# Graphs for data science and ML

P. Borgnat, CNRS, LP ENSL

(2)



### Machine Learning for graphs and with graphs



1



300

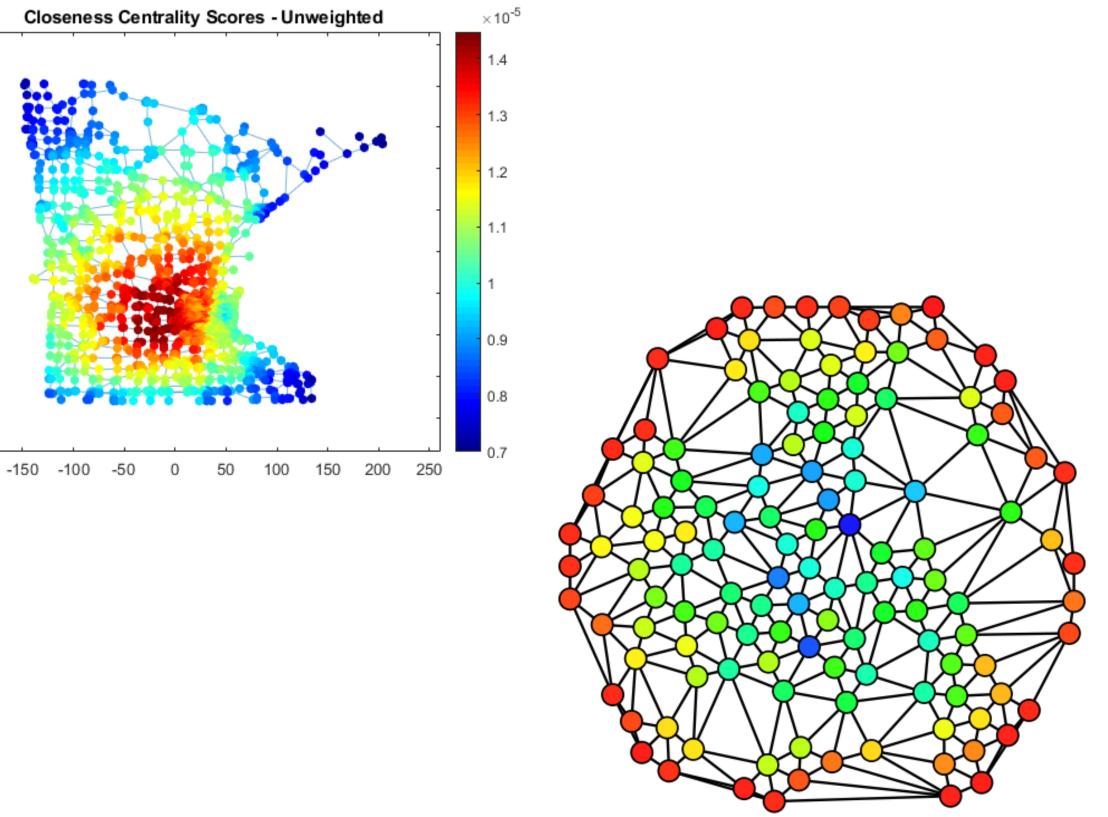
- Centrality from degrees
  - more connections = more important (?)

• Centrality from Closeness  
• 
$$C_c(v) = (N-1) / \sum_{u} d(u, v)$$
  
•  $C_c(v) = (N-1) / \sum_{u} d(u, v)$ 

**Centrality from Betweeness** 

• 
$$C_B(v) = \sum_{\substack{s \neq v \neq t}} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

R. Cazabet - Complex Network lectures, ENS de Lyon



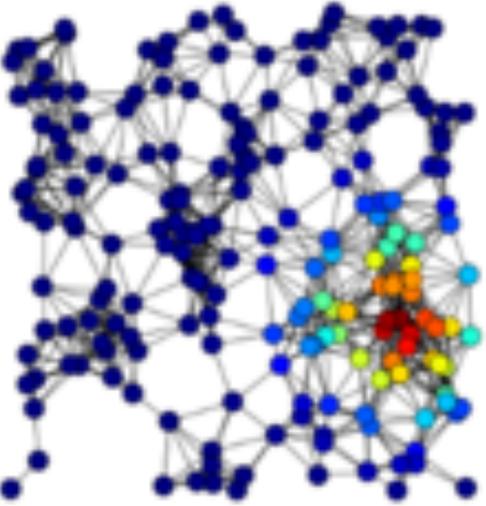
By Claudio Rocchini - Own work, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1988980



- An important idea: recursivity of the definition =
  - Nodes are important if/when connected to important nodes
- Crude algorithm:
  - each node has a score of centrality  $x_i$
  - It shares this score with its neighbours, and each node sum what it received:  $x_i(t+1) = \sum a_{ji}x_j(t)$
  - Solve by iterating on t with a random initialisation
  - => This is in fact a problem of eigenvalue !



- It converges by the Perron-Frobenius theorem, for real and irreducible matrices with non-negative entries
  - -> hence for undirected graphs which are (strongly) connected
- Alternatively: the final scores of the **Eigenvector centrality**  $x^*$ aligns toward the dominant eigenvector
  - the eigenvalue equation :  $\lambda_{max} x^* = \mathbf{A} x^*$



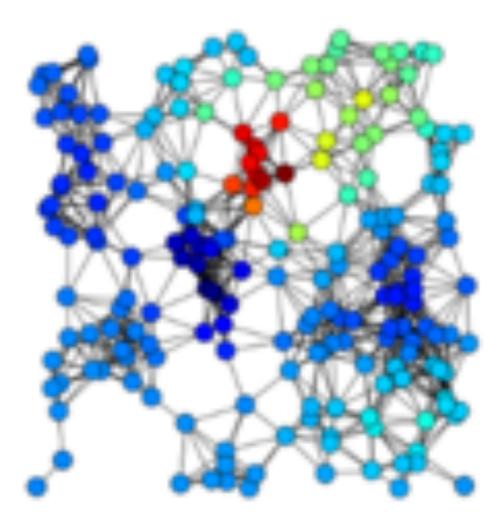
R. Cazabet - Complex Network lectures, ENS de Lyon

• **Katz centrality**: a generalization of Degree centrality with the recursive trick of the EV centrality

• 
$$x_i = \sum_{k=j}^{\infty} \sum_{j=1}^{N} \alpha^k (A^k)_{ij}$$
 for some

- In matrix form:  $C_{K}(i) = ((\mathbf{Id} \alpha \mathbf{A})^{-1}) \mathbf{Id})\mathbf{1}$
- works for directed networks
- $\alpha$  has to be smaller than  $1/|\lambda_{max}|$

 $\alpha \in (0,1)$ 



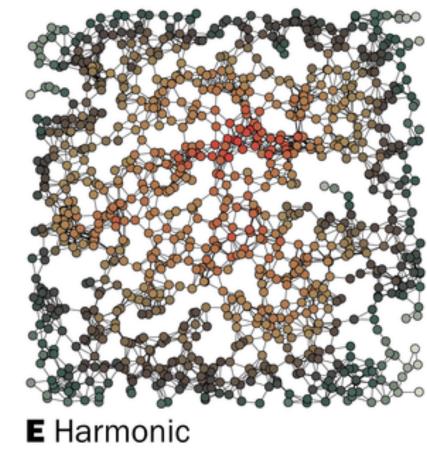
R. Cazabet - Complex Network lectures, ENS de Lyon

### **Exploit the** properties of the matrices of graphs

### First : notion of *centrality*

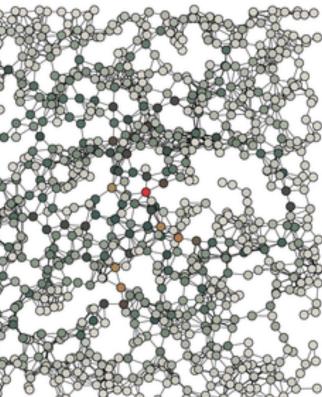




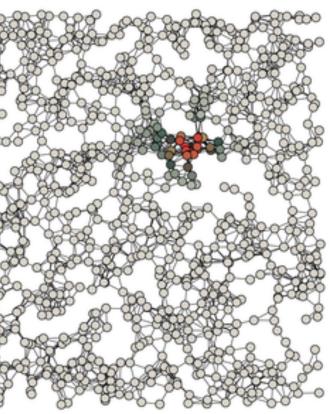


Pholme, CC BY-SA 4.0 <https:// creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

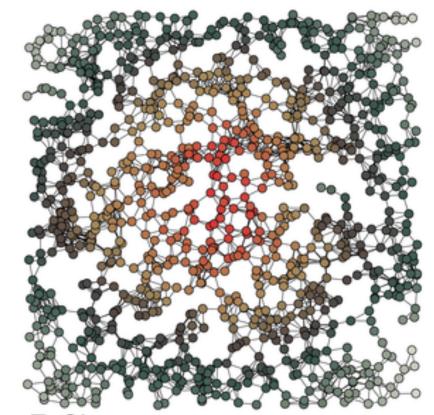
6 Least central



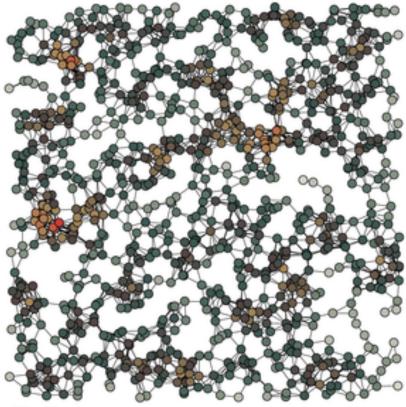




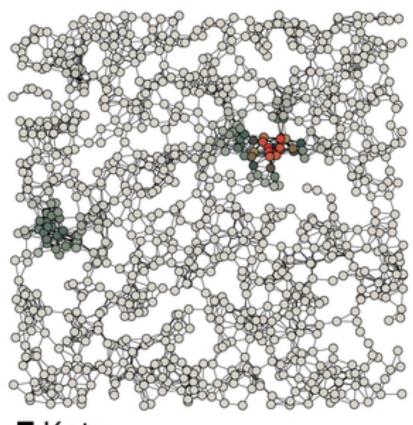
C Eigenvector



**B** Closeness



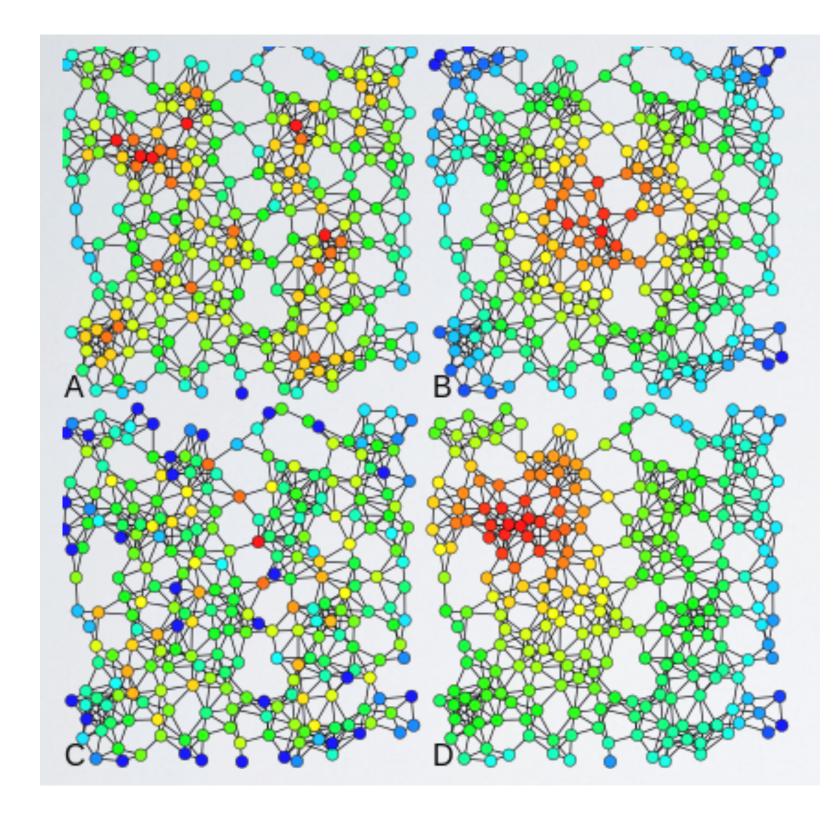
**D** Degree



F Katz

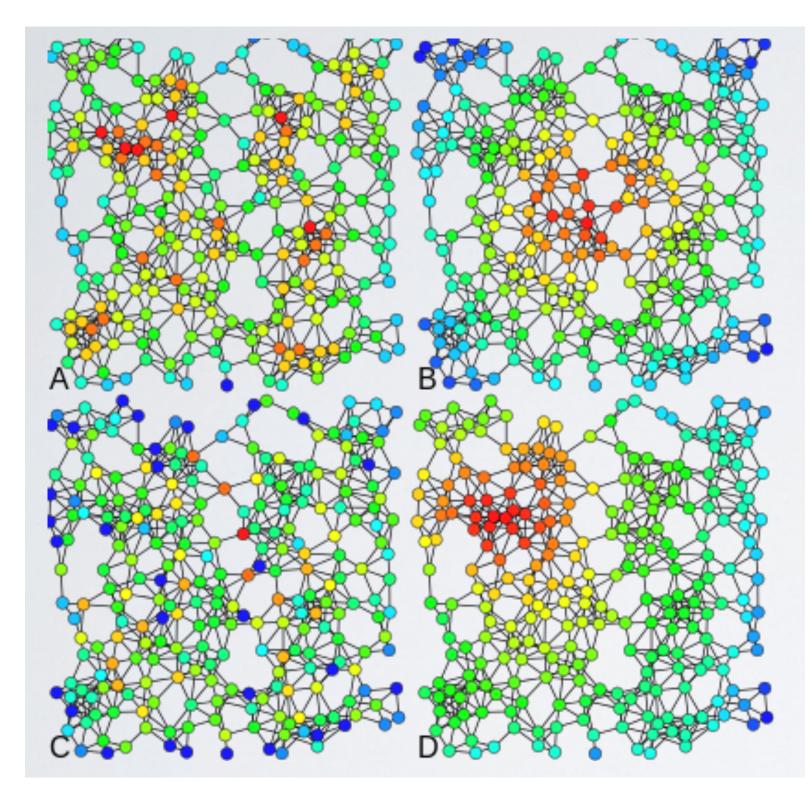
Most central

- Limit : each notion gives a different view
  - which is which ?
    - eigenvector
    - degree
    - betweenness
    - closeness





- Limitation : each notion gives a different view
  - which is which ?
    - A degree
    - B closeness
    - C betweenness
    - D eigenvector



R. Cazabet - Complex Network lectures, ENS de Lyon



### Exploit the properties of the matrices of graphs From centrality to recommendation

- Brin & Page (1996) had the same idea for the task of ranking webpages:
  - Google for his search engine
- Two improvements:
  - "teleportation" probability
  - problem be written as a random walk

-> It became the famous PageRank algorithm (1998) initially used by

• Avoid problems with source nodes (a.k.a. dangling nodes) by adding a

renormalize the centralities by dividing by the degrees -> this let the

### The PageRank Algorithm Brin & Page, WWW, 1998

• The equation becomes  $R_i(t+1) =$ 

- By convention  $\beta = 1$  (or 1/N) and the choice is often  $\alpha \simeq 0.85$
- By introducing the random walk matrix:  $\mathbf{P} = \mathbf{D}^{-1}\mathbf{A}$ :
  - one adds probability 1/N for dangling nodes ->  $S_{ii} = T_{ii}$  or 1/N
  - $R = \alpha \mathbf{S}R + \beta \mathbf{1}$  -> Result  $R = \beta (\mathbf{Id} \alpha \mathbf{S})^{-1} \mathbf{1}$

$$\alpha \sum_{j} a_{ji} \frac{R_{j}(t)}{k_{j}^{out}} + \beta$$

### The PageRank Algorithm Brin & Page, WWW, 1998

#### A correct implementation

[C. Coquidé, PhD Thesis, 2020]

**Data** : T : tableau des liens (source, cible, poids); D : liste des nœuds ballants; S : vecteur des poids associés aux liens sortants;  $\alpha \in [0.5, 1[.$ Result : P : vecteur PageRank. init  $\mathbf{P}^{(0)} = \mathbf{e}/N, \ \mathbf{P} = \mathbf{0}, \ k = 0;$ while test = FALSE dofor (j, i, w) in T do  $P_i += P_j^{(0)} * \frac{w}{S_i};$ end for i in D do  $k += P_i^{(0)};$ end for i = 0; i < N; i + =1 do  $P_i = \alpha \left( P_i + k/N \right) + \left( 1 - \alpha \right)/N;$ end  $test = conv(\mathbf{P}, \mathbf{P}^{(0)});$  $\mathbf{P}^{(0)} \leftarrow \mathbf{P};$  $\mathbf{P} = \mathbf{0};$ 

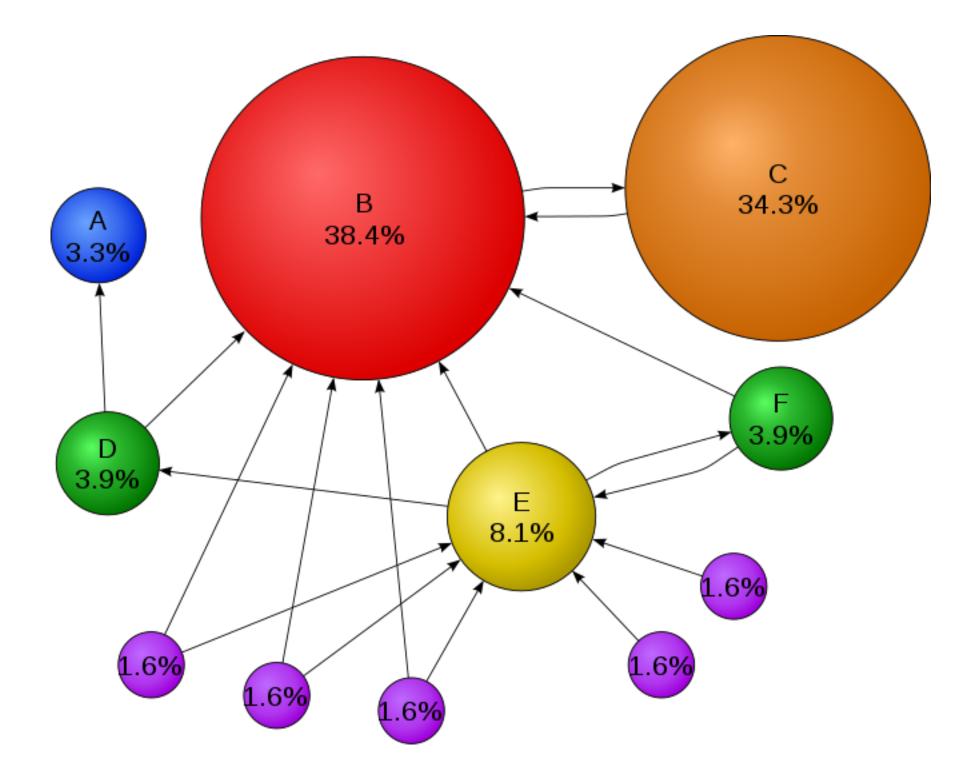
end

Algorithme 1 : Algorithme du PageRank. Ici, la fonction  $conv(\mathbf{P}, \mathbf{P}^{(0)})$  est un critère de convergence.

Possible Convergence criteria:

$$\mathcal{C}_1 : \left\| \mathbf{P}^{(k+1)} - \mathbf{P}^{(k)} \right\|_1 \le \epsilon_1$$
$$\mathcal{C}_2 : \min_j \left( \frac{|P_j^{(k+1)} - P_j^{(k)}|}{P_j^{(k+1)}} \right) \le \epsilon_2$$

• An illustration





# Other usages of the RW matrix

- Many (many, many, and more) works on RW on graphs
  - -> e.g. see lectures on Markov Chains
  - needed: the stationary distribution  $\pi$  such that  $\pi = \mathbf{P} \pi$
- Can be connected to the Laplacian by normalisation:
  - Random Walk Laplacian:  $L_{rw} = I D^{-1}A$ ; i.e. normalisation on the left by the inverse degree matrix (coherent with an inflows/consensus view)
  - This Laplacian is not a symmetric matrix
  - Generalized eigenvector problem :  $\mathbf{L}_{rw} u = \lambda u$  is equivalent to  $\mathbf{L} u = \lambda \mathbf{D} u$



### Normalization of the Laplacian

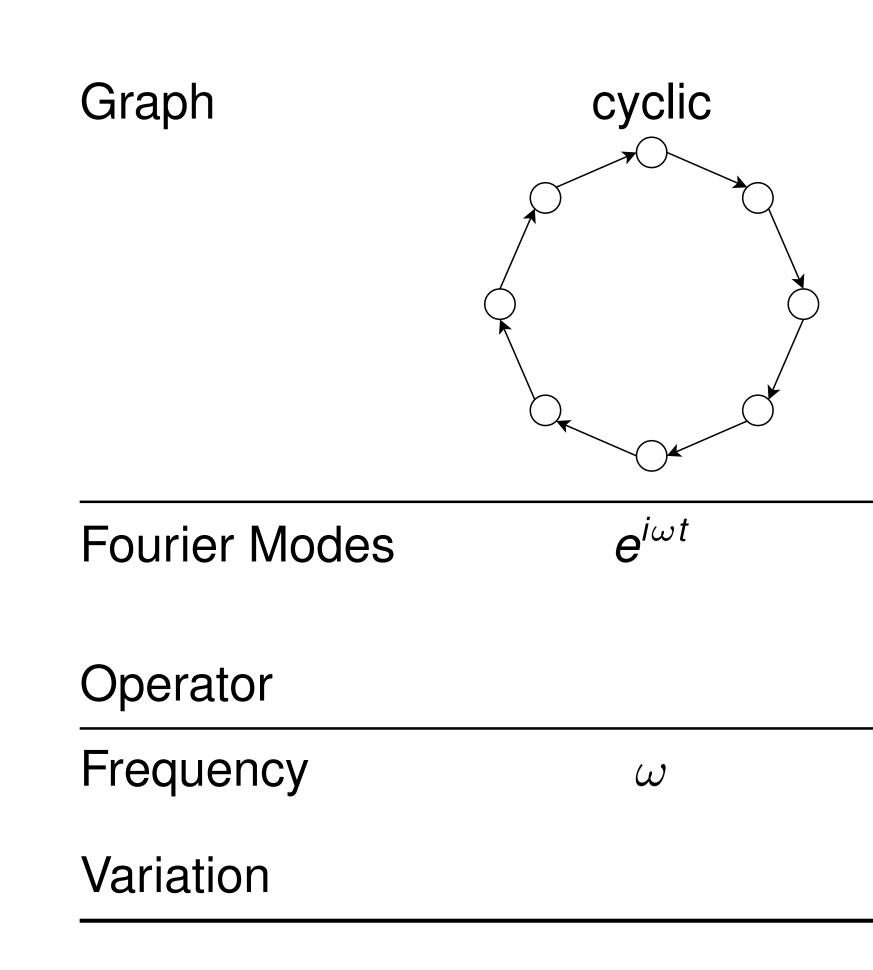
- If one considers the generalized problem:  $Lu = \lambda Du$
- then, the normalisation can be made symmetric :
  - the Normalized Laplacian is  $\mathscr{L} = \mathbf{D}^{-1/2}\mathbf{L}\mathbf{D}^{-1/2} = \mathbf{Id} \mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}$

- Its eigenvectors f are related to the u's:  $u = \mathbf{D}^{-1/2} f$ • Eigenvalues are normalized:  $0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_{max} \leq 2$
- 2 is reached iff bipartite graph

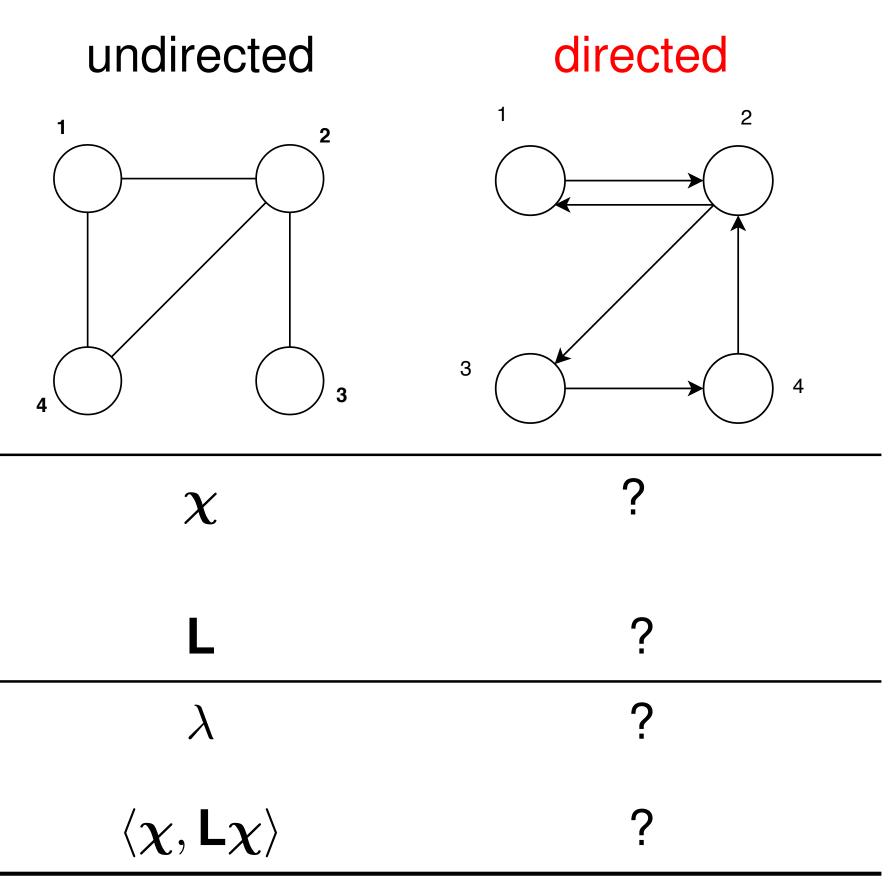
# Choice of the Laplacian

- The different choices are valid, depends on the context
- For directed graphs, one has the same question: which matrix ?
  - -> can be directly  $A \hspace{0.1in}$  (leads to classical DSP on cyclic graphs)
  - -> is more generally a "Shift Operator", also coined "Reference Operator/ Matrix" which connects adjacent nodes only (preferably)
  - -> has to be associated to a "measure of variations" => frequencies

### Choice of the Laplacian An exemple for directed graph



#### What about directed graphs? Thesis of Harry Sevi, 2018; joint work G. Rilling (CEA LIST)



### **Choice of the Laplacian**

### **Measure of Variations**

### Undirected: $\mathcal{D}(\boldsymbol{f}) = rac{1}{2} \sum_{i,j} \frac{\boldsymbol{a}_{ij}}{|\boldsymbol{f}_i|^2} |f_i - f_j|^2$ $=\langle \boldsymbol{f}, \boldsymbol{L}\boldsymbol{f} \rangle$ with

L = D - A.

#### Directed case

• use of  $\mathbf{P} = \mathbf{D}^{-1}\mathbf{A}$  the random walk operator and its associated stationary distribution  $\pi$ , with the diagonal matrix  $\Pi$  associated to it

• Undirected case :  $\Pi \propto \mathbf{D} \Rightarrow \mathbf{L}_{dir} \propto \mathbf{L}$ .

### **Directed**: $\mathcal{D}_{\pi,\mathbf{P}}^2(\mathbf{f}) = \frac{1}{2} \sum_{i,j} \pi_i \mathbf{p}_{ij} |f_i - f_j|^2.$ $= \langle \boldsymbol{f}, \boldsymbol{L}_{dir} \boldsymbol{f} \rangle.$ with $\mathsf{L}_{dir} = \Pi - \frac{\Pi \mathsf{P} + \mathsf{P}^\top \Pi}{2}$ [Chung, 2005]

# **Choice of the Laplacian**

#### Fourier modes on directed graphs

#### **Random walk operator**

• Random walk  $X_n$  : position X at time n.

• 
$$\mathbf{P}_{ij} = \mathbb{P}(X_n = j | X_{n-1} = i)$$
 is its trans

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} =$$

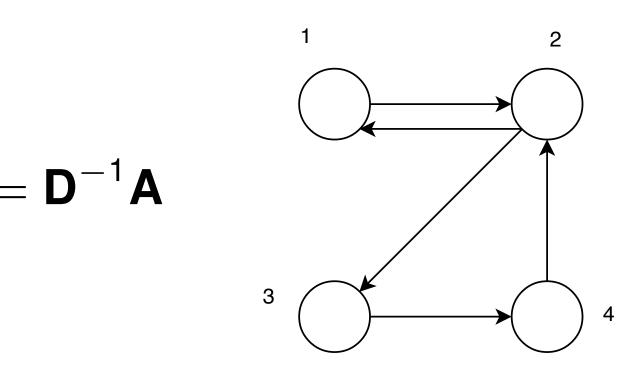
#### **Proposition of Fourier Modes**

- Eigenvectors  $\mathbf{P}\boldsymbol{\xi}_k = \theta_k \boldsymbol{\xi}_k$
- Fourier representation of **s**

where  $\hat{\boldsymbol{s}} = [\hat{s}_1, \dots, \hat{s}_N]^\top$  are the Fourier coefficients

- Digraph Fourier Transform :
- Beware : complex eigenvalues :  $\theta = \alpha_7 + i\beta$ ,  $|\theta| \le 1$ .

sition probability



 $\boldsymbol{\Xi} = [\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_N]$  the basis

 $\boldsymbol{s} = \sum_{k} \hat{\boldsymbol{s}}_{k} \boldsymbol{\xi}_{k} = \boldsymbol{\Xi} \hat{\boldsymbol{s}}_{k}$ 

 $\hat{\mathbf{S}} = \boldsymbol{\Xi}^{-1} \mathbf{S}$ 

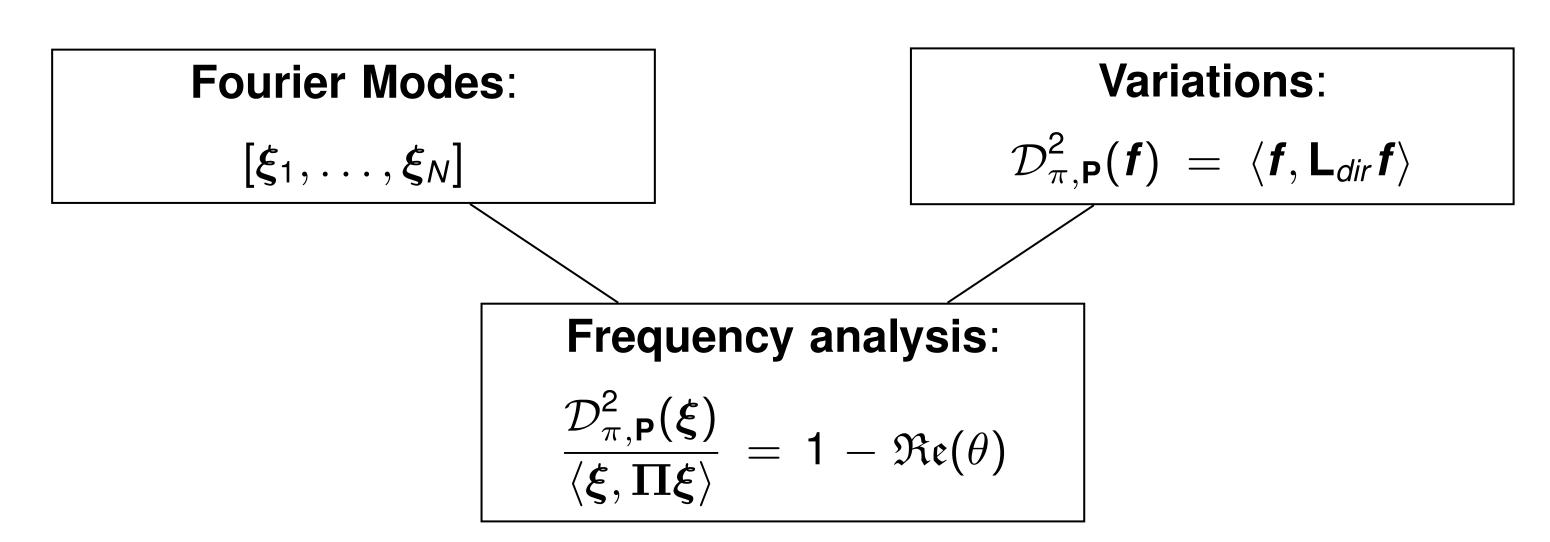
# **Choice of the Laplacian / Frequencies**

Introduction 000

Digraph FT 00000000

Learning / SSL 00000000000

#### Frequency analysis of modes of **P**



#### • Let's define the **frequency** of $\boldsymbol{\xi}$ from its complex eigenvalue $\boldsymbol{\theta}$ :

["Analyse fréquentielle et filtrage sur graphes dirigés", Sevi et al., GRETSI, 2017]

Learning / parametric 000000000

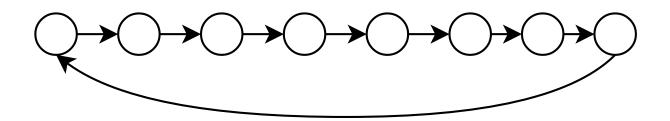
Learning / combination 0000

Ending Ο

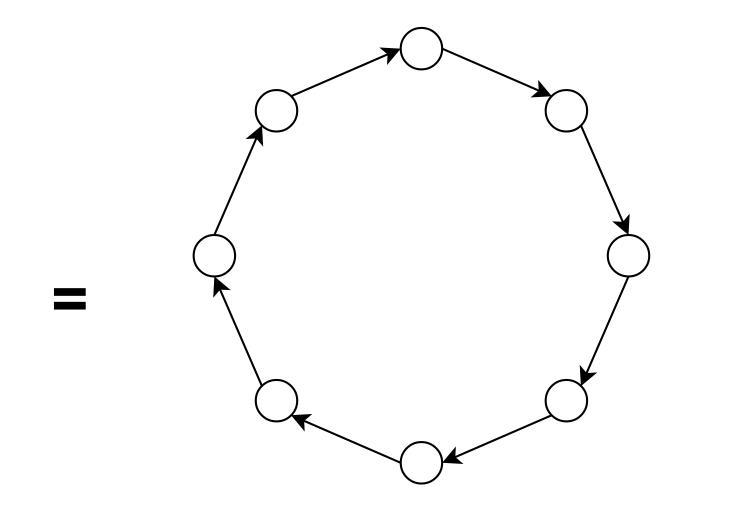
 $\omega = 1 - \mathfrak{Re}(\theta), \quad \omega \in [0, 2]$ 

# **Choice of the Laplacian / Frequencies**

### On the directed cyclic graph

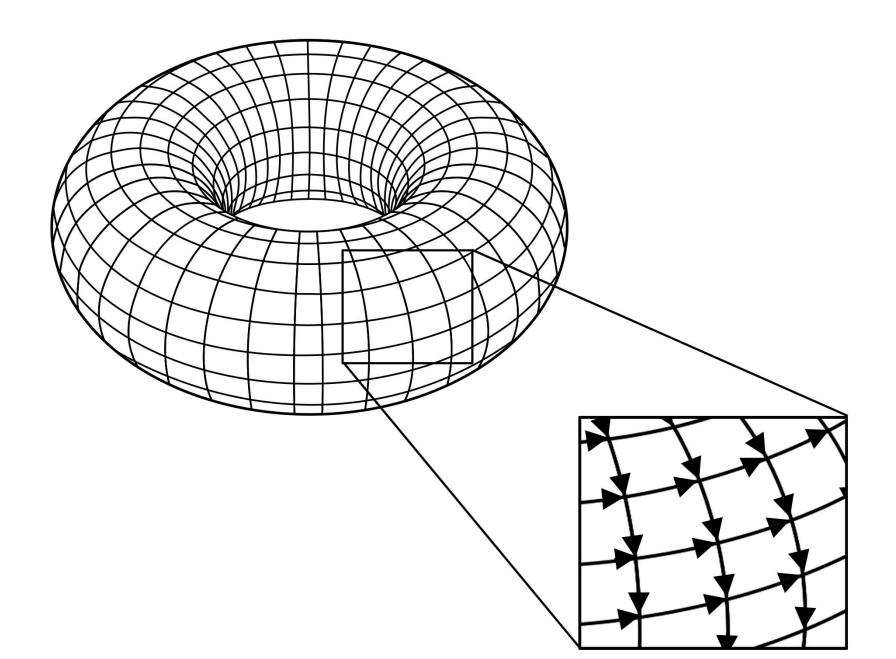


|              | Classic DSP                     |        | Directed cycle graph                       |
|--------------|---------------------------------|--------|--------------------------------------------|
| Eigenvectors | $e^{i\omega t}, e^{-i\omega t}$ | =      | $\theta^t,  \overline{\theta}^t$           |
| Eigenvalues  | $e^{i\omega}, e^{-i\omega}$     | =      | $	heta, ar{	heta}$                         |
| Frequencies  | $\omega,-\omega$                | $\neq$ | $	heta, ar{	heta} = (1 - \omega) \pm ieta$ |

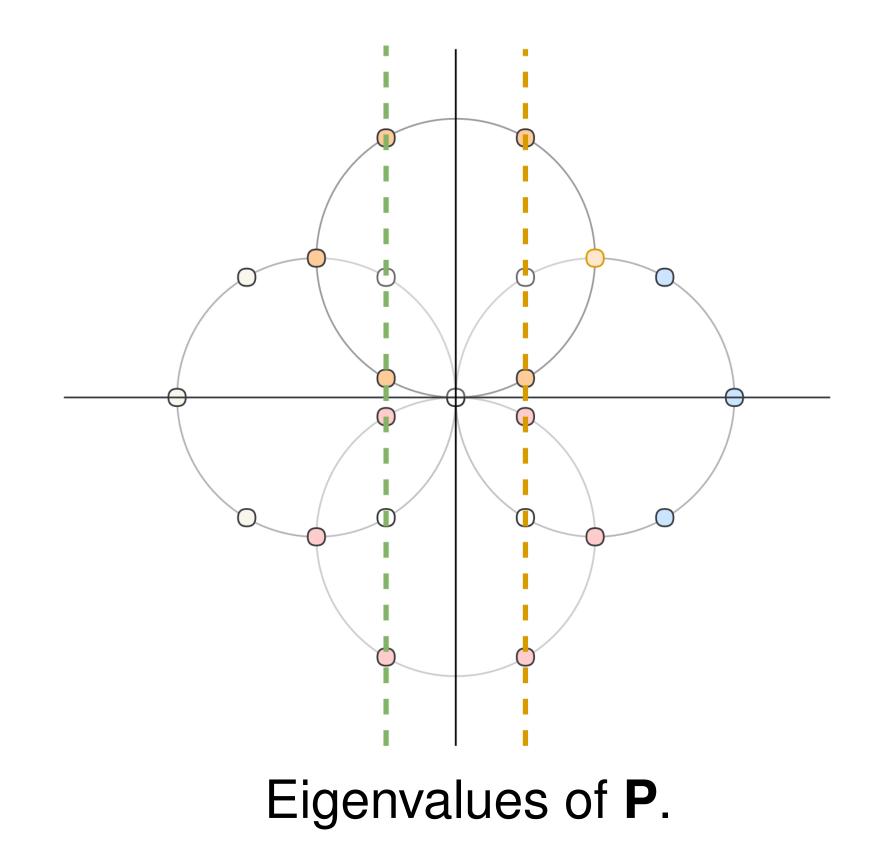


# **Choice of the Laplacian / Frequencies**

### On a directed torus graph

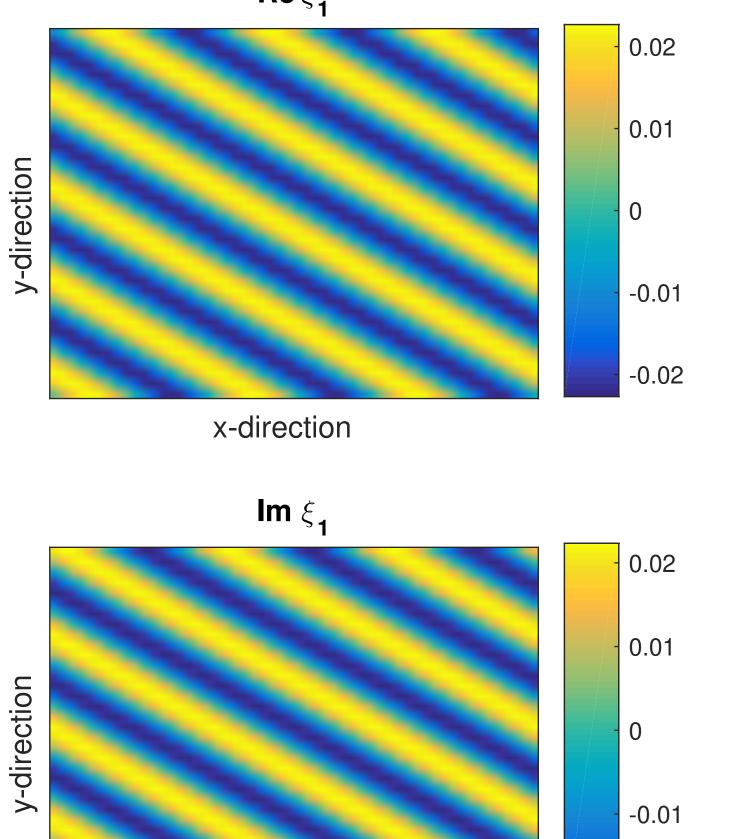


#### Directed torus graph



### Choice of the Laplacian / Frequencies On a directed torus graph

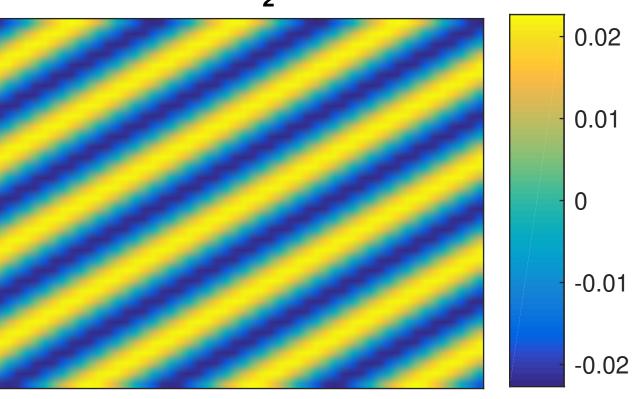
We show 2 eigenmodes of same frequency and differen (non conjugate) imaginary parts



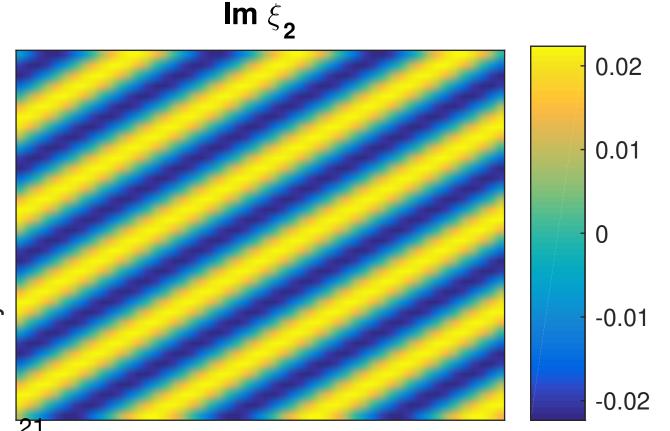
 $\operatorname{Re}\xi_1$ 

x-direction

 ${f Re}\,\xi_{2}$ 



x-direction



-0.02

y-direction

x-direction