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Machine Learning for graphs and with graphs
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Exploit the properties of the matrices of graphs
First : notion of centrality
• Centrality from degrees  

• more connections = more important (?)


• Centrality from Closeness 

• 


• Centrality from Betweeness 

•

Cc(v) = (N − 1)/∑
u

d(u, v)

CB(v) = ∑
s≠v≠t

σst(v)
σst

By Claudio Rocchini - Own work, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1988980

CLOSENESS CENTRALITY
R. Cazabet - Complex Network lectures, ENS de Lyon
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Exploit the properties of the matrices of graphs
First : notion of centrality

• An important idea: recursivity of the definition =


• Nodes are important if/when connected to important nodes


• Crude algorithm:


• each node has a score of centrality 


• It shares this score with its neighbours, and each node sum what it 
received:        


• Solve by iterating on  with a random initialisation


• => This is in fact a problem of eigenvalue !

xi

xi(t + 1) = ∑
j

ajixj(t)

t
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Exploit the properties of the matrices of graphs
First : notion of centrality

• It converges by the Perron-Frobenius theorem, for real and 
irreducible matrices with non-negative entries


• -> hence for undirected graphs which are (strongly) connected


• Alternatively: the final scores of the Eigenvector centrality  
aligns toward the dominant eigenvector


• the eigenvalue equation : 

x*

λmax x* = Ax*

A: Betweenness
B:Closeness

C:Eigenvector
D:Degree

E:Harmonic 
F: Katz

R. Cazabet - Complex Network lectures, ENS de Lyon
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Exploit the properties of the matrices of graphs
First : notion of centrality

• Katz centrality: a generalization of Degree centrality with the 
recursive trick of the EV centrality


•    for some 


• In matrix form: 


• works for directed networks


•  has to be smaller than 

xi =
∞

∑
k

N

∑
j

αk(Ak)ij α ∈ (0,1)

CK(i) = ((Id − αA)−1) − Id) 1

α 1/ |λmax |

A: Betweenness
B:Closeness

C:Eigenvector
D:Degree

E:Harmonic 
F: Katz

R. Cazabet - Complex Network lectures, ENS de Lyon
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Exploit the 
properties of the 
matrices of graphs
First : notion of centrality

Pholme, CC BY-SA 4.0 <https://
creativecommons.org/licenses/by-sa/4.0>, via 

Wikimedia Commons
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Exploit the properties of the matrices of graphs
First : notion of centrality

• Limit : each notion gives a different view


• which is which ?


• eigenvector 


• degree


• betweenness


• closeness

Try again :)

Degree
Betweenness

Closeness
Eigenvector

R. Cazabet - Complex Network lectures, ENS de Lyon
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Exploit the properties of the matrices of graphs
First : notion of centrality

• Limitation : each notion gives a different view


• which is which ?


• A - degree


• B - closeness


• C - betweenness


• D - eigenvector 

Try again :)

Degree
Betweenness

Closeness
Eigenvector

R. Cazabet - Complex Network lectures, ENS de Lyon
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Exploit the properties of the matrices of graphs
From centrality to recommendation

• Brin & Page (1996) had the same idea for the task of ranking webpages:


• -> It became the famous PageRank algorithm (1998) initially used by 
Google for his search engine


• Two improvements:


• Avoid problems with source nodes (a.k.a. dangling nodes) by adding a 
“teleportation” probability


• renormalize the centralities by dividing by the degrees -> this let the 
problem be written as a random walk 
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The PageRank Algorithm
Brin & Page, WWW, 1998

• The equation becomes 


• By convention  (or )  and the choice is often 


• By introducing the random walk matrix:  :


• one adds probability 1/N for dangling nodes ->  


•    -> Result  

Ri(t + 1) = α∑
j

aji
Rj(t)
kout

j
+ β

β = 1 1/N α ≃ 0.85

P = D−1A

Sij = Tij or 1/N

R = αSR + β1 R = β(Id − αS)−11
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The PageRank Algorithm
Brin & Page, WWW, 1998

• A correct implementation 





































Not covered during the session: an explicit writing of the algorithm, using the method of iterated 
power and written such that one use a list of edges (and no matrices)



[C. Coquidé, PhD Thesis, 2020]















































Possible Convergence criteria:  


at time soo µ x f P e

K x E p Be
fay e Qxs.jp Pr

PageRankvector

It can beused to rank thegraphe

Preetwthm iterate the randomwalk

1 x r
I

p
1

• An illustration

en:User:345Kai, User:Stannered, Public domain, via Wikimedia Commons11



Other usages of the RW matrix
• Many (many, many, and more) works on RW on graphs


• -> e.g. see lectures on Markov Chains


• needed:  the stationary distribution   such that 


• Can be connected to the Laplacian by normalisation:


• Random Walk Laplacian:   ; i.e. normalisation on the left by 
the inverse degree matrix (coherent with an inflows/consensus view)


• This Laplacian is not a symmetric matrix


• Generalized eigenvector problem :    is equivalent to   

π π = P π

Lrw = I − D−1A

Lrwu = λu Lu = λDu
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Normalization of the Laplacian

• If one considers the generalized problem:  


• then, the normalisation can be made symmetric :


• the Normalized Laplacian is 


• Its eigenvectors   are related to the ’s:   


• Eigenvalues are normalized: 


• 2 is reached iff bipartite graph 

Lu = λDu

ℒ = D−1/2LD−1/2 = Id − D−1/2AD−1/2

f u u = D−1/2f

0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λmax ≤ 2

13



Choice of the Laplacian
• The different choices are valid, depends on the context


• For directed graphs, one has the same question: which matrix ? 


• ->  can be directly   (leads to classical DSP on cyclic graphs)


• -> is more generally a “Shift Operator”, also coined “Reference Operator/ 
Matrix” which connects adjacent nodes only (preferably)


• ->  has to be associated to a “measure of variations” => frequencies

A
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Choice of the Laplacian
An exemple for directed graphIntroduction Digraph FT Learning / SSL Learning / parametric Learning / combination Ending

What about directed graphs ?
Thesis of Harry Sevi, 2018; joint work G. Rilling (CEA LIST)

Graph cyclic undirected directed
1 2

34

1

3
4

2

Fourier Modes ei!t � ?

Operator L ?

Frequency ! � ?

Variation h�, L�i ?

p. 5
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Choice of the LaplacianIntroduction Digraph FT Learning / SSL Learning / parametric Learning / combination Ending

Measure of Variations

Undirected: Directed:

D(f ) = 1
2

X

i,j

aij |fi � fj |2

= hf , Lf i

D2
⇡,P(f ) =

1
2

X

i,j

⇡i pij |fi � fj |2.

= hf , Ldir f i.
with with

L = D � A. Ldir = ⇧� ⇧P + P>⇧
2

[Chung, 2005]
• Directed case

• use of P = D�1A the random walk operator
• and its associated stationary distribution ⇡,

with the diagonal matrix ⇧ associated to it

• Undirected case : ⇧ / D ) Ldir / L.

p. 6
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Choice of the LaplacianIntroduction Digraph FT Learning / SSL Learning / parametric Learning / combination Ending

Fourier modes on directed graphs
Random walk operator

• Random walk Xn : position X at time n.
• Pij = P(Xn = j|Xn�1 = i) is its transition probability

P =

0

BB@

0 1 0 0
1
2 0 1

2 0
0 0 0 1
0 1 0 0

1

CCA = D�1A

1

3
4

2

Proposition of Fourier Modes
• Eigenvectors P⇠k = ✓k⇠k ⌅ = [⇠1, . . . , ⇠N ] the basis
• Fourier representation of s

s =
X

k

ŝk⇠k = ⌅ŝ.

where ŝ = [ŝ1, . . . , ŝN ]
> are the Fourier coefficients

• Digraph Fourier Transform :

ŝ = ⌅�1s.

• Beware : complex eigenvalues : ✓ = ↵ + i�, |✓|  1.
p. 7
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Choice of the Laplacian / Frequencies
Introduction Digraph FT Learning / SSL Learning / parametric Learning / combination Ending

Frequency analysis of modes of P

Fourier Modes:

[⇠1, . . . , ⇠N ]

Variations:

D2
⇡,P(f ) = hf , Ldir f i

Frequency analysis:

D2
⇡,P(⇠)

h⇠,⇧⇠i = 1 � Re(✓)

• Let’s define the frequency of ⇠ from its complex eigenvalue ✓ :

! = 1 �Re(✓), ! 2 [0, 2]

["Analyse fréquentielle et filtrage sur graphes dirigés", Sevi et al., GRETSI, 2017]

p. 8
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Choice of the Laplacian / FrequenciesIntroduction Digraph FT Learning / SSL Learning / parametric Learning / combination Ending

On the directed cyclic graph

=

Classic DSP Directed cycle graph

Eigenvectors ei!t , e�i!t = ✓t , ✓̄t

Eigenvalues ei!, e�i! = ✓, ✓̄

Frequencies !,�! 6= ✓, ✓̄ = (1 � !)± i�

p. 9
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Choice of the Laplacian / FrequenciesIntroduction Digraph FT Learning / SSL Learning / parametric Learning / combination Ending

On a directed torus graph

Directed torus graph Eigenvalues of P.

p. 10
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Choice of the Laplacian / FrequenciesIntroduction Digraph FT Learning / SSL Learning / parametric Learning / combination Ending

On a directed torus graph
We show 2 eigenmodes of same frequency and differen (non conjugate)
imaginary parts
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