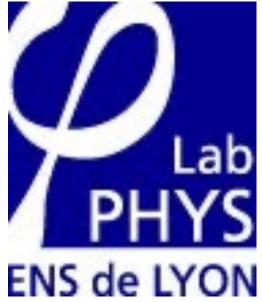
Graphs for data science and ML

P. Borgnat, CNRS, LP ENSL

(2)

Machine Learning for graphs and with graphs

1



300

- Centrality from degrees
 - more connections = more important (?)

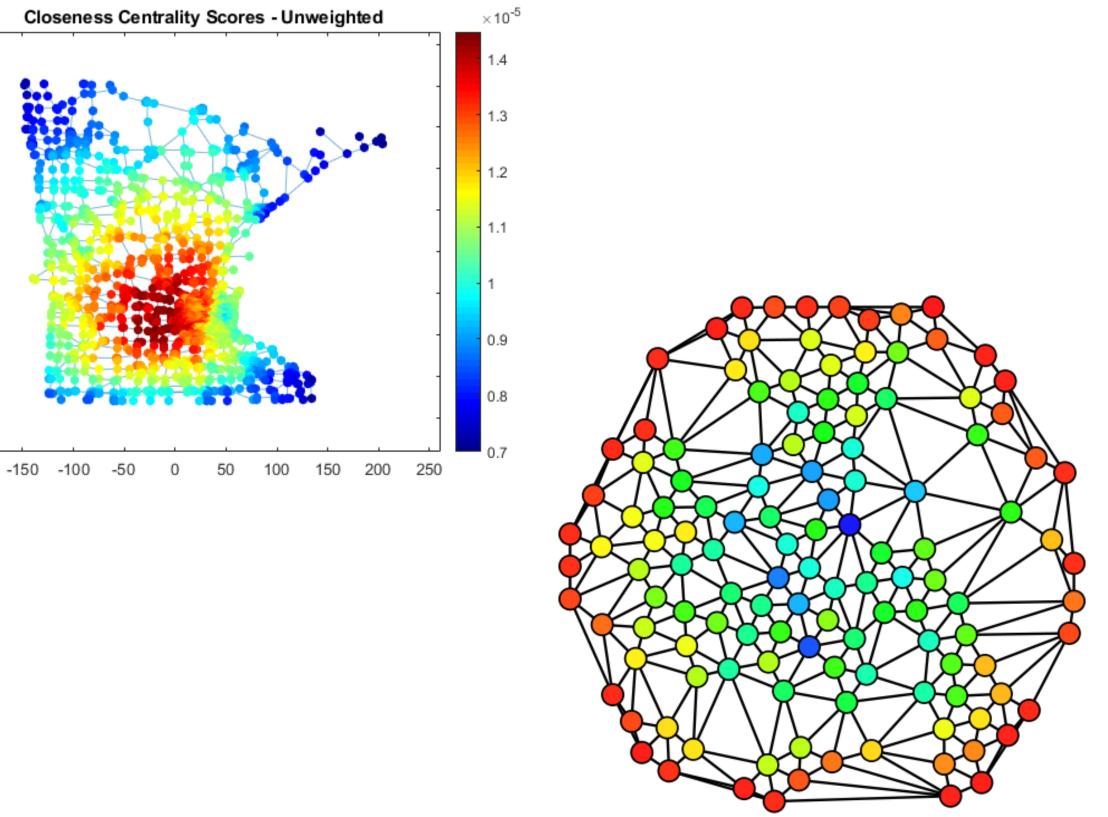
• Centrality from Closeness
•
$$C_c(v) = (N-1) / \sum_{u} d(u, v)$$

• $C_c(v) = (N-1) / \sum_{u} d(u, v)$

Centrality from Betweeness

•
$$C_B(v) = \sum_{\substack{s \neq v \neq t}} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

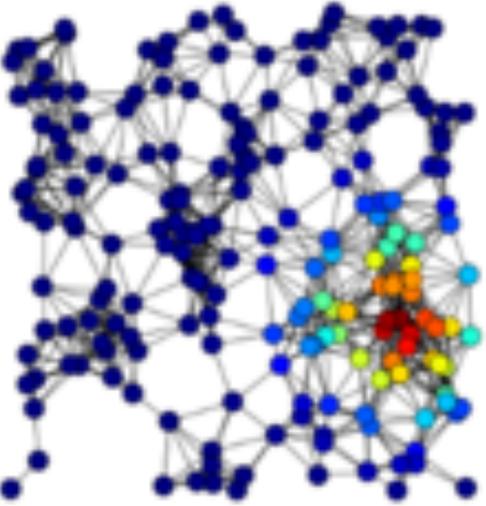
R. Cazabet - Complex Network lectures, ENS de Lyon



By Claudio Rocchini - Own work, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1988980

- An important idea: recursivity of the definition =
 - Nodes are important if/when connected to important nodes
- Crude algorithm:
 - each node has a score of centrality x_i
 - It shares this score with its neighbours, and each node sum what it received: $x_i(t+1) = \sum a_{ji}x_j(t)$
 - Solve by iterating on t with a random initialisation
 - => This is in fact a problem of eigenvalue !

- It converges by the Perron-Frobenius theorem, for real and irreducible matrices with non-negative entries
 - -> hence for undirected graphs which are (strongly) connected
- Alternatively: the final scores of the **Eigenvector centrality** x^* aligns toward the dominant eigenvector
 - the eigenvalue equation : $\lambda_{max} x^* = \mathbf{A} x^*$



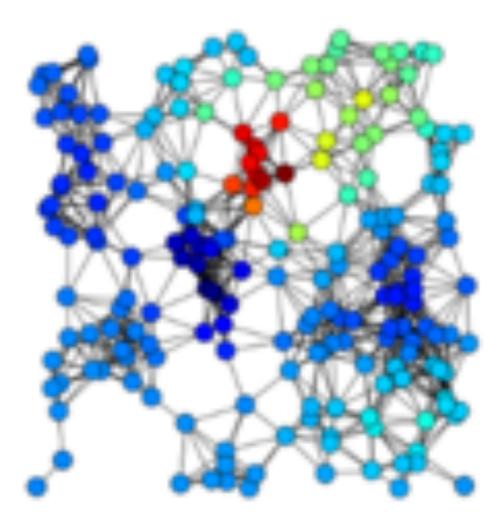
R. Cazabet - Complex Network lectures, ENS de Lyon

• **Katz centrality**: a generalization of Degree centrality with the recursive trick of the EV centrality

•
$$x_i = \sum_{k=j}^{\infty} \sum_{j=1}^{N} \alpha^k (A^k)_{ij}$$
 for some

- In matrix form: $C_{K}(i) = ((\mathbf{Id} \alpha \mathbf{A})^{-1}) \mathbf{Id})\mathbf{1}$
- works for directed networks
- α has to be smaller than $1/|\lambda_{max}|$

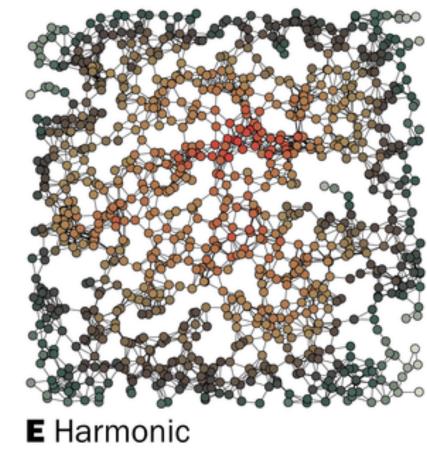
 $\alpha \in (0,1)$



R. Cazabet - Complex Network lectures, ENS de Lyon

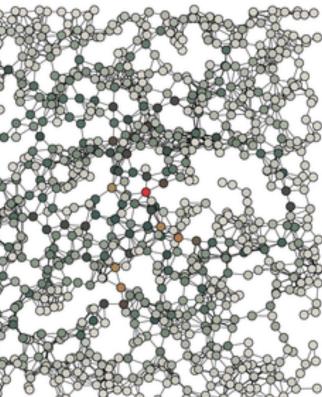
Exploit the properties of the matrices of graphs

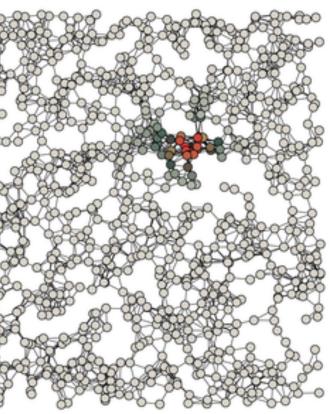
First : notion of *centrality*



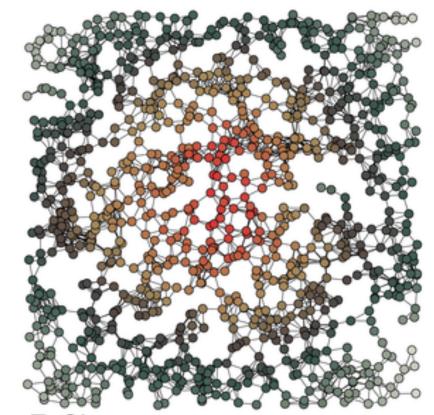
Pholme, CC BY-SA 4.0 <https:// creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

6 Least central

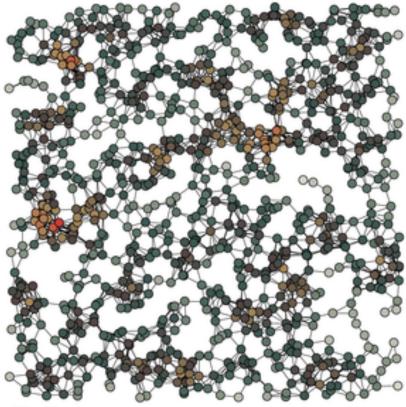




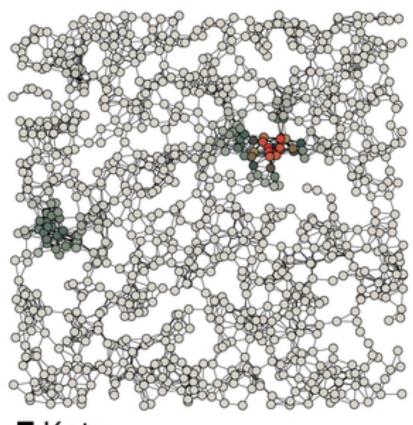
C Eigenvector



B Closeness



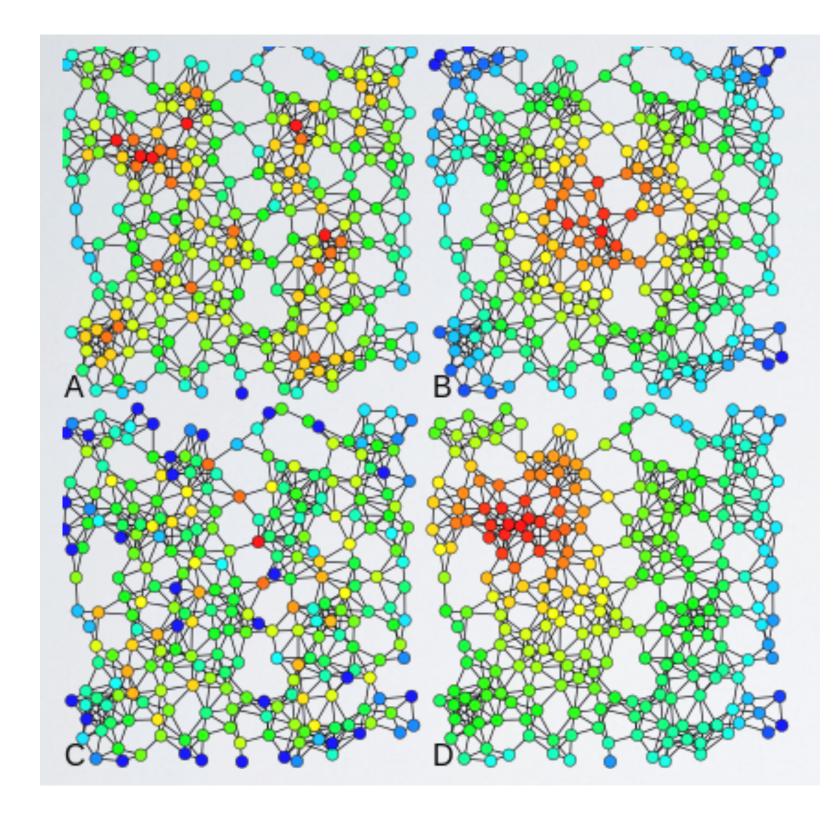
D Degree



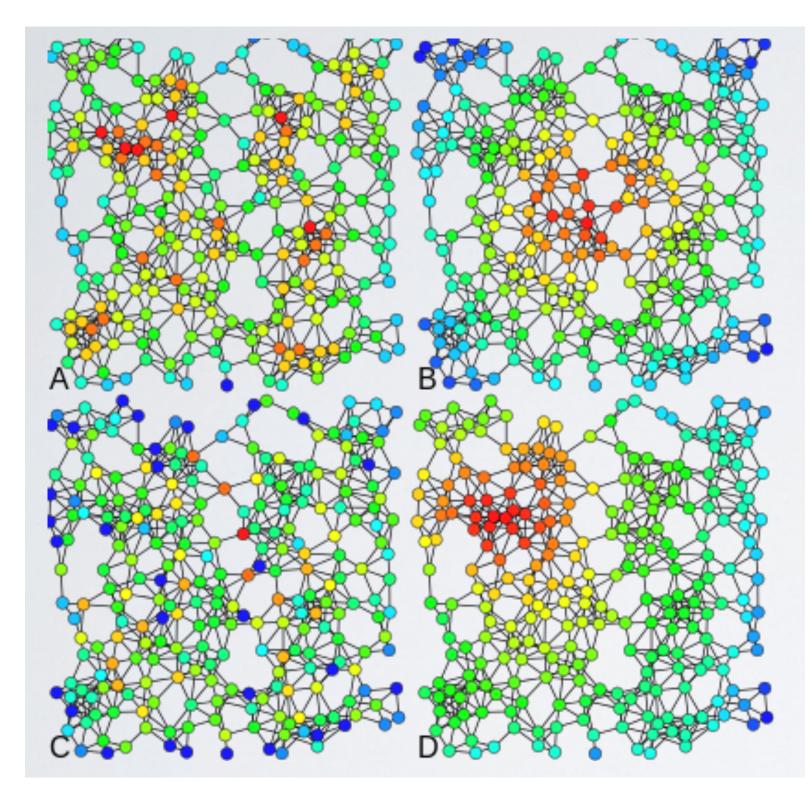
F Katz

Most central

- Limit : each notion gives a different view
 - which is which ?
 - eigenvector
 - degree
 - betweenness
 - closeness



- Limitation : each notion gives a different view
 - which is which ?
 - A degree
 - B closeness
 - C betweenness
 - D eigenvector



R. Cazabet - Complex Network lectures, ENS de Lyon

Exploit the properties of the matrices of graphs From centrality to recommendation

- Brin & Page (1996) had the same idea for the task of ranking webpages:
 - Google for his search engine
- Two improvements:
 - "teleportation" probability
 - problem be written as a random walk

-> It became the famous PageRank algorithm (1998) initially used by

• Avoid problems with source nodes (a.k.a. dangling nodes) by adding a

renormalize the centralities by dividing by the degrees -> this let the

The PageRank Algorithm Brin & Page, WWW, 1998

• The equation becomes $R_i(t+1) =$

- By convention $\beta = 1$ (or 1/N) and the choice is often $\alpha \simeq 0.85$
- By introducing the random walk matrix: $\mathbf{P} = \mathbf{D}^{-1}\mathbf{A}$:
 - one adds probability 1/N for dangling nodes -> $S_{ii} = T_{ii}$ or 1/N
 - $R = \alpha \mathbf{S}R + \beta \mathbf{1}$ -> Result $R = \beta (\mathbf{Id} \alpha \mathbf{S})^{-1} \mathbf{1}$

$$\alpha \sum_{j} a_{ji} \frac{R_{j}(t)}{k_{j}^{out}} + \beta$$

The PageRank Algorithm Brin & Page, WWW, 1998

A correct implementation

[C. Coquidé, PhD Thesis, 2020]

Data : T : tableau des liens (source, cible, poids); D : liste des nœuds ballants; S : vecteur des poids associés aux liens sortants; $\alpha \in [0.5, 1[.$ Result : P : vecteur PageRank. init $\mathbf{P}^{(0)} = \mathbf{e}/N, \ \mathbf{P} = \mathbf{0}, \ k = 0;$ while test = FALSE dofor (j, i, w) in T do $P_i += P_j^{(0)} * \frac{w}{S_i};$ end for i in D do $k += P_i^{(0)};$ end for i = 0; i < N; i + =1 do $P_i = \alpha \left(P_i + k/N \right) + \left(1 - \alpha \right)/N;$ end $test = conv(\mathbf{P}, \mathbf{P}^{(0)});$ $\mathbf{P}^{(0)} \leftarrow \mathbf{P};$ $\mathbf{P} = \mathbf{0};$

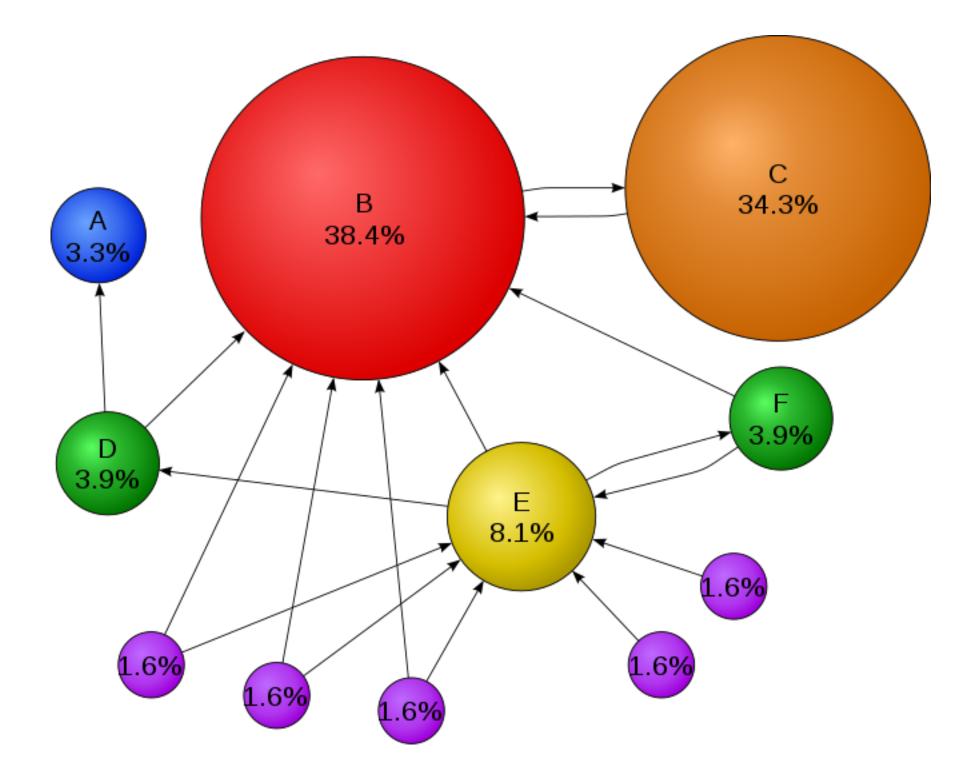
end

Algorithme 1 : Algorithme du PageRank. Ici, la fonction $conv(\mathbf{P}, \mathbf{P}^{(0)})$ est un critère de convergence.

Possible Convergence criteria:

$$\mathcal{C}_1 : \left\| \mathbf{P}^{(k+1)} - \mathbf{P}^{(k)} \right\|_1 \le \epsilon_1$$
$$\mathcal{C}_2 : \min_j \left(\frac{|P_j^{(k+1)} - P_j^{(k)}|}{P_j^{(k+1)}} \right) \le \epsilon_2$$

• An illustration





Other usages of the RW matrix

- Many (many, many, and more) works on RW on graphs
 - -> e.g. see lectures on Markov Chains
 - needed: the stationary distribution π such that $\pi = \mathbf{P} \pi$
- Can be connected to the Laplacian by normalisation:
 - Random Walk Laplacian: $L_{rw} = I D^{-1}A$; i.e. normalisation on the left by the inverse degree matrix (coherent with an inflows/consensus view)
 - This Laplacian is not a symmetric matrix
 - Generalized eigenvector problem : $\mathbf{L}_{rw} u = \lambda u$ is equivalent to $\mathbf{L} u = \lambda \mathbf{D} u$

Normalization of the Laplacian

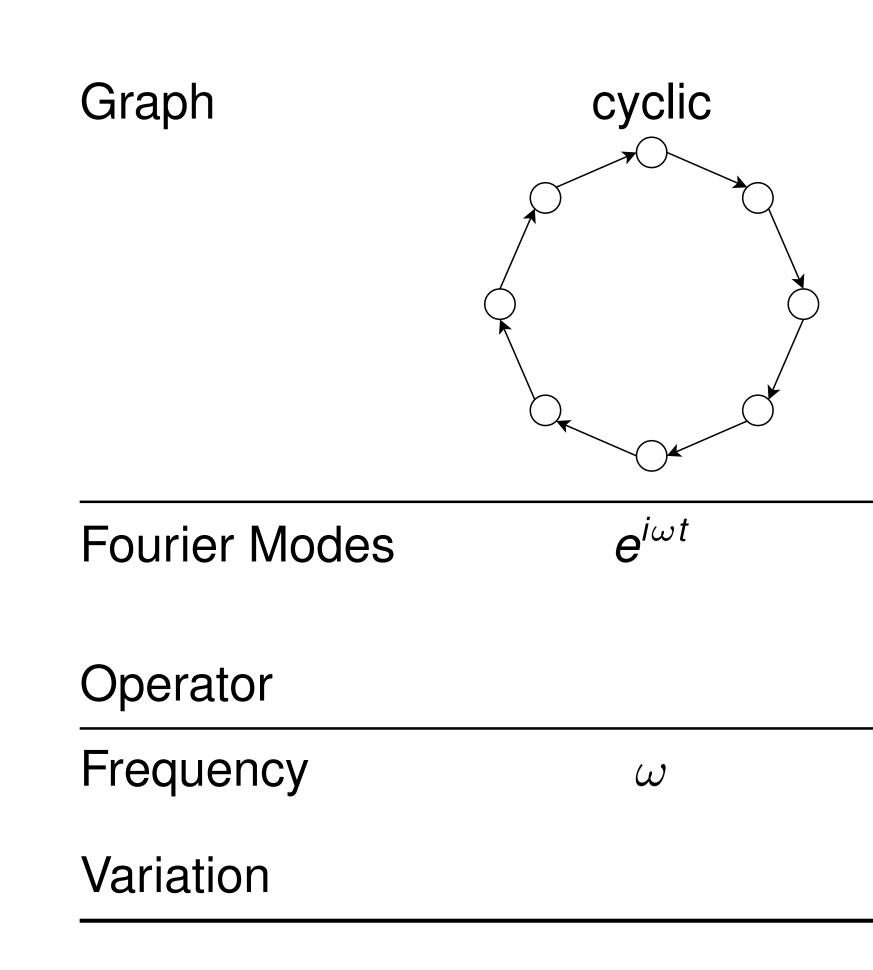
- If one considers the generalized problem: $Lu = \lambda Du$
- then, the normalisation can be made symmetric :
 - the Normalized Laplacian is $\mathscr{L} = \mathbf{D}^{-1/2}\mathbf{L}\mathbf{D}^{-1/2} = \mathbf{Id} \mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}$

- Its eigenvectors f are related to the u's: $u = \mathbf{D}^{-1/2} f$ • Eigenvalues are normalized: $0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_{max} \leq 2$
- 2 is reached iff bipartite graph

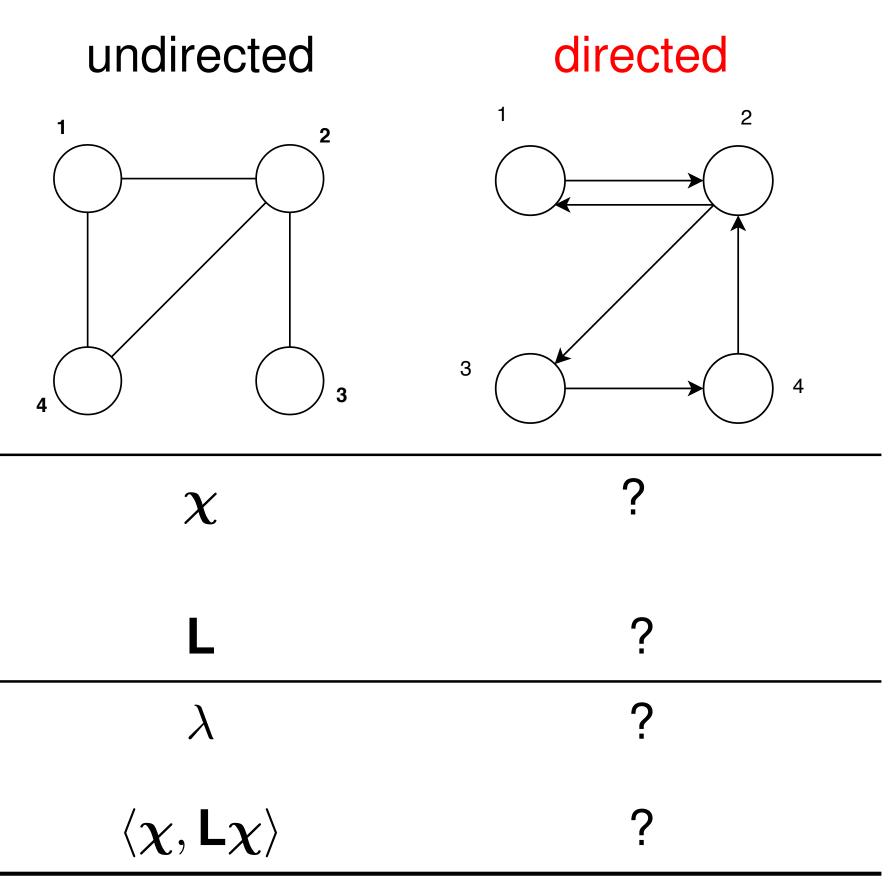
Choice of the Laplacian

- The different choices are valid, depends on the context
- For directed graphs, one has the same question: which matrix ?
 - -> can be directly $A \hspace{0.1in}$ (leads to classical DSP on cyclic graphs)
 - -> is more generally a "Shift Operator", also coined "Reference Operator/ Matrix" which connects adjacent nodes only (preferably)
 - -> has to be associated to a "measure of variations" => frequencies

Choice of the Laplacian An exemple for directed graph



What about directed graphs? Thesis of Harry Sevi, 2018; joint work G. Rilling (CEA LIST)



Choice of the Laplacian

Measure of Variations

Undirected: $\mathcal{D}(\boldsymbol{f}) = rac{1}{2} \sum_{i,j} \frac{\boldsymbol{a}_{ij}}{|\boldsymbol{f}_i|^2} |f_i - f_j|^2$ $=\langle \boldsymbol{f}, \boldsymbol{L}\boldsymbol{f} \rangle$ with

L = D - A.

Directed case

• use of $\mathbf{P} = \mathbf{D}^{-1}\mathbf{A}$ the random walk operator and its associated stationary distribution π , with the diagonal matrix Π associated to it

• Undirected case : $\Pi \propto \mathbf{D} \Rightarrow \mathbf{L}_{dir} \propto \mathbf{L}$.

Directed: $\mathcal{D}_{\pi,\mathbf{P}}^2(\mathbf{f}) = \frac{1}{2} \sum_{i,j} \pi_i \mathbf{p}_{ij} |f_i - f_j|^2.$ $= \langle \boldsymbol{f}, \boldsymbol{L}_{dir} \boldsymbol{f} \rangle.$ with $\mathsf{L}_{dir} = \Pi - \frac{\Pi \mathsf{P} + \mathsf{P}^\top \Pi}{2}$ [Chung, 2005]

Choice of the Laplacian

Fourier modes on directed graphs

Random walk operator

• Random walk X_n : position X at time n.

•
$$\mathbf{P}_{ij} = \mathbb{P}(X_n = j | X_{n-1} = i)$$
 is its trans

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} =$$

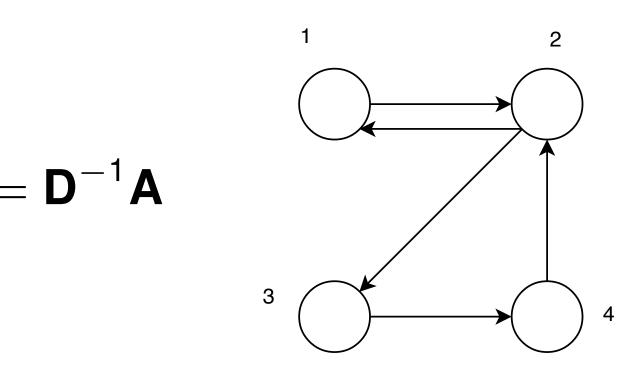
Proposition of Fourier Modes

- Eigenvectors $\mathbf{P}\boldsymbol{\xi}_k = \theta_k \boldsymbol{\xi}_k$
- Fourier representation of **s**

where $\hat{\boldsymbol{s}} = [\hat{s}_1, \dots, \hat{s}_N]^\top$ are the Fourier coefficients

- Digraph Fourier Transform :
- Beware : complex eigenvalues : $\theta = \alpha_7 + i\beta$, $|\theta| \le 1$.

sition probability



 $\boldsymbol{\Xi} = [\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_N]$ the basis

 $\boldsymbol{s} = \sum_{k} \hat{\boldsymbol{s}}_{k} \boldsymbol{\xi}_{k} = \boldsymbol{\Xi} \hat{\boldsymbol{s}}_{k}$

 $\hat{\mathbf{S}} = \boldsymbol{\Xi}^{-1} \mathbf{S}$

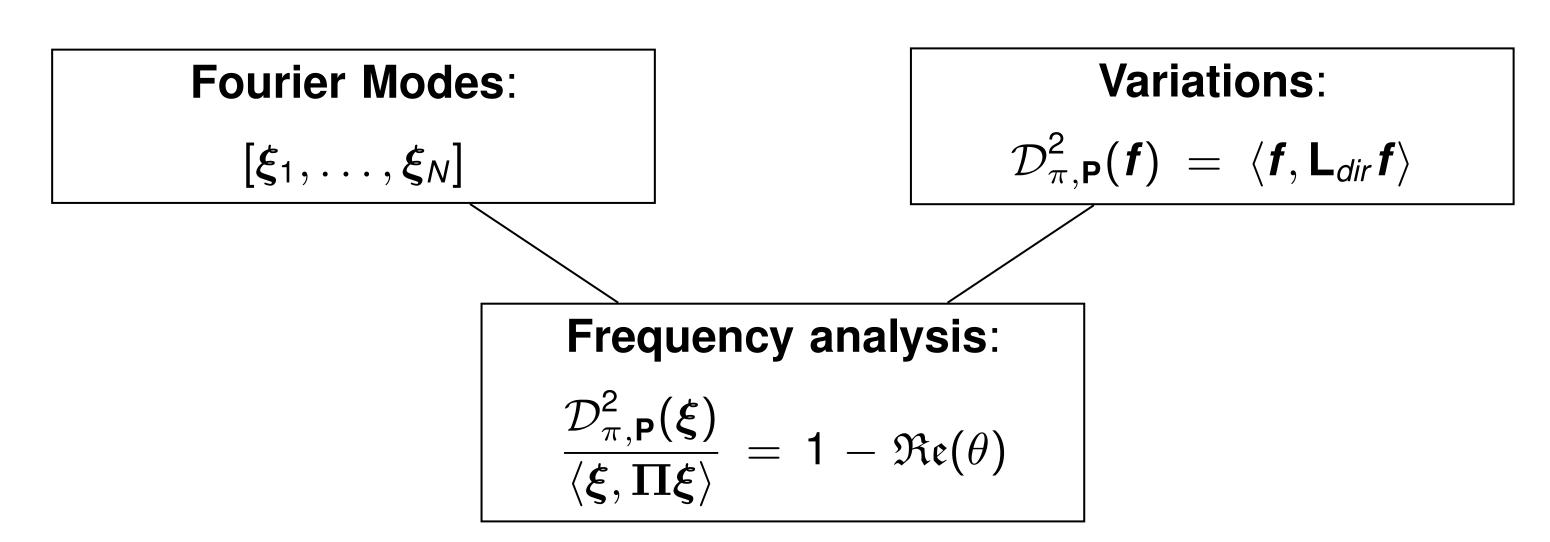
Choice of the Laplacian / Frequencies

Introduction 000

Digraph FT 00000000

Learning / SSL 00000000000

Frequency analysis of modes of **P**



• Let's define the **frequency** of $\boldsymbol{\xi}$ from its complex eigenvalue $\boldsymbol{\theta}$:

["Analyse fréquentielle et filtrage sur graphes dirigés", Sevi et al., GRETSI, 2017]

Learning / parametric 000000000

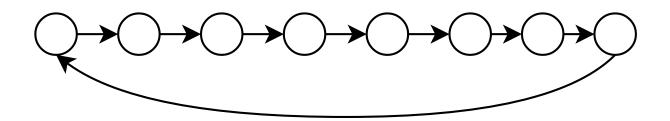
Learning / combination 0000

Ending Ο

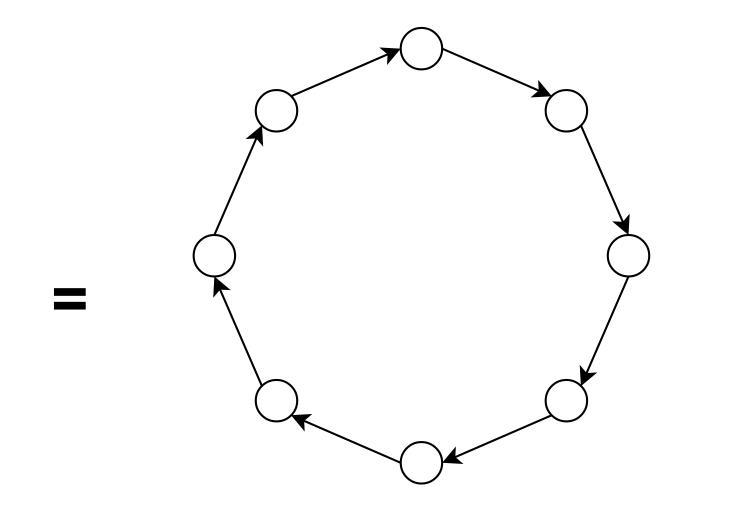
 $\omega = 1 - \mathfrak{Re}(\theta), \quad \omega \in [0, 2]$

Choice of the Laplacian / Frequencies

On the directed cyclic graph

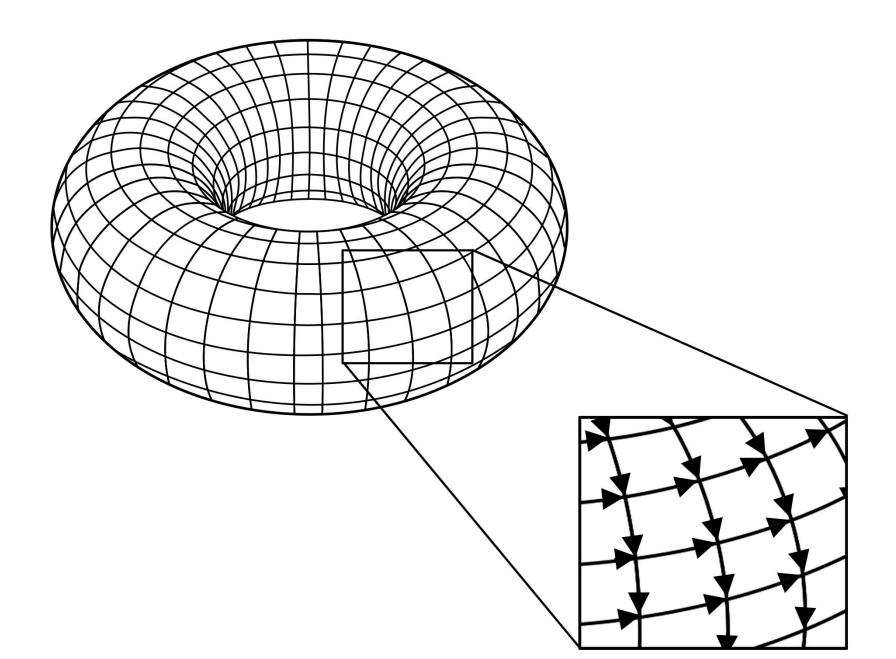


	Classic DSP		Directed cycle graph
Eigenvectors	$e^{i\omega t}, e^{-i\omega t}$	=	$\theta^t, \overline{\theta}^t$
Eigenvalues	$e^{i\omega}, e^{-i\omega}$	=	$ heta, ar{ heta}$
Frequencies	$\omega,-\omega$	\neq	$ heta, ar{ heta} = (1 - \omega) \pm ieta$

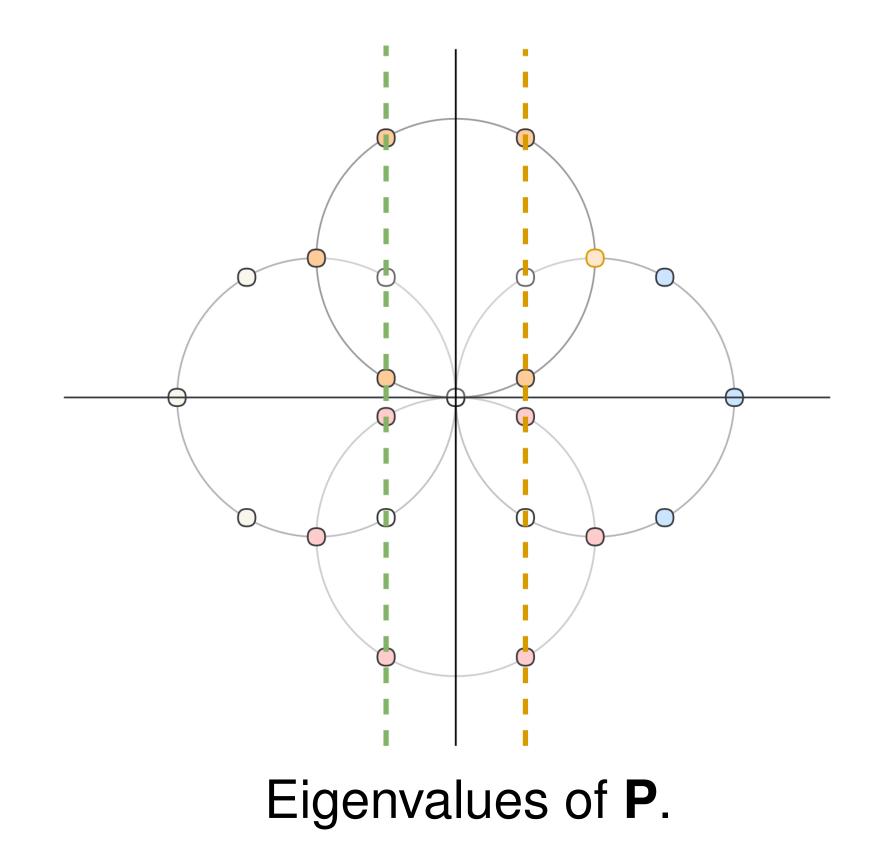


Choice of the Laplacian / Frequencies

On a directed torus graph

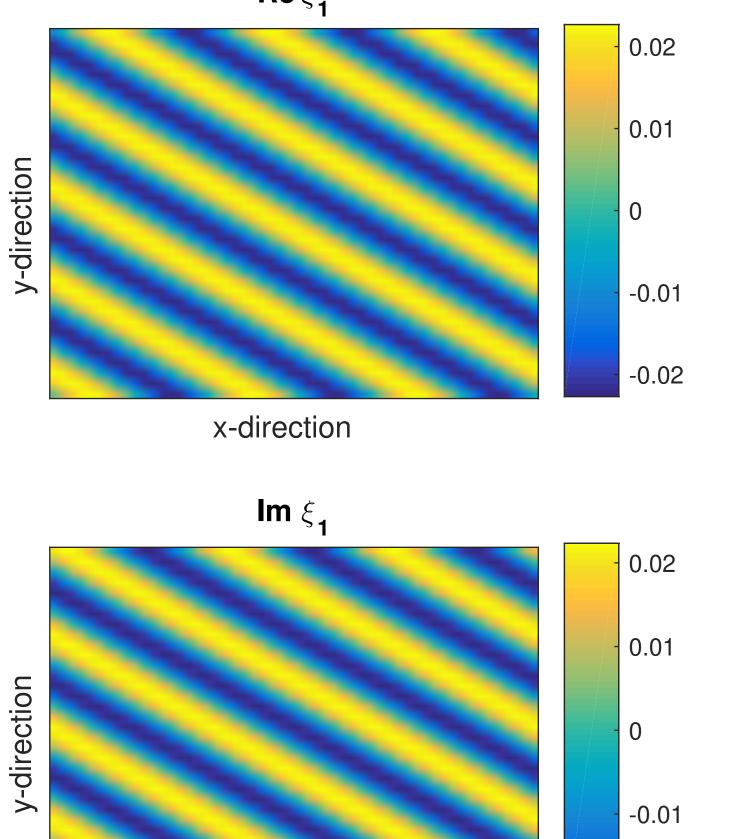


Directed torus graph



Choice of the Laplacian / Frequencies On a directed torus graph

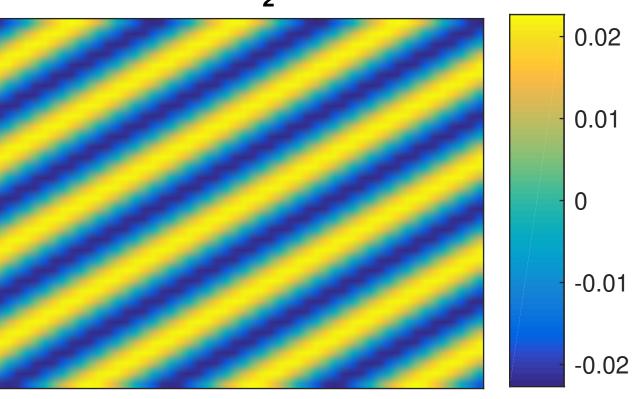
We show 2 eigenmodes of same frequency and differen (non conjugate) imaginary parts



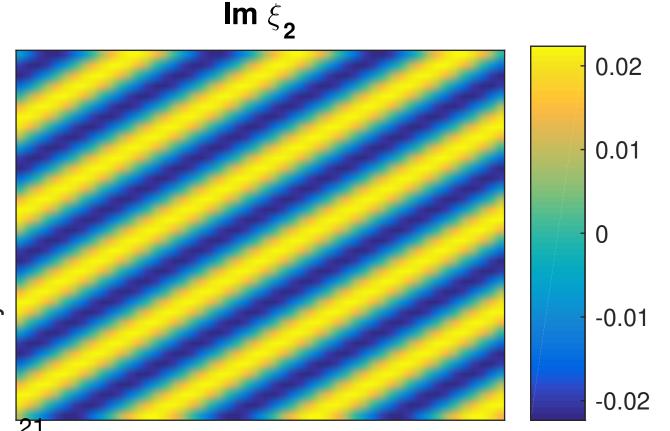
 $\operatorname{Re}\xi_1$

x-direction

 ${f Re}\,\xi_{2}$



x-direction



-0.02

y-direction

x-direction