Graphs for data science and ML

Machine Learning for graphs and with graphs

Exploit the properties of the matrices of graphs

Fourth: try to visualise the graphs

- Graph drawing, or Graph visualisation, is an old problem
- -> It was to find the best layout of a graph, to capture will its structure
- historically: with low dimensional spaces (2D, 3D) => Gephi, Graphviz,...
- Then came the age of Representation Learning:
- Find features, or latent space, in which the data is represented
- At the heart of ML with Neural Networks for graphs: learn features to code best for the inner structures of the graph (or node) (\& its attributes)

Pre-CNN methods of embeddings

- Use "physical models" for graph layout (e.g., Force layout, kamada-kawai)
- -> Principle: put connected nodes close, non-connected nodes far away
- Use the properties the Laplacian to create a smooth embedding of the nodes
- -> Laplacian eigenmaps
- LLE: Locally Linear Embedding
- Random Walked-based embeddings: DeepWalk, Node2Vec
- -> Welcome to a brand new world: learn a high-dimensional representation

1) Physical models of graph layout

- Implemented in data/graph vizualization packages or softwares
- Often for practitioners in network science, and valid!

What do we see when we look at networks: Visual network analysis, relational ambiguity, and force-directed layouts

Tommaso Venturini ${ }^{1}$ (1), Mathieu Jacomy ${ }^{2}$ (D) and Pablo Jensen ${ }^{3,4}$ (D)

BIG
 DATA
 \& SOCIET

Big Data \& Society January-June: I-16 (C) The Author(s) 2021 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/205395172। 1018488 journals.sagepub.com/home/bds ©SAGE

Figure 3. The "jazz network" spatialized (a) with the algorithm proposed by Fruchterman and Reingold (1991), (b) with ForceAtlas2 (with default parameters) and (c) with ForceAtlas2 with tweaked parameters for LinLog mode and gravity. This and all images created for this paper are available at: https://github.com/tommv/ForceDirectedLayouts.

Embeddings of graphs in low dimension

Objective: find new coordinates

Q: can we learn a low-dimensional embedding (a latent vector for each data point) that preserves the original structure of X ?

2) Laplacian eigenmaps

Objective: embeddings of graphs from spectral features

- Objective of embedding: embed vertices in low dimensional space, so as to discover geometry

$$
x_{i} \in \mathbb{R}^{d} \rightarrow y_{i} \in \mathbb{R}^{k} \text { with } k<d
$$

2) Laplacian eigenmaps

Objective: embeddings of graphs from spectral features

- Two starting points:
- 1) you already have a graph, whose (weighted) adjacency matrix \mathbf{A} or \mathbf{W} captures (sparse ?) similarities between nodes,
- 2) you have data points in high dimension, with coordinates $X \in \mathbb{R}^{N \times L}$,
- N is the number of data points (= nodes) and L the dim. of features (=coord.)
- => build a similarity graph, then you are back to point 1)

Create a graph to represent the data

Objective: capture similarities between data points

- This is a standard step in classification / clustering!
- Hence, several manners to code these similarities in a graph:
selecting k-nearest neighbours of each point with distance $d\left(x_{i}, x_{j}\right)$
OR
selecting all points in a neighbourhood $d\left(x_{i}, x_{j}\right) \leqslant \epsilon$

Create a graph to represent the data

Objective: capture similarities between data points

Distance functions

- Given X_{u} and X_{v}, how far are they from one another ?
- Euclidean distance (or its square): $\sum_{n}\left(x_{n u}-x_{n v}\right)^{2}$
- ℓ_{1} or Manhattan distance: $\sum_{n}\left|x_{n u}-x_{n v}\right|$
- Mahalanobis distance: $\sqrt{\sum_{n}\left(x_{n u}-x_{n v}\right)^{2} / \sigma_{n}^{2}}$ or more generally $\sqrt{\left(X_{u}-X_{v}\right)^{\top} \mathbf{C}^{-1}\left(X_{u}-X_{v}\right)}$
- From correlations, e.g. $1-X_{u} \cdot X_{v}$
- From kernels: $K\left(X_{u}, X_{v}\right)$, with K a "kernel" eg. Gaussian one: $\exp \left(-\left(X_{u}-X_{v}\right)^{2} / 2 \sigma^{2}\right)$

Create a graph to represent the data

Objective: keep strong similarities (only) between data points

Great a graph "connecting the dots", i.e. find edges to connect data points.
Several possibilities:

* Mininimal Spanning Tree: the tree with smallest sum of edge lengths connecting all nodes

(1)

Create a graph to represent the data
Objective: keep strong similarities (only) between data points
Great a graph "connecting the dots", i.e. find edges to connect data points.
Several possibilities:
χ The ε-neighborhood graph: $\quad d\left(x_{i}, x_{j}\right) \leqslant \epsilon$
(1)

$$
3-N N \text { graph }
$$

Create a graph to represent the data
Objective: keep strong similarities (only) between data points
Great a graph "connecting the dots", ie. find edges
to connect data points.
Several possibilities:

$$
y \text {-nearest neighbor graphs: with distance } d\left(x_{i}, x_{j}\right)
$$

Create a graph to represent the data

Objective: keep strong similarities (only?) between data points

Great a graph "connecting the dots", i.e. find edges to connect data points.
Several possibilities:

x_{0} The fully connected graph:

connect all nodes with all other nodes, but with a weight on each
edge, derived from some similarity function, going to 0 if distance goes to infinity
Example: Gaussian similarity function $s\left(x_{i}, x_{j}\right)=\exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \sigma^{2}}\right)$
interest of the 3 previous solutions: sparse graphs !
for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

Create a graph to represent the data

epsilon-graph, epsilon=0.3

Examples

Create a graph to represent the data

Interlude: you know other methods!

2-a) model the local neighbourhood relationships between the data points

Create a graph to represent the data

Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points A possible solution: Hierarchical clustering

- Main idea: group together closest points

Fom freature domain:

to Tree clustering

with two broad strategies: Agglomerative (a "bottom-up" approach) vs. Divisive (a "top-down" approach)

Create a graph to represent the data

Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points A possible solution: Hierarchical clustering

- Agglomerative clustering:
- First merge very similar instances
- Incrementally build larger clusters out of smaller clusters
- Algorithm:
- Maintain a set of clusters
- Initially, each instance in its own cluster
- Repeat:
- Pick the two closest clusters
- Merge them into a new cluster
- Stop when there's only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram

Create a graph to represent the data

Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points
A possible solution: Hierarchical clustering
An issue involved in Agglomerative clustering

- How should we define "closest" for clusters with multiple elements?
- Many options:
- Closest pair
(single-link clustering)
- Farthest pair
(complete-link clustering)
- Average of all pairs
- Different choices create different clustering behaviors

Closest pair
(single-link clustering)

Farthest pair
(complete-link clustering)

Create a graph to represent the data

Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points A possible solution: Hierarchical clustering

An issue involved in Agglomerative clustering

- How should we define "closest" for clusters with multiple elements?
- Many options:
- Closest pair
(single-link clustering)
- Farthest pair
(complete-link clustering)
- Average of all pairs
- Different choices create different clustering behaviors

Clustering Behavior

Create a graph to represent the data

Interlude: you know other methods!

- 2-c) Learn a graph that captures things from the data
- The general setting:
from observations....
...find a graph....
learn
graph G

weighted
adjacency
matrix W
...that models well the data
here: some model is useful e.g.: Gaussian model
- Gaussian Graphical Models
- Bayesian Networks
- Methods with optimization inside!

Back to 2) Laplacian eigenmaps

Objective: embeddings of graphs from spectral features

- Objective of embedding: embed vertices in low dimensional space, so as to discover geometry

$$
x_{i} \in \mathbb{R}^{d} \rightarrow y_{i} \in \mathbb{R}^{k} \text { with } k<d
$$

Laplacian eigenmaps
 Formulation

W captures similarities among data points $x_{i} \in \mathbb{R}^{L}$
Suppose we embed in 1 dimension $(P=1)$

$$
\arg \min _{y_{1}, \ldots, y_{N}} \sum_{i \sim j} \mathbf{W}(i, j)\left(y_{i}-y_{j}\right)^{2} \quad \arg \min _{y \in \mathbb{R}^{N}} y^{T} \mathbf{L} y
$$

Add a constraint to avoid collapse $y=0: \quad y^{T} \mathbf{D} y=1$

Avoid trivial eigenvector: $y^{T} \mathbf{D} 1=0$

Laplacian eigenmaps

Full problem

When we embed in P dimension $(P>1)$

$$
\arg \min _{y_{1}, \ldots, y_{N}} \sum_{i \sim j} \mathbf{W}(i, j)\left\|y_{i}-y_{j}\right\|_{2}^{2}
$$

Algorithm: Laplacian Eigenmaps

Collect the coordinates of embedded points as lines of matrix Y

$$
\arg \min _{\substack{ \\Y \in \mathbb{R}^{N \times P} \\ Y^{T} \mathbf{D} Y=\mathbb{I}}} \operatorname{tr}\left(Y^{T} \mathbf{L} Y\right)
$$

Laplacian Eigenmaps produces coordinate maps that are smooth functions/signals over the original graph.

Laplacian eigenmaps

- Some examples

[Belkin, Niyogi, 2003]

Laplacian eigenmaps

Examples: text

Laplacian eigenmaps

Examples: speech

3) Locally Linear Embeddings

- Introduced 2000
- A node features can be represented as a linear combination of its neighbors'

$$
Y_{i}=\sum_{j} A_{i j} Y_{j}
$$

- Objective function:
, $y^{*}=\min \sum_{i}\left\|Y_{i}-\sum_{j} A_{i j} Y_{j}\right\|^{2}$

3) Locally Linear Embeddings

4) Random-Walk based Representations

DeepWalk, Node2Vec,...

=> in truth, instances of encoder / decoder framework

Figure 3.1: Illustration of the node embedding problem. Our goal is to learn an encoder (ENC), which maps nodes to a low-dimensional embedding space. These embeddings are optimized so that distances in the embedding space reflect the relative positions of the nodes in the original graph.

- W. Hamilton: Articles in 2017
- Book: Graph Representation

4) Node Embedding by Encoder/Decoder

$$
\text { ENC }: \mathcal{V} \rightarrow \mathbb{R}^{d}, \quad \quad \text { DEC }: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{+}
$$

Figure 3.2: Overview of the encoder-decoder approach. The encoder maps the node u to a low-dimensional embedding \mathbf{z}_{u}. The decoder then uses \mathbf{z}_{u} to reconstruct u 's local neighborhood information.

4) Node Embedding by Encoder/Decoder

$$
\operatorname{DEC}(\operatorname{ENC}(u), \operatorname{ENC}(v))=\operatorname{DEC}\left(\mathbf{z}_{u}, \mathbf{z}_{v}\right) \approx \mathbf{S}[u, v]
$$

To train the representation, use a global loss for Auto-Encoding

$$
\mathcal{L}=\sum_{(u, v) \in \mathcal{D}} \ell\left(\operatorname{DEC}\left(\mathbf{z}_{u}, \mathbf{z}_{v}\right), \mathbf{S}[u, v]\right)
$$

- W. Hamilton, 2017

4) Node Embedding by Encoder/Decoder

One finds known methods:

Type	Method	Decoder	Proximity measure	Loss function (ℓ)								
Matrix factorization	Laplacian Eigenmaps [4] Graph Factorization [1] GraRep [9] HOPE [44]	$\begin{gathered} \left\\|\mathbf{z}_{i}-\mathbf{z}_{j}\right\\|_{2}^{2} \\ \mathbf{z}_{i}^{\top} \mathbf{z}_{j} \\ \mathbf{z}_{i}^{\top} \mathbf{z}_{j} \\ \mathbf{z}_{i}^{\top} \mathbf{z}_{j} \end{gathered}$	$\begin{gathered} \text { general } \\ \mathbf{A}_{i, j} \\ \mathbf{A}_{i, j}, \mathbf{A}_{i, j}^{2}, \ldots, \mathbf{A}_{i, j}^{k} \\ \text { general } \end{gathered}$	$\begin{gathered} \operatorname{DEC}\left(\mathbf{z}_{i}, \mathbf{z}_{j}\right) \cdot s_{\mathcal{G}}\left(v_{i}, v_{j}\right) \\ \left\\|\operatorname{DEC}\left(\mathbf{z}_{i}, \mathbf{z}_{j}\right)-s_{\mathcal{G}}\left(v_{i}, v_{j}\right)\right\\|_{2}^{2} \\ \left\\|\operatorname{DEC}\left(\mathbf{z}_{i}, \mathbf{z}_{j}\right)-s_{\mathcal{G}}\left(v_{i}, v_{j}\right)\right\\|_{2}^{2} \\ \left\\|\operatorname{DEC}\left(\mathbf{z}_{i}, \mathbf{z}_{j}\right)-s_{\mathcal{G}}\left(v_{i}, v_{j}\right)\right\\|_{2}^{2} \end{gathered}$								
Random walk	DeepWalk [46] node 2 vec [27]	$\begin{aligned} & \frac{e^{\mathbf{z}_{i}^{\top} \mathbf{z}_{j}}}{\sum_{k \in \mathcal{V}} e^{z_{i}^{\top} \mathbf{z}_{k}}} \\ & \frac{e^{\mathbf{z}_{i}^{\top} \mathbf{z}_{j}}}{\sum_{k \in \mathcal{V}} e^{\mathbf{z}_{i}^{\top} \mathbf{z}_{k}}} \end{aligned}$	$\begin{gathered} p_{\mathcal{G}}\left(v_{j} \mid v_{i}\right) \\ p_{\mathcal{G}}\left(v_{j} \mid v_{i}\right)(\text { biased }) \end{gathered}$	$\begin{aligned} & -s_{\mathcal{G}}\left(v_{i}, v_{j}\right) \log \left(\operatorname{DEC}\left(\mathbf{z}_{i}, \mathbf{z}_{j}\right)\right) \\ & -s_{\mathcal{G}}\left(v_{i}, v_{j}\right) \log \left(\operatorname{DEC}\left(\mathbf{z}_{i}, \mathbf{z}_{j}\right)\right) \end{aligned}$								

$p_{\mathscr{G}}\left(v_{j} \mid v_{i}\right)$: probability of visiting v_{j} on a fixed-length random walk started from v_{i}

4) Node Embedding by Encoder/Decoder

One finds known methods:

Two examples

1. Distributed large scale natural graph factorisation $(S=A)$:

$$
\begin{aligned}
Z^{*} & =\arg \min _{Z \in \mathbb{R}^{d \times n}}\left\|Z^{T} Z-S\right\|_{F}^{2}+\frac{\lambda}{2}\|Z\|_{F}^{2} \\
& =\sum_{(i, j)}\left(z_{i}^{T} z_{j}-S_{i j}\right)^{2}+\frac{\lambda}{2} \sum_{i}\left\|z_{i}\right\|_{2}^{2}
\end{aligned}
$$

solved with SGD in p with vertex partitioning for large graphs

4) Node Embedding by Encoder/Decoder

One finds known methods:

Two examples
2. GraRep: models k-hops relationships $\left(S=D^{-1} A\right) \quad p_{k}\left(x_{i} \mid x_{j}\right)=S_{i j}^{k}$

Inner product decoder: $\sigma\left(w_{j}^{T} c_{i}\right) \approx p_{k}\left(x_{i} \mid x_{j}\right) \quad$ target and context latent vectors k-hop Cross entropy loss: $L_{k}=\sum_{j \in V} L_{k}\left(w_{j}\right)$

$$
L_{k}\left(w_{j}\right)=\sum_{i \in V} p_{k}\left(x_{i} \mid x_{j}\right) \log \sigma\left(w_{j}^{T} c_{i}\right)+\underset{\substack{ \\ \\ \\ \\\text { noise contrastive sampling: choose } c^{\prime} \text { from a noise distribution } \\ \text { (herobability that indenent is not a context of of } w \\ \mathbb{E}_{c^{\prime}} \sim p_{k}(V) \text { and maximise }}}{ }\left\{\log \sigma\left(-w_{j}^{T} c^{\prime}\right)\right\}
$$

4) Node Embedding by Encoder/Decoder

One finds known methods:

Two examples
2. GraRep:

Choice of negative sampling distribution allows a factorization-based solution for the product $W_{(k)}^{T} C_{(k)}=Y_{(k)}$

$$
\begin{aligned}
Y_{(k) i j} & =\log \left(\frac{A_{i j}^{k}}{\sum_{\ell \in V} A_{\ell, j}^{k}}\right) \\
Y_{(k)} & \approx U_{(k)}^{(d)} \Sigma_{(k)}^{(d)}\left(V_{(k)}^{(d)}\right)^{T}
\end{aligned} \quad \begin{aligned}
& \text { Solve for } W_{(k)} \text { by SVD } \\
& \text { and concatenate } k=1, \ldots, K
\end{aligned}
$$

4) Node Embedding by Encoder/Decoder

Limitations

These techniques are transductive: you learn embeddings of observed nodes but you don't obtain a way to directly compute embeddings to unseen nodes. They don't easily leverage node features. No parameter sharing among nodes.

The lack of an encoder - a direct way to map a single (attributed) node to its latent code - is a weakness

- Exemple on a Clique Ring: 5 cliques of size $\mathbf{2 0}$ connected by an edge as if on a ring

Embeddings of graphs in low dimension

Objective: find new coordinates => What for ?

- Common tasks:
- Link prediction (supervised)
- Graph reconstruction (unsupervised link prediction ? / ad hoc)
- Community detection (unsupervised)
- Node classification (supervised community detection ?)
- Role definition (Variant of node classification, can be unsupervised)
- Visualisation (distances, like unsupervised)

Conclusion
 Of Graph Embeddings and (Shallow) Representation Learning

- Efficient methods for Vizualization
- (see also t-SNE, UMAP)
- Good to see / display structures in the graphs (and possibly explore /use them)
- OK for some representation learning (Lapl. maps, LLE, ENC/DEC)
- Less OK: not inductive; could use Deep ReprLearn. => see Graph Neural Networks

