbf{L}=\mathbf{D}-\mathbf{W}$ (attention to degrees)
\mathbf{L} is a symmetric, positive semi-definite matrix

Graph Laplacian

is positive semi-definite for undirected graphs

Proposition: \mathbf{L} is positive semi-definite

For any N-by- N weight matrix \mathbf{W}, if $\mathbf{L}=\mathbf{D}-\mathbf{W}$ where \mathbf{D} is the degree matrix of \mathbf{W}, then

$$
x^{T} \mathbf{L} x=\frac{1}{2} \sum_{i, j} \mathbf{W}(i, j)(x[i]-x[j])^{2} \geqslant 0 \quad \forall x \in \mathbb{R}^{N}
$$

Graph Laplacian

is positive semi-definite for undirected graphs

Attribute, signal (function) f defined on the vertices $f \in \mathbb{R}^{N}$

$$
\begin{aligned}
& \left(\mathbf{S}^{T} f\right)[j]=f[i]-f[k] \text { derivative of } f \text { along edge } j \\
& \begin{aligned}
& F=\mathbf{S}^{T} f \in \mathbb{R}^{M} \text { gradient of } f(F=\text { edge-based signal }) \\
& g=\mathbf{S} G \in \mathbb{R}^{N} \quad \text { divergence of } \mathrm{g}(G=\text { edge-based signal }) \\
& \begin{aligned}
\mathbf{L}=\mathbf{S S}^{T} & f^{T} \mathbf{L} f
\end{aligned} \\
&=f^{T} \mathbf{S S}^{T} f \\
&=\left\|\mathbf{S}^{T} f\right\|_{2}^{2} \\
&=\sum_{i \sim k}(f[i]-f[k])^{2}
\end{aligned}
\end{aligned}
$$

In general for a weighted graph: $f^{T} \mathbf{L} f=\sum_{i \sim k} \mathbf{W}(i, k)(f[i]-f[k])^{2}$
This quadratic (Dirichlet) form is a measure of how smooth the signal is

Graph Laplacian: Properties

Since \mathbf{L} is real, symmetric and PSD:

- It has an eigen decomposition into real eigenvalues and eigenvectors λ_{i}, u_{i}
- The eigenvalues are non-negative $0=\lambda_{1} \leqslant \lambda_{2} \leqslant \ldots \leqslant \lambda_{N}$

$$
\mathbf{L} \mathbf{1}=0
$$

What can be learned from eigenvectors and eigenvalues?

Graph Laplacian: Some examples

Path graph

$$
\begin{gathered}
{\left[\begin{array}{cccccc}
1 & -1 & & & & \\
-1 & 2 & -1 & & & \\
& -1 & 2 & -1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 2 & -1 \\
& & & -1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & & & \\
& 2 & 2 & \\
\\
& 2 & & \\
& & \ddots & \\
& & & \\
& \\
& & & \\
\lambda_{k}=2-2 \cos \frac{\pi k}{N}=4 \sin ^{2} \frac{\pi k}{2 N}, k=0, \ldots, N-1 \\
1 & 1 & 0 & 1 \\
1 & & & \\
& 1 & 0 & 1 \\
& & \\
& & \ddots & \ddots \\
& & \ddots & \\
& & & 1 \\
& 1 & 1 \\
& & & \\
\hline
\end{array}\right]} \\
u_{k}[\ell]=\cos \left(\pi k\left(\ell+\frac{1}{2}\right) / N\right), \ell=0, \ldots, N-1
\end{gathered}
$$

DCT II transform

Graph Laplacian: Some examples

$$
\begin{aligned}
& \text { Ring graph }\left(\begin{array}{ccccc}
2 & -1 & & & -1 \\
-1 & 2 & -1 & & \\
& & \ddots & & \\
-1 & & & -1 & 2
\end{array}\right) \\
& \lambda_{k}=2-2 \cos \frac{\pi k}{N}=4 \sin ^{2} \frac{\pi k}{2 N}, k=0, \ldots, N-1 \\
& u_{k}^{c}[\ell]=\cos (2 \pi k \ell / N), \ell=0, \ldots, N-1 \\
& u_{k}^{s}[\ell]=\sin (2 \pi k \ell / N), \ell=0, \ldots, N-1 \quad \text { DCT tra }
\end{aligned}
$$

Graph Laplacian: An Analogy

Fourier transform of signals

"Signal processing 101"
The Fourier transform is of paramount importance:
Given a times series $x_{n}, n=1,2, \ldots, N$, let its Discrete Fourier Transform (DFT) be

$$
\forall k \in \mathbb{Z} \quad \hat{x}_{k}=\sum_{n=0}^{N-1} x_{n} e^{-i 2 \pi k n / N}
$$

LOW FREQUENCY:

High frequency:

- Inversion: $x_{n}=\frac{1}{N} \sum_{k=0}^{N-1} \hat{x}_{k} e^{-i 2 \pi k n / N}$
- Best domain to define Filtering (operator is diagonal)
- Definition of the Spectral analysis (FT of the autocorrelation)
- Alternate representation domains of signals are useful: Fourier domain, DCT, time-frequency representations, wavelets, chirplets,...

Graph Laplacian: An Analogy

A fundamental analogy

On any graph, the eigenvectors χ_{i} of the Laplacian matrix L will be considered as the Fourier modes, and its eigenvalues λ_{i} the associated (squared) frequencies.

Hence, a Graph Fourier Transform is defined as:

$$
\hat{x}=\chi^{\top} x
$$

where $\chi=\left(\chi_{0}\left|\chi_{1}\right| \ldots \mid \chi_{N-1}\right)$.

- Two ingredients:
- Fourier modes $=$ Eigenvectors χ_{i} (with increasing oscillations)
- Frequencies $=$ The measures of variations of an eigenvector is linked to its eigenvalue:

$$
\frac{\left\|\nabla \boldsymbol{x}_{i}\right\|^{2}}{\left\|\boldsymbol{x}_{i}\right\|^{2}}=\lambda_{i}
$$

because: $\forall \mathbf{x} \in \mathbb{R}^{N} \sum_{e=(i, j) \in E} A_{i j}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{2}=\mathbf{x}^{\top} \mathbf{L x}$ is the Dirichlet norm

Graph Laplacian: An Analogy

[Tremblay, Gonçalves, PB, 2017]

Figure 1: Two graph signals and their GFTs. Plots a) and b) represent respectively, a low-frequency and a high-frequency graph signal on the binary Karate club graph [21]. Plots c) and d) are their corresponding GFTs computed for three reference operators: $\mathbf{L}, \mathbf{L}_{\mathbf{n}}$ and $\mathbf{L}_{\mathbf{d}}$ (equivalent to the GFT defined via the adjacency matrix).

Graph Laplacian: An Analogy

[Vandergheynst \& Shuman, 2013]
Illustration on the smoothness of graph signals

$$
\mathbf{f}^{\mathrm{T}} \mathcal{L}_{1} \mathbf{f}=0.14
$$

$$
\mathbf{f}^{\mathrm{T}} \mathcal{L}_{2} \mathbf{f}=1.31
$$

$$
\mathbf{f}^{\mathrm{T}} \mathcal{L}_{3} \mathbf{f}=1.81
$$

Graph Laplacian: An Analogy

More Fourier modes

Graph Laplacian: Properties

- Multiplicity of eigenvalue λ_{0} is equal to the number of connected components
- Oscillation of the Laplacian eigenvalues:
. Property: $u_{k}=\arg \min _{s \in \operatorname{Span}\left(u_{0}, \ldots, u_{k-1}\right.} \frac{s^{\dagger} L s}{s^{\dagger} s}$
- hence u_{k} is always the functions = oscillations of the smallest global variation a.k.a. frenquency

Graph Laplacian: Properties
 (maybe)

- Prop: No non-negative local minimum nor non-positive local maximum
- The (Discrete Local Theorem)

