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Graphs for data science and ML 

Machine Learning for graphs and with graphs
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Exploit the properties of the matrices of graphs
Fourth: try to visualise the graphs
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• Graph drawing, or Graph visualisation, is an old problem


• -> It was to find the best layout of a graph, to capture will its structure


• historically: with low dimensional spaces (2D, 3D) => Gephi, Graphviz,…


• Then came the age of Representation Learning:


• Find features, or latent space, in which the data is represented


• At the heart of ML with Neural Networks for graphs: learn features to code 
best for the inner structures of the graph (or node) (& its attributes)



Pre-CNN methods of embeddings 
• Use “physical models” for graph layout  (e.g., Force layout, kamada-kawai)


• -> Principle: put connected nodes close, non-connected nodes far away


• Use the properties the Laplacian to create a smooth embedding of the nodes


• -> Laplacian eigenmaps


• LLE: Locally Linear Embedding 


• Random Walked-based embeddings:  DeepWalk, Node2Vec


• -> Welcome to a brand new world: learn a high-dimensional representation
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1) Physical models of graph layout
• Implemented in data/graph vizualization packages or softwares


• Often for practitioners in network science, and valid! Original Research Article

What do we see when we look
at networks: Visual network
analysis, relational ambiguity,
and force-directed layouts
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Abstract
It is increasingly common in natural and social sciences to rely on network visualizations to explore relational datasets
and illustrate findings. Such practices have been around long enough to prove that scholars find it useful to project
networks in a two-dimensional space and to use their visual qualities as proxies for their topological features. Yet these
practices remain based on intuition, and the foundations and limits of this type of exploration are still implicit. To fill this
lack of formalization, this paper offers explicit documentation for the kind of visual network analysis encouraged by force-
directed layouts. Using the example of a network of Jazz performers, band and record labels extracted from Wikipedia,
the paper provides guidelines on how to make networks readable and how to interpret their visual features. It discusses
how the inherent ambiguity of network visualizations can be exploited for exploratory data analysis. Acknowledging that
vagueness is a feature of many relational datasets in the humanities and social sciences, the paper contends that visual
ambiguity, if properly interpreted, can be an asset for the analysis. Finally, we propose two attempts to distinguish the
ambiguity inherited from the represented phenomenon from the distortions coming from fitting a multidimensional
object in a two-dimensional space. We discuss why these attempts are only partially successful, and we propose further
steps towards a metric of spatialization quality.
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Introduction

Networks are not only mathematical but also visual
objects. If network computation has existed since the
18th century, the last decades have seen the rise of net-
work visualization as a tool of scientific investigation
(Correa and Ma, 2011; Freeman, 2000). This visual
renaissance is particularly noticeable in digital human-
ities and social sciences—where the increasing avail-
ability of relational datasets has fueled the interest in
graph charts—but it has also touched other disciplines
such as ecology, neuroscience, and genetics. In general,
it has become common to illustrate social relations,
economic fluxes, linguistic co-occurrences, protein
interactions, neuronal connections, and many other
relational phenomena as points-and-lines charts.

The function of such charts, however, is often
unclear. While network visualizations are regularly

exhibited as tangible evidence of findings, they are gen-
erally left out of the actual demonstration, which relies
instead on calculations and metrics. Network charts are
embraced for their insights but also distrusted because
of their ambiguity. Unlike a bar chart or a scatter plot,
a points-and-lines chart is not straightforwardly shaped
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of spatialization settings is the key to make relational
structures visible.

Sizing nodes and labels

After having positioned the nodes to reveal clustering,
we still have to make sense of what we see. To do so,
VNA draws on two other visual variables (Bertin,

1967): size and color. The degree (number of edges
connected to a node) or the in-degree (number of
incoming edges, as in see Figure 4(a)) are classic choices
for sizing nodes, as they straightforwardly translate
network visibility. Being entirely relational, the degree
can be computed for any network. Yet, when available,
other variables could be equally interesting. For
instance, we can size the nodes of our networks

Figure 3. The “jazz network” spatialized (a) with the algorithm proposed by Fruchterman and Reingold (1991), (b) with ForceAtlas2
(with default parameters) and (c) with ForceAtlas2 with tweaked parameters for LinLog mode and gravity. This and all images created
for this paper are available at: https://github.com/tommv/ForceDirectedLayouts.

Figure 4. The “jazz network” with nodes and labels sized according to (a) in-degree of the nodes; (b) number of page views of the
related pages in the English Wikipedia. Nodes are spatialized with the same layout as in Figure 3(c) (ForceAtlas2, LinLog mode,
gravity¼ 0).
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Embeddings of graphs in low dimension 
Spectral embedding

Examples from sklearn

?

Spectral embedding

Examples from sklearn

Objective: find new coordinatesSpectral Graph Embedding

43

Dataset is a large matrix X 2 RN⇥L N is the number of data points
L is the dimension of each data points

Often L >> 1 and must be reduced (think images)

For computations

For visualisation, in which case we would like L = 2, 3

Q: can we learn a low-dimensional embedding (a latent vector for each 
data point) that preserves the original structure of X ?
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2) Laplacian eigenmaps
Objective: embeddings of graphs from spectral features



Graph embedding with harmonic analysis
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2) Laplacian eigenmaps
Objective: embeddings of graphs from spectral features

• Two starting points:


• 1) you already have a graph, whose (weighted) adjacency matrix 
captures (sparse ?) similarities between nodes,


• 2) you have data points in high dimension, with coordinates ,


•  is the number of data points (= nodes) and  the dim. of features (=coord.)


• => build a similarity graph, then you are back to point 1)

A or W

X ∈ ℝN×L

N L
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Create a graph to represent the data
Objective: capture similarities between data points

• This is a standard step in classification / clustering!


• Hence, several manners to code these similarities in a graph:

Formulation

44

Find a mapping from the N high-dim data points to N low-dim points 

x1, . . . , xN 7! y1, . . . , yN

xi 2 RL yi 2 RP

Assumption: we have a graph of similarities among original data points

Similarities are often constructed by either :

selecting k-nearest neighbours of each point with distance d(xi, xj)

selecting all points in a neighbourhood d(xi, xj) 6 ✏

OR

THEN
weighting these edges ex: W(i, j) = e�d(xi,xj)

2/t

8



Create a graph to represent the data
Objective: capture similarities between data points

 
(2) how and why convert data points into graph-based data ? 



Often, data come as data points i with features X_{ij}, i.e. measurement •
for variable j on data point i


and they can be represented in the feature space (x_1,x_2)




If the groups are well separated in space, finding them is possible 
•



Central to this notion: one needs to find a notion of similarity •
(conversely: of dissimilarity) between data points.


	 For that: use a suitable distance function.
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Create a graph to represent the data
Objective: keep strong similarities (only) between data points (2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points 



Great a graph "connecting the dots", i.e. find edges 
to connect data points.

Several possibilities:



  Mininimal Spanning Tree: the tree with smallest 
sum of edge lengths connecting all nodes



 




























connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity



Example:





A interest of the 3 previous solutions: sparse graphs !



	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph. 
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Formulation

44

Find a mapping from the N high-dim data points to N low-dim points 
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44
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Create a graph to represent the data
Examples



Example of such constructions (from [Ref1])




















































































































 
The analysis, modeling and vizualisation of high dimensional and/or structured data  



Structured = with graphs •
	 -> Graphs are (almost) everywhere



	 Physical networks (Roads, Communications, Sensors, ...)	

	 Information networks (Internet, WWW, Social Systems, ...)

	 Biological networks (with Genes; with Proteins; Metabolic; Ecology; Food webs; ...)

	 Neuroscience (neurons in brains; functional or anatomical connectivities, ...)

	 ... 



If not :	 


Similarity networks / graphs from distances between data points
•


	 	 and/or Clustering of data points (possibly with graphs)






Clustering = •


	 Objective: given some data, how to find groups (or communities) to separate elements



	 Principle: data elements are put together if they are close on to another and/or well connected



	 known as clustering (for data points) or community/module detection (for complex graphs) 



Two ingredients :


(1) how to cluster elements (points with coordinates in an Euclidean space ; nodes in graphs)
•
(2) find a good representation: how and why convert data points into graph-based data
•



References:




[Ref1] A Tutorial on Spectral Clustering, Ulrike von Luxburg, 2006
•
[Ref2] Approximating Spectral Clustering via Sampling: a Review. Nicolas Tremblay and Andreas •
Loukas, 2019

[Ref3] Bishop, Pattern Recognition and Machine Learning, 2006 (chapter 9)
•
[Ref4] The elements of statistical learning (2nd edition). T. Hastie, R. Tibshirani, J. Friedman. 2009 •
(chapter 14.3)




First sentence of [Ref1]:



"Clustering is one of the most widely used techniques for exploratory data analysis, with applications 
ranging from statistics, computer science, biology to social sciences or psychology."
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Create a graph to represent the data
Interlude: you know other methods!
(2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points 



Great a graph "connecting the dots", i.e. find edges 
to connect data points.

Several possibilities:



  Mininimal Spanning Tree: the tree with smallest 
sum of edge lengths connecting all nodes



 




























connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity



Example:





A interest of the 3 previous solutions: sparse graphs !



	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph. 
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Create a graph to represent the data
Interlude: you know other methods!
 
2-b) Create a graph that clusters (or classifies) data points

A possible solution: Hierarchical clustering























with two broad strategies: Agglomerative (a "bottom-up" approach) vs. Divisive (a "top-down" approach)



More details on Agglomerative clustering
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Create a graph to represent the data
Interlude: you know other methods!
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An issue involved in Agglomerative clustering
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Create a graph to represent the data
Interlude: you know other methods!

• 2-c) Learn a graph that captures things from the data
The many sides of graph learning (1)




The general setting: 
•
	 from observations....		 	 	 ...find a graph....	 								          ...that models well the data










	 here: some model is useful

	 	 e.g.: Gaussian model



























Some specific settings or applications:
•
	 Network tomography	 	 	 	 Smoothness on graph										             Observation of diffused signals	

































	 	 	 	 	 [Segarra et al., 2016; Pasdeloup et al., 2016]






































1

• Gaussian Graphical Models


• Bayesian Networks


• Methods with optimization 
inside!
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Back to 2) Laplacian eigenmaps
Objective: embeddings of graphs from spectral features



Graph embedding with harmonic analysis
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Laplacian eigenmaps
Formulation

45

W captures similarities among data points xi 2 RL

Suppose we embed in 1 dimension (P=1)

arg min
y1,...,yN

X

i⇠j

W(i, j)(yi � yj)
2 arg min

y2RN
yTLy

Add a constraint to avoid collapse y=0: yTDy = 1

Avoid trivial eigenvector: yTD1 = 0

arg min
y 2 RN

yTDy = 1
yTD1 = 0

yTLy

Spectral embedding

Examples from sklearn
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Laplacian eigenmaps
Full problem

46

When we embed in P dimension (P > 1)

arg min
y1,...,yN

X

i⇠j

W(i, j)kyi � yjk22

arg min
Y 2 RN⇥P

Y TDY = I

tr(Y TLY )

Collect the coordinates of embedded points as lines of matrix Y
Algorithm: Laplacian Eigenmaps

Laplacian Eigenmaps produces coordinate maps that are smooth 
functions/signals over the original graph.  
Note similarity with clustering !

Spectral embedding

Examples from sklearn
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Laplacian eigenmaps



Graph embedding with harmonic analysis
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Laplacian eigenmaps
Examples: text

48
M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation,” Neural Comput, vol. 15, no. 6, pp. 1373–1396, 2003.
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Laplacian eigenmaps
Examples: speech

49
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3) Locally Linear Embeddings
LLE: LOCALLY LINEAR 

EMBEDDING

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78-94.

• Introduced 2000

• A node features can be represented as a linear combination of 
its neighbors’
‣

• Objective function:
‣

Yi = ∑
j

AijYj

y* = min ∑
i

∥Yi − ∑
j

AijYj∥2

Sam T. Roweis & Lawrence K. Saul (2000) “Nonlinear Dimensionality Reduction by Locally Linear Embedding”.27



3) Locally Linear Embeddings

Sam T. Roweis & Lawrence K. Saul (2000) “Nonlinear Dimensionality Reduction by Locally Linear Embedding”.28



4) Random-Walk based Representations
DeepWalk, Node2Vec,…
=> in truth, instances of encoder / decoder framework

Chapter 3

Neighborhood
Reconstruction Methods

This part of the book is concerned with methods for learning node embeddings.
The goal of these methods is to encode nodes as low-dimensional vectors that
summarize their graph position and the structure of their local graph neigh-
borhood. In other words, we want to project nodes into a latent space, where
geometric relations in this latent space correspond to relationships (e.g., edges)
in the original graph or network [Ho↵ et al., 2002] (Figure 3.1).

In this chapter we will provide an overview of node embedding methods for
simple and weighted graphs. Chapter 4 will provide an overview of analogous
embedding approaches for multi-relational graphs.

Figure 3.1: Illustration of the node embedding problem. Our goal is to learn an
encoder (enc), which maps nodes to a low-dimensional embedding space. These
embeddings are optimized so that distances in the embedding space reflect the
relative positions of the nodes in the original graph.

29

• W. Hamilton: Articles in 2017


• Book:  Graph Representation 
Learning, 202029



4) Node Embedding by Encoder/Decoder

• W. Hamilton, 2017

30 CHAPTER 3. NEIGHBORHOOD RECONSTRUCTION METHODS

3.1 An Encoder-Decoder Perspective

We organize our discussion of node embeddings based upon the framework of
encoding and decoding graphs. This way of viewing graph representation learn-
ing will reoccur throughout the book, and our presentation of node embedding
methods based on this perspective closely follows Hamilton et al. [2017a].

In the encoder-decoder framework, we view the graph representation learning
problem as involving two key operations. First, an encoder model maps each
node in the graph into a low-dimensional vector or embedding. Next, a decoder
model takes the low-dimensional node embeddings and uses them to reconstruct
information about each node’s neighborhood in the original graph. This idea is
summarized in Figure 3.2.

3.1.1 The Encoder

Formally, the encoder is a function that maps nodes v 2 V to vector embeddings
zv 2 Rd (where zv corresponds to the embedding for node v 2 V). In the
simplest case, the encoder has the following signature:

enc : V ! Rd
, (3.1)

meaning that the encoder takes node IDs as input to generate the node em-
beddings. In most work on node embeddings, the encoder relies on what we
call the shallow embedding approach, where this encoder function is simply an
embedding lookup based on the node ID. In other words, we have that

enc(v) = Z[v], (3.2)

where Z 2 R|V|⇥d is a matrix containing the embedding vectors for all nodes
and Z[v] denotes the row of Z corresponding to node v.

Shallow embedding methods will be the focus of this chapter. However, we
note that the encoder can also be generalized beyond the shallow embedding

Figure 3.2: Overview of the encoder-decoder approach. The encoder maps
the node u to a low-dimensional embedding zu. The decoder then uses zu to
reconstruct u’s local neighborhood information.
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approach. For instance, the encoder can use node features or the local graph
structure around each node as input to generate an embedding. These gener-
alized encoder architectures—often called graph neural networks (GNNs)—will
be the main focus of Part II of this book.

3.1.2 The Decoder

The role of the decoder is to reconstruct certain graph statistics from the node
embeddings that are generated by the encoder. For example, given a node
embedding zu of a node u, the decoder might attempt to predict u’s set of
neighbors N (u) or its row A[u] in the graph adjacency matrix.

While many decoders are possible, the standard practice is to define pairwise
decoders, which have the following signature:

dec : Rd ⇥ Rd ! R+
. (3.3)

Pairwise decoders can be interpreted as predicting the relationship or similarity
between pairs of nodes. For instance, a simple pairwise decoder could predict
whether two nodes are neighbors in the graph.

Applying the pairwise decoder to a pair of embeddings (zu,zv) results in the
reconstruction of the relationship between nodes u and v. The goal is optimize
the encoder and decoder to minimize the reconstruction loss so that

dec(enc(u), enc(v)) = dec(zu, zv) ⇡ S[u, v]. (3.4)

Here, we assume that S[u, v] is a graph-based similarity measure between nodes.
For example, the simple reconstruction objective of predicting whether two
nodes are neighbors would correspond to S[u, v] , A[u, v]. However, one can
define S[u, v] in more general ways as well, for example, by leveraging any of
the pairwise neighborhood overlap statistics discussed in Section 2.2.

3.1.3 Optimizing an Encoder-Decoder Model

To achieve the reconstruction objective (Equation 3.4), the standard practice is
to minimize an empirical reconstruction loss L over a set of training node pairs
D:

L =
X

(u,v)2D

` (dec(zu, zv),S[u, v]) , (3.5)

where ` : R ⇥ R ! R is a loss function measuring the discrepancy between
the decoded (i.e., estimated) similarity values dec(zu, zv) and the true values
S[u, v]. Depending on the definition of the decoder (dec) and similarity function
(S), the loss function ` might be a mean-squared error or even a classification
loss, such as cross entropy. Thus, the overall objective is to train the encoder and
the decoder so that pairwise node relationships can be e↵ectively reconstructed
on the training set D. Most approaches minimize the loss in Equation 3.5 using
stochastic gradient descent [Robbins and Monro, 1951], but there are certain
instances when more specialized optimization methods (e.g., based on matrix
factorization) can be used.
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approach. For instance, the encoder can use node features or the local graph
structure around each node as input to generate an embedding. These gener-
alized encoder architectures—often called graph neural networks (GNNs)—will
be the main focus of Part II of this book.

3.1.2 The Decoder

The role of the decoder is to reconstruct certain graph statistics from the node
embeddings that are generated by the encoder. For example, given a node
embedding zu of a node u, the decoder might attempt to predict u’s set of
neighbors N (u) or its row A[u] in the graph adjacency matrix.

While many decoders are possible, the standard practice is to define pairwise
decoders, which have the following signature:

dec : Rd ⇥ Rd ! R+
. (3.3)

Pairwise decoders can be interpreted as predicting the relationship or similarity
between pairs of nodes. For instance, a simple pairwise decoder could predict
whether two nodes are neighbors in the graph.

Applying the pairwise decoder to a pair of embeddings (zu,zv) results in the
reconstruction of the relationship between nodes u and v. The goal is optimize
the encoder and decoder to minimize the reconstruction loss so that

dec(enc(u), enc(v)) = dec(zu, zv) ⇡ S[u, v]. (3.4)

Here, we assume that S[u, v] is a graph-based similarity measure between nodes.
For example, the simple reconstruction objective of predicting whether two
nodes are neighbors would correspond to S[u, v] , A[u, v]. However, one can
define S[u, v] in more general ways as well, for example, by leveraging any of
the pairwise neighborhood overlap statistics discussed in Section 2.2.

3.1.3 Optimizing an Encoder-Decoder Model

To achieve the reconstruction objective (Equation 3.4), the standard practice is
to minimize an empirical reconstruction loss L over a set of training node pairs
D:

L =
X

(u,v)2D

` (dec(zu, zv),S[u, v]) , (3.5)

where ` : R ⇥ R ! R is a loss function measuring the discrepancy between
the decoded (i.e., estimated) similarity values dec(zu, zv) and the true values
S[u, v]. Depending on the definition of the decoder (dec) and similarity function
(S), the loss function ` might be a mean-squared error or even a classification
loss, such as cross entropy. Thus, the overall objective is to train the encoder and
the decoder so that pairwise node relationships can be e↵ectively reconstructed
on the training set D. Most approaches minimize the loss in Equation 3.5 using
stochastic gradient descent [Robbins and Monro, 1951], but there are certain
instances when more specialized optimization methods (e.g., based on matrix
factorization) can be used.

• W. Hamilton, 2017
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enc(v) = Z[v], (3.2)

where Z 2 R|V|⇥d is a matrix containing the embedding vectors for all nodes
and Z[v] denotes the row of Z corresponding to node v.
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Figure 3.2: Overview of the encoder-decoder approach. The encoder maps
the node u to a low-dimensional embedding zu. The decoder then uses zu to
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ENCODER DECODER 
FRAMEWORKTable 1: A summary of some well-known direct encoding embedding algorithms. Note that the decoders and proximity

functions for the random-walk based methods are asymmetric, with the proximity function, pG(vj |vi), corresponding to
the probability of visiting vj on a fixed-length random walk starting from vi.

Type Method Decoder Proximity measure Loss function (!)

Laplacian Eigenmaps [4] ‖zi − zj‖22 general DEC(zi, zj) · sG(vi, vj)
Matrix Graph Factorization [1] z!i zj Ai,j ‖DEC(zi, zj)− sG(vi, vj)‖22

factorization GraRep [9] z!i zj Ai,j ,A2
i,j , ...,A

k
i,j ‖DEC(zi, zj)− sG(vi, vj)‖22

HOPE [44] z!i zj general ‖DEC(zi, zj)− sG(vi, vj)‖22

Random walk
DeepWalk [46] ez

!
i zj

∑
k∈V ez

!
i zk

pG(vj |vi) −sG(vi, vj) log(DEC(zi, zj))

node2vec [27] ez
!
i zj

∑
k∈V ez

!
i zk

pG(vj |vi) (biased) −sG(vi, vj) log(DEC(zi, zj))

2.2 Direct encoding approaches

The majority of node embedding algorithms rely on what we call direct encoding. For these direct encoding
approaches, the encoder function—which maps nodes to vector embeddings—is simply an “embedding lookup”:

ENC(vi) = Zvi, (5)

where Z ∈ Rd×|V| is a matrix containing the embedding vectors for all nodes and vi ∈ IV is a one-hot indicator
vector indicating the column of Z corresponding to node vi. The set of trainable parameters for direct encoding
methods is simply ΘENC = {Z}, i.e. the embedding matrix Z is optimized directly.

These approaches are largely inspired by classic matrix factorization techniques for dimensionality reduc-
tion [4] and multi-dimensional scaling [36]. Indeed, many of these approaches were originally motivated as
factorization algorithms, and we reinterpret them within the encoder-decoder framework here. Table 1 summa-
rizes some well-known direct-encoding methods within the encoder-decoder framework. Table 1 highlights how
these methods can be succinctly described according to (i) their decoder function, (ii) their graph-based prox-
imity measure, and (iii) their loss function. The following two sections describe these methods in more detail,
distinguishing between matrix factorization-based approaches (Section 2.2.1) and more recent approaches based
on random walks (Section 2.2.2).

2.2.1 Factorization-based approaches

Early methods for learning representations for nodes largely focused on matrix-factorization approaches, which
are directly inspired by classic techniques for dimensionality reduction [4, 36].
Laplacian eigenmaps. One of the earliest, and most well-known instances, is the Laplacian eigenmaps (LE)
technique [4], which we can view within the encoder-decoder framework as a direct encoding approach in which
the decoder is defined as

DEC(zi, zj) = ‖zi − zj‖22
and where the loss function weights pairs of nodes according to their proximity in the graph:

L =
∑

(vi,vj)∈D

DEC(zi, zj) · sG(vi, vj). (6)

Inner-product methods. Following on the Laplacian eigenmaps technique, there are a large number of recent
embedding methodologies based on a pairwise, inner-product decoder:

DEC(zi, zj) = z!i zj , (7)

6

: probability of visiting  on a fixed-length random walk started 
from 

p!(vj |vi) vj
vi

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation learning on graphs: Methods and applications. arXiv preprint arXiv:1709.05584.

One finds known methods:

• W. Hamilton, 2017
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4) Node Embedding by Encoder/Decoder

30 CHAPTER 3. NEIGHBORHOOD RECONSTRUCTION METHODS

3.1 An Encoder-Decoder Perspective

We organize our discussion of node embeddings based upon the framework of
encoding and decoding graphs. This way of viewing graph representation learn-
ing will reoccur throughout the book, and our presentation of node embedding
methods based on this perspective closely follows Hamilton et al. [2017a].

In the encoder-decoder framework, we view the graph representation learning
problem as involving two key operations. First, an encoder model maps each
node in the graph into a low-dimensional vector or embedding. Next, a decoder
model takes the low-dimensional node embeddings and uses them to reconstruct
information about each node’s neighborhood in the original graph. This idea is
summarized in Figure 3.2.

3.1.1 The Encoder

Formally, the encoder is a function that maps nodes v 2 V to vector embeddings
zv 2 Rd (where zv corresponds to the embedding for node v 2 V). In the
simplest case, the encoder has the following signature:

enc : V ! Rd
, (3.1)

meaning that the encoder takes node IDs as input to generate the node em-
beddings. In most work on node embeddings, the encoder relies on what we
call the shallow embedding approach, where this encoder function is simply an
embedding lookup based on the node ID. In other words, we have that

enc(v) = Z[v], (3.2)

where Z 2 R|V|⇥d is a matrix containing the embedding vectors for all nodes
and Z[v] denotes the row of Z corresponding to node v.

Shallow embedding methods will be the focus of this chapter. However, we
note that the encoder can also be generalized beyond the shallow embedding

Figure 3.2: Overview of the encoder-decoder approach. The encoder maps
the node u to a low-dimensional embedding zu. The decoder then uses zu to
reconstruct u’s local neighborhood information.

One finds known methods:Inner-product based factorisation
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Two examples

1. Distributed large scale natural graph factorisation ( ): S = A
<latexit sha1_base64="IebU7luoYl12I7P96sbHiTR0NQw="></latexit>
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X
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solved with SGD in p with vertex partitioning 
for large graphs 
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3.1 An Encoder-Decoder Perspective

We organize our discussion of node embeddings based upon the framework of
encoding and decoding graphs. This way of viewing graph representation learn-
ing will reoccur throughout the book, and our presentation of node embedding
methods based on this perspective closely follows Hamilton et al. [2017a].

In the encoder-decoder framework, we view the graph representation learning
problem as involving two key operations. First, an encoder model maps each
node in the graph into a low-dimensional vector or embedding. Next, a decoder
model takes the low-dimensional node embeddings and uses them to reconstruct
information about each node’s neighborhood in the original graph. This idea is
summarized in Figure 3.2.

3.1.1 The Encoder

Formally, the encoder is a function that maps nodes v 2 V to vector embeddings
zv 2 Rd (where zv corresponds to the embedding for node v 2 V). In the
simplest case, the encoder has the following signature:

enc : V ! Rd
, (3.1)

meaning that the encoder takes node IDs as input to generate the node em-
beddings. In most work on node embeddings, the encoder relies on what we
call the shallow embedding approach, where this encoder function is simply an
embedding lookup based on the node ID. In other words, we have that

enc(v) = Z[v], (3.2)

where Z 2 R|V|⇥d is a matrix containing the embedding vectors for all nodes
and Z[v] denotes the row of Z corresponding to node v.

Shallow embedding methods will be the focus of this chapter. However, we
note that the encoder can also be generalized beyond the shallow embedding

Figure 3.2: Overview of the encoder-decoder approach. The encoder maps
the node u to a low-dimensional embedding zu. The decoder then uses zu to
reconstruct u’s local neighborhood information.
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Two examples

2. GraRep: models k-hops relationships ( )S = D−1A
1. Distributed large scale natural graph factorisation ( ) S = A

Inner product decoder: target and context latent vectors 

k-hop Cross entropy loss: 
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We organize our discussion of node embeddings based upon the framework of
encoding and decoding graphs. This way of viewing graph representation learn-
ing will reoccur throughout the book, and our presentation of node embedding
methods based on this perspective closely follows Hamilton et al. [2017a].

In the encoder-decoder framework, we view the graph representation learning
problem as involving two key operations. First, an encoder model maps each
node in the graph into a low-dimensional vector or embedding. Next, a decoder
model takes the low-dimensional node embeddings and uses them to reconstruct
information about each node’s neighborhood in the original graph. This idea is
summarized in Figure 3.2.

3.1.1 The Encoder

Formally, the encoder is a function that maps nodes v 2 V to vector embeddings
zv 2 Rd (where zv corresponds to the embedding for node v 2 V). In the
simplest case, the encoder has the following signature:

enc : V ! Rd
, (3.1)

meaning that the encoder takes node IDs as input to generate the node em-
beddings. In most work on node embeddings, the encoder relies on what we
call the shallow embedding approach, where this encoder function is simply an
embedding lookup based on the node ID. In other words, we have that

enc(v) = Z[v], (3.2)

where Z 2 R|V|⇥d is a matrix containing the embedding vectors for all nodes
and Z[v] denotes the row of Z corresponding to node v.

Shallow embedding methods will be the focus of this chapter. However, we
note that the encoder can also be generalized beyond the shallow embedding

Figure 3.2: Overview of the encoder-decoder approach. The encoder maps
the node u to a low-dimensional embedding zu. The decoder then uses zu to
reconstruct u’s local neighborhood information.

One finds known methods:Inner-product based factorisation

53

Two examples

2. GraRep: models k-hops relationships ( )S = D−1A
1. Distributed large scale natural graph factorisation ( ) S = A

Inner product decoder: target and context latent vectors 

k-hop Cross entropy loss: 
<latexit sha1_base64="9+I2+R2eTilhQvYiR+xMLckx1I8="></latexit>

Lk =
X

j2V

Lk(wj)

<latexit sha1_base64="QlUxKLtbwralMpL8HXzmd8SEvQI="></latexit>

�(wT
j ci) ⇡ pk(xi|xj)

<latexit sha1_base64="zKfYgXaCn64grZXWwLviq/7ufNU="></latexit>

Lk(wj) =
X

i2V

pk(xi|xj) log �(w
T
j ci) + �Ec0⇠pk(V ){log �(�wT

j c
0)}

noise contrastive sampling: choose c’ from a noise distribution 
(here: at random independently of target w) and maximise 
probability that it is not a context of w

<latexit sha1_base64="tfifLUT7eCHFPJx5ba7FdNOIuuM="></latexit>

pk(xi|xj) = Sk
ij

Inner-product based factorisation

54

Two examples

2. GraRep: models k-hops relationships ( )S = D−1A
1. Distributed large scale natural graph factorisation ( ) S = A

Inner product decoder: target and context latent vectors 
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1. Distributed large scale natural graph factorisation ( ) S = A

Inner product decoder: target and context latent vectors 
<latexit sha1_base64="QlUxKLtbwralMpL8HXzmd8SEvQI="></latexit>

�(wT
j ci) ⇡ pk(xi|xj)

Choice of negative sampling distribution allows a factorization-based solution 
for the product  

<latexit sha1_base64="URF5CY+B3d5y73XCxi2RiSqZUHo="></latexit>

WT
(k)C(k) = Y(k)

<latexit sha1_base64="AkxifWJAJVBiRBIqEiO3LPz78iY="></latexit>

Y(k)ij = log
⇣ Ak

ijP
`2V Ak

`,j

⌘

<latexit sha1_base64="8FuiPgXLOvInQ0LNaeKtylKfbAE="></latexit>

Y(k) ⇡ U (d)
(k)⌃

(d)
(k)

�
V (d)
(k)

�T

Solve for  by SVD 
and concatenate k=1,…,K

W(k)

<latexit sha1_base64="tfifLUT7eCHFPJx5ba7FdNOIuuM="></latexit>

pk(xi|xj) = Sk
ij

35



4) Node Embedding by Encoder/Decoder

30 CHAPTER 3. NEIGHBORHOOD RECONSTRUCTION METHODS

3.1 An Encoder-Decoder Perspective

We organize our discussion of node embeddings based upon the framework of
encoding and decoding graphs. This way of viewing graph representation learn-
ing will reoccur throughout the book, and our presentation of node embedding
methods based on this perspective closely follows Hamilton et al. [2017a].

In the encoder-decoder framework, we view the graph representation learning
problem as involving two key operations. First, an encoder model maps each
node in the graph into a low-dimensional vector or embedding. Next, a decoder
model takes the low-dimensional node embeddings and uses them to reconstruct
information about each node’s neighborhood in the original graph. This idea is
summarized in Figure 3.2.

3.1.1 The Encoder

Formally, the encoder is a function that maps nodes v 2 V to vector embeddings
zv 2 Rd (where zv corresponds to the embedding for node v 2 V). In the
simplest case, the encoder has the following signature:

enc : V ! Rd
, (3.1)

meaning that the encoder takes node IDs as input to generate the node em-
beddings. In most work on node embeddings, the encoder relies on what we
call the shallow embedding approach, where this encoder function is simply an
embedding lookup based on the node ID. In other words, we have that

enc(v) = Z[v], (3.2)

where Z 2 R|V|⇥d is a matrix containing the embedding vectors for all nodes
and Z[v] denotes the row of Z corresponding to node v.

Shallow embedding methods will be the focus of this chapter. However, we
note that the encoder can also be generalized beyond the shallow embedding

Figure 3.2: Overview of the encoder-decoder approach. The encoder maps
the node u to a low-dimensional embedding zu. The decoder then uses zu to
reconstruct u’s local neighborhood information.
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Two examples

2. GraRep: models k-hops relationships ( )S = D−1A
1. Distributed large scale natural graph factorisation ( ) S = A
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3. DeepWalk or Node2Vec use random walks as proxy for structure

Limitations
These techniques are transductive: you learn embeddings of observed nodes 
but you don’t obtain a way to directly compute embeddings to unseen nodes. 
They don’t easily leverage node features. No parameter sharing among nodes. 

What have we learned ?
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Structure of a graph neatly summarised by powers of its Laplacian 

Data matrices can be turned into graphs, hypothesising that homophily 
is meaningful  

Spectral analysis of the Laplacian provides background for structure and 
shortcut for homophily via smoothness of “graph signals” (other structural 
proxies can be used as well)

Let’s dive into graph signals and ways to manipulate them in Part II

The lack of an encoder - a direct way to map a single (attributed) node 
to its latent code - is a weakness
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• Exemple on a Clique Ring: 5 cliques of size 20 connected by an edge as if on a ring

CLIQUE RING
5 cliques or size 20 with 1 edge between them

LE LLE

Spring layout n2v

CLIQUE RING
5 cliques or size 20 with 1 edge between them

LE LLE

Spring layout n2v



Embeddings of graphs in low dimension Spectral embedding

Examples from sklearn

?
Objective: find new coordinates   => What for  ? 
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EMBEDDING TASKS

• Common tasks:
‣ Link prediction (supervised)
‣ Graph reconstruction (unsupervised link prediction ? / ad hoc)
‣ Community detection (unsupervised)
‣ Node classification (supervised community detection ?)
‣ Role definition (Variant of node classification, can be unsupervised)
‣ Visualisation (distances, like unsupervised)



Conclusion
Of Graph Embeddings and (Shallow) Representation Learning

• Efficient methods for Vizualization


• (see also t-SNE, UMAP)


• Good to see / display structures in the graphs (and possibly explore /use them)


• OK for some representation learning (Lapl. maps, LLE, ENC/DEC)


• Less OK: not inductive; could use Deep ReprLearn. => see Graph Neural Networks
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