Graphs for data science and ML Machine Learning for graphs and with graphs

P. Borgnat, CNRS, LP ENSL (4) Acknowledgements: some slides taken from P. Vandergheynst (EPFL), and from R. Cazabet (Univ Lyon 1)

Exploit the properties of the matrices of graphs Fourth: try to visualise the graphs

- Graph drawing, or Graph visualisation, is an old problem lacksquare
 - -> It was to find the best layout of a graph, to capture will its structure
 - historically: with low dimensional spaces (2D, 3D) = Gephi, Graphviz,...
- Then came the age of **Representation Learning**:
 - Find features, or latent space, in which the data is represented
 - At the heart of ML with Neural Networks for graphs: learn features to code best for the inner structures of the graph (or node) (& its attributes)

Pre-CNN methods of embeddings

- Use "physical models" for graph layout (e.g., Force layout, kamada-kawai)
 - -> Principle: put connected nodes close, non-connected nodes far away
- Use the properties the Laplacian to create a smooth embedding of the nodes
 - -> Laplacian eigenmaps
- LLE: Locally Linear Embedding
- Random Walked-based embeddings: DeepWalk, Node2Vec
 - -> Welcome to a brand new world: learn a high-dimensional representation

1) Physical models of graph layout

- Implemented in data/graph vizualization packages or softwares
- Often for practitioners in network science, and valid!

Figure 3. The "jazz network" spatialized (a) with the algorithm proposed by Fruchterman and Reingold (1991), (b) with ForceAtlas2 (with default parameters) and (c) with ForceAtlas2 with tweaked parameters for LinLog mode and gravity. This and all images created for this paper are available at: https://github.com/tommv/ForceDirectedLayouts. 4

What do we see when we look at networks: Visual network analysis, relational ambiguity, and force-directed layouts

Tommaso Venturini¹, Mathieu Jacomy² and Pablo Jensen^{3,4}

Big Data & Society January–June: 1–16 © The Author(s) 2021 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/20539517211018488 journals.sagepub.com/home/bds

Embeddings of graphs in low dimension

Objective: find new coordinates

Q: can we learn a low-dimensional embedding (a latent vector for each data point) that preserves the original structure of X?

0

2) Laplacian eigenmaps **Objective: embeddings of graphs from spectral features**

 Objective of embedding: embed vertices in low dimensional space, so as to discover geometry

- $x_i \in \mathbb{R}^d \to y_i \in \mathbb{R}^k$ with k < d

2) Laplacian eigenmaps

Objective: embeddings of graphs from spectral features

- Two starting points:
 - captures (sparse ?) similarities between nodes,

- - = build a similarity graph, then you are back to point 1)

• 1) you already have a graph, whose (weighted) adjacency matrix ${f A}$ or ${f W}$

• 2) you have data points in high dimension, with coordinates $X \in \mathbb{R}^{N \times L}$,

• N is the number of data points (= nodes) and L the dim. of features (=coord.)

Create a graph to represent the data

Objective: capture similarities, between data points

 $x_i \in \mathbb{R}^L \qquad \qquad y_i \in \mathbb{R}^P$

- This is a standard step in classification / clustering!
- Hence, several manners to code these similarities in a graph:

selecting k-nearest neighbours of each point with distance $d(x_i, x_j)$ OR selecting all points in a neighbourhood $d(x_i, x_j) \leq \epsilon$

 $\mathbf{W}(i,j) = e^{-d(x_i,x_j)^2/t}$

Create a graph to represent the data

Objective: capture similarities between data points

Distance functions

- Given X_u and X_v, how far are they from one another ?
- Euclidean distance (or its square): $\sum_{n} (x_{nu} x_{nv})^2$
- ℓ_1 or Manhattan distance: $\sum_n |x_{nu} x_{nv}|$
- Mahalanobis distance: $\sqrt{\sum_{n}(x_{nu} x_{nv})^2/\sigma_n^2}$ or more generally $\sqrt{(X_u X_v)^\top \mathbf{C}^{-1}(X_u X_v)}$
- From correlations, e.g. $1 X_u \cdot X_v$
- From kernels: K(X_u, X_v), with K a "kernel" eg. Gaussian one: exp(-(X_u - X_v)²/2σ²)

• ...

Create a graph to represent the data Objective: keep strong similarities (only) between data points

Great a graph "connecting the dots", i.e. find edges to connect data points. Several possibilities:

Mininimal Spanning Tree: the tree with smallest sum of edge lengths connecting all nodes

 $x_1, \ldots, x_N \mapsto y_1, \ldots, y_N$

Create $\overset{x_i}{a} \in \overset{\mathbb{R}^L}{g}$ raph to represent the data

Objective: keep strong similarities (only) between data points

Great a graph "connecting the dots", i.e. find edges to connect data points. Several possibilities:

 $d(x_i, x_j)$

Create a graph to represent the data $x_1, \ldots, x_N \mapsto y_1, \ldots, y_N$ **Objective:** keep strong similarities (only) between data points

Great a graph "connecting the dots", i.e. find edges to connect data points. Several possibilities:

k-nearest neighbor graphs:

Note: , did B

with distance $d(x_i, x_j)$

Create a graph to represent the data **Objective: keep strong similarities (only?) between data points**

Great a graph "connecting the dots", i.e. find edges to connect data points. Several possibilities:

The fully connected graph:

connect all nodes with all other nodes, but with a weight on each edge, derived from some similarity function, going to 0 if distance goes to infinity

interest of the 3 previous solutions: **sparse graphs**!

for complete graph with similarity kernel: use **thresholding** to increase sparsity of the graph.

Gaussian similarity function $s(x_i, x_j) = \exp(-\frac{\|x_i - x_j\|^2}{2\sigma^2})$ Example:

Create a graph to represent the data

Examples

A Tutorial on Spectral Clustering, Ulrike von Luxburg,

2-a) model the local neighbourhood relationships between the data points

2-b) Create a graph that clusters (or classifies) data points A possible solution: Hierarchical clustering

Main idea: group together closest points

Fom freature domain:

а

with two broad strategies: Agglomerative (a "bottom-up" approach) vs. Divisive (a "top-down" approach)

2-b) Create a graph that clusters (or classifies) data points A possible solution: Hierarchical clustering

- Agglomerative clustering:
 - First merge very similar instances
 - Incrementally build larger clusters out of smaller clusters
- Algorithm:
 - Maintain a set of clusters
 - Initially, each instance in its own cluster
 - Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there's only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram

2-b) Create a graph that clusters (or classifies) data points A possible solution: **Hierarchical clustering**

An issue involved in Agglomerative clustering

- How should we define "closest" for clusters with multiple elements?
- Many options:
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
- Different choices create different clustering behaviors

Closest pair (single-link clustering)

Farthest pair (complete-link clustering)

2-b) Create a graph that clusters (or classifies) data points A possible solution: **Hierarchical clustering**

An issue involved in Agglomerative clustering

- How should we define "closest" for clusters with multiple elements?
- Many options:
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
- Different choices create different clustering behaviors

Clustering Behavior

2-c) Learn a graph that captures things from the data ullet• The general setting:

from observations....

...find a graph....

...that models well the data

here: some model is useful e.g.: Gaussian model

- Gaussian Graphical Models
- **Bayesian Networks**
- Methods with optimization inside!

Back to 2) Laplacian eigenmaps

Objective: embeddings of graphs from spectral features

 Objective of embedding: embed vertices in low dimensional space, so as to discover geometry

 $x_i \in \mathbb{R}^d \to y_i \in \mathbb{R}^k$ with k < d

Laplacian eigenmaps Formulation

W captures similarities among data points $x_i \in \mathbb{R}^L$

Suppose we embed in 1 dimension (P=1)

$$\arg\min_{y_1,\ldots,y_N}\sum_{i\sim j} \mathbf{W}(i,j)(y_i-y_j)^2 \quad \Longrightarrow \quad \arg\min_{y\in\mathbb{R}^N}y^T\mathbf{L}y$$

Add a constraint to avoid collapse y

Avoid trivial eigenvector: $y^T \mathbf{D} \mathbf{1} = 0$

$$\begin{array}{ll} \arg & \min & y^T \mathbf{L}y \\ & y \in \mathbb{R}^N \\ & y^T \mathbf{D}y = 1 \\ & y^T \mathbf{D}\mathbf{1} = 0 \end{array}$$

$$y=0: y^T \mathbf{D} y = 1$$

Laplacian eigenmaps Full problem

When we embed in P dimension (P > 1)

 $\arg\min_{y_1,...,y_N} \sum_{i < j} \mathbf{W}(i,j) \|y_i - y_j\|_2^2$

Algorithm: Laplacian Eigenmaps Collect the coordinates of embedded points as lines of matrix Y $\begin{array}{cc} \arg & \min \\ Y \in \mathbb{R}^{N \times P} \end{array} \operatorname{tr}(Y^T \mathbf{L} Y) \end{array}$ $Y^T \mathbf{D} Y = \mathbb{I}$

Laplacian Eigenmaps produces coordinate maps that are smooth functions/signals over the original graph.

Laplacian eigenmaps

Some examples

[Belkin, Niyogi, 2003]

Laplacian eigenmaps Examples: text

M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction stand data representation," Neural Comput, vol. 15, no. 6, pp. 1373–1396, 2003.

Laplacian eigenmaps Examples: speech

26

3) Locally Linear Embeddings

- Introduced 2000
- A node features can be represented as a linear combination of its neighbors'

$$Y_i = \sum_j A_{ij} Y_j$$

• Objective function:

$$y^* = \min \sum_{i} ||Y_i - \sum_{j} A_{ij}Y_j||^2$$

Sam T. Roweis & Lawrence K. Saul (2000) "Nonlinear Dimensionality Reduction by Locally Linear Embedding".

3) Locally Linear Embeddings

Sam T. Roweis & Lawrence K. Saul (2000) "Nonlinear Dimensionality Reduction by Locally Linear Embedding".

4) Random-Walk based Representations DeepWalk, Node2Vec,... => in truth, instances of encoder / decoder framework

Figure 3.1: Illustration of the node embedding problem. Our goal is to learn an encoder (ENC), which maps nodes to a low-dimensional embedding space. These embeddings are optimized so that distances in the embedding space reflect the relative positions of the nodes in the original graph.

- W. Hamilton: Articles in 2017
- Book: Graph Representation Learning, 2020

4) Node Embedding by Encoder/Decoder

$$\mathrm{ENC}: \mathcal{V} \to \mathbb{R}^d, \qquad \qquad \square$$

Figure 3.2: Overview of the encoder-decoder approach. The encoder maps the node u to a low-dimensional embedding \mathbf{z}_u . The decoder then uses \mathbf{z}_u to reconstruct u's local neighborhood information.

DEC: $\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^+$.

W. Hamilton, 2017 lacksquare

4) Node Embedding by Encoder/Decoder

 $DEC(ENC(u), ENC(v)) = DEC(\mathbf{z}_u, \mathbf{z}_v) \approx \mathbf{S}[u, v].$

To train the representation, use a global loss for Auto-Encoding

 $\ell(\mathrm{DEC}(\mathbf{z}_u,\mathbf{z}_v),\mathbf{S}[u,v])$

W. Hamilton, 2017

One finds known methods:

Туре	Method	Decoder	Proximit
Matrix factorization	Laplacian Eigenmaps [4] Graph Factorization [1] GraRep [9] HOPE [44]	$egin{array}{c c} \ \mathbf{z}_i - \mathbf{z}_j\ _2^2 & \mathbf{z}_i^ op \mathbf{z}_j \ \mathbf{z}_i^ op \mathbf{z}_j & \mathbf{z}_j \ \mathbf{z}_i^ op \mathbf{z}_j & \mathbf{z}_j \ \mathbf{z}_i^ op \mathbf{z}_j & \mathbf{z}_j \end{array}$	ger \mathbf{A} $\mathbf{A}_{i,j}, \mathbf{A}_{i,j}^2$ ger
Random walk	DeepWalk [46]	$\frac{e^{\mathbf{z}_i^{\top} \mathbf{z}_j}}{\sum_{k \in \mathcal{V}} e^{\mathbf{z}_i^{\top} \mathbf{z}_k}}$	$p_{\mathcal{G}}(v)$
	node2vec [27]	$\frac{e^{\mathbf{z}_i^{\top} \mathbf{z}_j}}{\sum_{k \in \mathcal{V}} e^{\mathbf{z}_i^{\top} \mathbf{z}_k}}$	$p_{\mathcal{G}}(v_j v_i$

 $p_{\mathcal{G}}(v_i | v_i)$: probability of visiting v_i on a fixed-length random walk started from v_i

W. Hamilton, 2017 lacksquare

One finds known methods:

Two examples

1. Distributed large scale natural graph factorisation (S = A):

$$Z^* = \arg \min_{Z \in \mathbb{R}^{d \times n}} \|Z^T Z - S\|_F^2 + \sum_{(i,j)} (z_i^T z_j - S_{ij})^2 + \frac{\lambda}{2} \sum_i \|z_i\|_F^2$$

 $\frac{\lambda}{2} \|Z\|_F^2$ $|z_i||_2^2$

solved with SGD in p with vertex partitioning for large graphs

One finds known methods:

Two examples

2. GraRep: models k-hops relationships $(S = D^{-1}A)$ $p_k(x_i|x_j) = S_{ij}^k$ Inner product decoder: $\sigma(w_i^T c_i) \approx p_k(x_i | x_j)$ target and context latent vectors k-hop Cross entropy loss: $L_k = \sum L_k(w_j)$ $j \in V$ $L_k(w_j) = \sum p_k(x_i|x_j) \log \sigma(w_j^T c_i) + \lambda \mathbb{E}_{c' \sim p_k(V)} \{\log \sigma(-w_j^T c')\}$ $i \in V$

S = A

<u>noise contrastive sampling</u>: choose c' from a noise distribution (here: at random independently of target w) and maximise probability that it is **not** a context of w

4) Node Embedding by Encoder/Decoder . encode node decode neighborhood S = A $S = D^{-1}A \quad p_k(x_i x_j) = S_{ij}^k$ Two examples $\sigma(w_j^T c_i) \approx p_k(x_i | x_j) = D^{-1} A \quad p_k(x_i | x_j) = S_{ij}^k$ 2. GraRep: Choice of negative sampling distribution allows a factorization-based solution $\mathcal{T}_{w_{i}} \overset{\text{distribution}}{\approx} p_{k}(x_{i}|x_{j})$ for the product $W_{(k)}^T C_{(k)} = Y_{(k)}^J$ Solve for $W_{(k)}$ by SVD $A^k_{\ell,j}$ and concatenate $k=1,\ldots,K$

One finds known methods:

 $i \in V$

 $Y_{(k)} \approx U_{(k)}^{(d)} \Sigma_{(k)}^{(d)} \left(V_{(k)}^{(d)} \right)^T$

 $W_{(k)}$

ГЛ

Limitations

These techniques are <u>transductive</u>: you learn embeddings of observed nodes but you don't obtain a way to <u>directly</u> compute embeddings to unseen nodes. They don't easily leverage node features. No parameter sharing among nodes.

The lack of an encoder - a direct way to map a single (attributed) node to its latent code - is a weakness

• Exemple on a Clique Ring: 5 cliques of size 20 connected by an edge as if on a ring

Embeddings of graphs in low dimension

Objective: find new coordinates => What for **?**

- Common tasks:
 - Link prediction (supervised)

 Graph reconstruction (unsupervised link prediction ? / ad hoc) Community detection (unsupervised)

Node classification (supervised community detection ?)

 Role definition (Variant of node classification, can be unsupervised) Visualisation (distances, like unsupervised)

Conclusion **Of Graph Embeddings and (Shallow) Representation Learning**

- Efficient methods for Vizualization \bullet
 - (see also t-SNE, UMAP)
- Good to see / display structures in the graphs (and possibly explore /use them)

OK for some representation learning (Lapl. maps, LLE, ENC/DEC)

• Less OK: not inductive; could use Deep ReprLearn. => see Graph Neural Networks

