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Graphs for data science and ML

Machine Learning for graphs and with graphs
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Exploit the properties of the matrices of graphs
Second: find clusters, cut the graph

Cuts, clustering and communities
The good, the bad and the ugly

e Networks are often inhomogeneous, with important links,

hubs, clusters, or communities (modules) | , .
. . e Example of (spectral) bisection on an irregular mesh
* These are observed in various types of data on networks: @ ) ST

social, technological, biological,... SRk

* Importance of cuts: the min-cut max-flow theorem. LR
These are two primal-dual linear programs. SRREERALS
The max value of a flow = the min capacity over all cuts.

e For clusters and communities, see the extensive surveys:

[S. Fortunato, Physic Reports, 2010]

[von Luxburg, Statistics and Computating, 2007]
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Clustering: a well known topic in data analysis

MiniBatchKMeangAffinityPropagation = MeanShift SpectralClustering Ward AgglomerativeClustering DBSCAN Birch GaussianMixture




Clustering of graphs : a well known topic in DA

e Social face-to-face interaction networks

A
S
///"« PSS

Y,

(Lab. physique, ENSL, 2013) (ecole primaire, Sociopatterns)
e Brain networks [Bullmore, Achard, 2006]

Parcellation Connectivity Graphs of
using wavelets cerebral connections

fMRI
10° voxels
0.3 Hz Time series
GRAPHSIP project challenges
Challenge 1: Robustness and hierarchical Challenge 2: Brain networks clustering Challenge 3: Longitudinal study of brain networks

analysis of brain connectivity 5



Clustering of graphs : also well known in Graph Theory
Min-Cut and Max-Flow

Graph cuts
e Graph cuts in 2 (or bisection): find the partition in two
groups of nodes that minimize the cut size (i.e., the number
of links cut)
e Exhaustive search can be computationally challenging

* About the problem of cuts: 0/ > Qg
An important result is the min-cut max-flow theorem. 3/3 2/2
Min-cut pb and Max-flow pb are two primal-dual problems 0/2 1/4
The max value of a flow = the min capacity over all cuts 573 33
One possible solution from linear program 0 >




Clustering of graphs : a well known topic in DA

Some theoretical properties: Algebraic Connectivity

Multiplicity of eigenvalue 0 gives connectedness of graph

What if Ao >0 7

Experiment: ol Vs
Gradually increase connections

between two Erdos-Renyi subgraphs

1
vol(G)d((G) where d(G) is the diameter of the graph

Ao =



Clustering of graphs : a well known topic in DA

Some theoretical properties: The Cheeger Constant

Cheeger constant measures presence of a “bottleneck”

AcV 0A={(u,v)€eEst.uc A ve A}

vol(A) = Z d(u)

ucA
A 1
h(G) = min Al st o< A< i
ACV min(vol(A),vol(A)) 2
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Clustering of graphs : a well known topic in DA

Some theoretical properties: The Cheeger Constant

The Cheeger constant and algebraic connectivity are related by

Cheeger inequalities. A simple example:

Theorem: Cheeger Inequality|Polya, Szego|

For a general graph G,

2
OI(G) > Ay > 1 (G)

2

Remark: the eigenvector associated to the algebraic connectivity

1s called the Fiedler vector

10



Clustering of graphs : a well known topic in DA

Some theoretical properties: The Fiedler Vector

Set of 1490 US political blogs, labelled “Dem” or “Rep”

Hyperlinks among blogs
Removed small degrees (<12), keep N = 622 vertices

Compute normalised Laplacian, Fiedler vector

Assign attributes +1, -1 by sign of Fiedler vector
Ground truth
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Clustering of graphs or Communities

and their relation to the Laplacian eigenvectors
Example: graph with multiscale communities

finest scale (16 com.):

fine scale (8 com.):

Spectral analysis: the x; and \; of this multiscale graph
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Clustering of graphs or Communities

and their relation to the Laplacian eigenvectors

Spectral analysis: the v, and \; of this multiscale graph
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Clustering of graphs: the spectral approach
U. von Luxburg, “A Tutorial on spectral clustering”, Stat. Comput., 2007

* Jo cut a graph, one has to measure the size of the cut = # of cut edges

* then associate a cost function inspired by the Cheeger constant

1€A,1EB
_ 1C(A. A 1C(A. A




Clustering of graphs: the spectral approach

How to minimise RatioCut ? (a combinatorial problem)

* Re-write the problem with features indicative of each set :

(1)) =+ ﬂifiEA and f(1) = — ﬂ'fiEA
' V 14 V 14

. then ||fll, =4/| V| andf'1 =0
- One can compute the RatioCut : f' L f = | V| - RatioCut(A, A) .

* The problem can be writtenas: ~ mins f'Lf
such that f'1 =0, ||f|l, = +/|V

» With sign(f) an indicator function! <= still combinatorics



Clustering of graphs: the spectral approach

How to minimise RatioCut ? (a relaxed, spectral, problem)

 The exact problem with f indicator function of A is (NP-)hard

 The same problem with any f is a relaxed version: looking for a smooth
partition function

argmjin fTLf subject to || f|| = VN, (f,1)=0

Solution (G connected): eigenvector of A2

Warning: recover partition after thresholding f = sign(us)

So we are back to the Fiedler vector !!!

16



Clustering of graphs: the spectral approach

RatioCut : generalization to k >2

For more than two components, we look for a set of partition functions

. . 1/\/\A\ if v, € A;
N X k p— . — J ’ J
FeRY™ Fli, j] = f;li] { 0 otherwise

CUt(Aj ) A_])
Aj

Observe: ffoj = F'F =1

RatioCut(A1, ..., A) = Tr(F'LF)

Suggests the relaxed problem:

arg min Tr(F' LF) such that F*' F =1
FceRNXE

17



Unnormalized Spectral Clustering

This form of relaxed RatioCut = Unnormalized Spectral Clustering

arg min Tr(F' LF) such that F' F =
FeRNXk

Algorithm: Unnormalized Spectral Clustering

Compute the matrix F' of first k eigenvectors of L

Apply k-means to rows of F' to obtain cluster assignments

18



Normalized Spectral Clustering

consider Normalized Cut, k=2

Then :

Check that: (Df, 1) =0

argmin f* Lf subject to fDf = vol(G),

g

fli]

fTLf = vol(V)NormalizedCut (A, A)

f

|

NormalizedCut(A, A)

Vvol(A) /vol(A4)  if v; € A

—y/vol(A)/vol(A)  otherwise

V

arg min g* Lyormg subject to ||g]|? = vol(G),

19

/\

fIDf = vol(G)

g=D'3f

— _1C(A4,A) 1C(4AA)
2 vol(A) 2 vol(4)

(Df,1) =0

(9,D'/?1) =0



Normalized Spectral Clustering

consider Normalized Cut, k>2

Fli, 4] = f;[i] = { //vol(A;) it vi € 4,

Then

otherwise

FTF=I fiDfj=1

J J )

VOl(Aj

arg min Tr(HTLnormH) such that H' H =1 H=DY?F
HE]RNXk

Algorithm: Normalized Spectral Clustering

Compute the matrix H of first k£ eigenvectors of Lyomm

Apply k-means to rows of H to obtain cluster assignments

20



Spectral Clustering in a nutshell

1. Graph construction. A sparse similarity graph is built between the n points.

2. Spectral embedding. The first k eigenvectors of a graph representative matrix (such as the

Laplacian) are computed.

3. Clustering. k-means 1s performed on these spectral features, to obtain k clusters.

P .
;ﬁ"x a.é., g graph creation
§ - . S
A I L f
’6".6 ot
F "
spectral
\embedding
P (classified)
a4 - K-means
3 o X (classified) X
g g - -— .
.'k?} . from Bishop, Pattern Recognition and

Machine Learning, 2006 (chapt. 6)
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Spectral Clustering in action

Histogram of the sample

o

norm, full graph unnorm, knn norm, knn

unnorm, full graph
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Spectral Clustering in action .-

In practice normalised spectral clustering is often preferred

In practice the eigenvectors are “re-normalized” by the degrees F =D~ Y2H

betore k-means, because these are real cluster assignments

Rem: this is equivalent to using the “random walk Laplacian”

L., =D 'L

If data has £ clear clusters, there will be a gap in the Laplacian

spectrum after the Ath eigenvalue. Use to choose k. . "? ;é‘é;;
¥
o3 A
i Y o
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Spectral Clustering in action

nps, 8 clusters lineandballs, 3 clusters fourclouds, 2 clusters
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Spectral Clustering interpretation 1

At each vertex the algorithm associates a feature vector that represents the fine

and large scale Strtl’cture of that vertex’s neighbourhood in the graph
g

‘” ?; [ T B ] vertex 7], feature f; € R*

Weo
/ £l0 = wli], €=1,...k

s’

These are the lines of the matrix F

e
"a' £ ‘b If the graph has k disconnected components,
0‘:}. ‘ what does F' look like 7

k-means is then applied to these vectors to cluster into k clusters

In short, we transform the graph into a feature matrix and partition it.

25



Spectral Clustering interpretation 2

We are looking for £ “partition signals (functions)” >
fg V=R
by
In the ideal case (k disconnected components) :‘:‘i: vod
£li] = c; 1f 1 € cluster £ U
971 0 otherwise v‘ﬂ'»f"

These are maximally smooth graph signals: f; Lf, = 0

26



Exploit the properties of the matrices of graphs
Third: find communities in complex networks '

 Communities are more loosely defined:

* usually = nodes more connected together than with the out3|de

 Many methods (thousands of papers):

 Modularity [Girvan, Newman, 2004]

* |Infomap [Rosvall, Bergstrom, 2009] e,{l!é.&\\'@ @ «

. - WA
Stochastic Block Models . Qv‘,\‘o,

=N AN\ A
o L/ \"@\\\@ & '| ¥

—e
I

* Win a prize at NetSci: be 1st to talk about the | achary Karate Club :-)



Summary up to now:

Exploit the spectral analysis of graphs

» Graph spectral analysis: eigenvectors and eigenvalues of matrices A, L, L, ,...

« They have interesting properties, especially for L: new basis of representation,
analog for Fourier oscillations, study of smoothness on graphs,...

 (Centralities: can be studied with these matrices

* Clusters: can be found with them as well (in a relaxed way)

* More processing methods to come!



