ENS DE LYON

Graphs for data science and ML

Machine Learning for graphs and with graphs

§i
P. Borgnat, CNRS, LP ENSL (4) ’
Acknowledgements: some slides taken from P. Vandergheynst (EPFL),
and from R. Cazabet (Univ Lyon 1)

ENS de LYON

Exploit the properties of the matrices of graphs
Fourth: try to visualise the graphs

 Graph drawing, or Graph visualisation, is an old problem

 -> |t was to find the best layout of a graph, to capture will its structure

* historically: with low dimensional spaces (2D, 3D) => Gephi, Graphviz,...
 Then came the age of Representation Learning:

 Find features, or latent space, in which the data is represented

* At the heart of ML with Neural Networks for graphs: learn features to code
best for the inner structures of the graph (or node) (& its attributes)

Pre-CNN methods of embeddings

* Use “physical models” for graph layout (e.g., Force layout, kamada-kawai)
* -> Principle: put connected nodes close, non-connected nodes far away

* Use the properties the Laplacian to create a smooth embedding of the nodes
e -> | aplacian eigenmaps

 LLE: Locally Linear Embedding

« Random Walked-based embeddings: DeepWalk, Node2Vec

 -> Welcome to a brand new world: learn a high-dimensional representation

1) Physical models of graph layout

* Implemented in data/graph vizualization packages or softwares

e Often for practitioners in network science, and valid!

/

Figure 3. The “jazz network” spatialized (a) with the algorithm proposed by Fruchterman and Reingold (1991), (b) with ForceAtlas2
(with default parameters) and (c) with ForceAtlas2 with tweaked parameters for LinLog mode and gravity. This and all images created

for this paper are available at: https://github.com/tommyv/ForceDirectedLayouts.

4

What do we see when we look
at networks: Visual network
analysis, relational ambiguity,
and force-directed layouts

Tommaso Venturini' ®, Mathieu Jacomy* ® and
Pablo Jensen®*

=1[C

BYAN A

& SOCIETY

Big Data & Society

January—june: 1-16

© The Author(s) 2021

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/20539517211018488
journals.sagepub.com/home/bds

®SAGE

Embeddings of graphs in low dimension

Objective: find new coordinates

Examples from sklearn

Q: can we learn a low-dimensional embedding (a latent vector for each

data point) that preserves the original structure of X 7

5

2) Laplacian eigenmaps
Objective: embeddings of graphs from spectral features

» Objective of embedding: embed vertices in low
dimensional space, so as to discover geometry

xicR? - y; e R¥ withk < d

®*e ¢ o
*e
*

2) Laplacian eigenmaps

Objective: embeddings of graphs from spectral features

* [wo starting points:

1) you already have a graph, whose (weighted) adjacency matrix A or W
captures (sparse ?) similarities between nodes,

- 2) you have data points in high dimension, with coordinates X € R*L,

« N is the number of data points (= nodes) and L the dim. of features (=coord.)

* => build a similarity graph, then you are back to point 1)

14

Create a graph to represent the data

Objective: capture similarities between data points

* This is a standard step in classification / clustering!

 Hence, several manners to code these similarities in a graph:

selecting k-nearest neighbours of each point with distance d(z;, ;)

OR

selecting all points in a neighbourhood d(z;,x;) < €

Create a graph to represent the data

Objective: capture similarities between data points

Distance functions

o Given X, and X,, how far are they from one another ?
» Euclidean distance (or its square): > (Xpy — Xnv)*
/1 or Manhattan distance: > |Xp, — Xnv|

o« Mahalanobis distance: \/ S (Xpu — Xpy)2 /0% or more
generally \/(Xy, — X,)TC—1(Xy, — X))
e From correlations, e.g. 1 — X, - Xy

 From kernels: K(Xy, Xv), with K a “kernel”
eg. Gaussian one: exp(—(Xy, — X,)?/20%)

9

Create a graph to represent the data

Objective: keep strong similarities (only) between data points

Great a graph "connecting the dots”, i.e. find edges
to connect data points.

Several possibilities:

Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

Q) /Q }' o, (‘\ \/\‘ |: —\ / = _?’ _‘I\." N
B &Cg% *\%3 {Q&‘g N\ * NO 8:
0 o OO 7 || D=0 o
= ‘ " L
A~ ~))~ o,
t{% (% (OB E \J bi@' [iﬁ’ " _Q € ;
2 00 A=C BdrAe. s
& O ()eerl Y I Q (L)
= x r (%2 \ |
(i _: 7\ —~ O] 7\ /_/' .'. | - (P
Y ™ - Y V \
C—/ I C) O m%»v\ C \%@ ‘ %f I:i-*-g)/ C b'
1 2 3
(1) MST (2) . * CQ\.‘.S (3)

Create a graph to represent the data

Objective: keep strong similarities (only) between data points

Great a graph "connecting the dots”, i.e. find edges
to connect data points.
Several possibilities:

A The s-neighborhood graph: d(z;,z;) <e

&
e % ’
.‘_‘: P CWQ@{M@Q . 3-NN 3(\@@
> ;"" S @ * ; >
‘f _____ » < > o -

11

Create a graph to represent the data

Objective: keep strong similarities (only) between data points

Great a graph "connecting the dots”, i.e. find edges
to connect data points.
Several possibilities:

o k-nearest neighbor graphs: with distance d(x;, x ;)

W

12

Create a graph to represent the data

Objective: keep strong similarities (only?) between data points

Great a graph "connecting the dots”, i.e. find edges
to connect data points.
Several possibilities:

~ The fully connected graph:

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to O if distance goes to infinity

Example: Gaussian similarity function s(x;, z ;) = exp(| T2)

20“

‘Interest of the 3 previous solutions: sparse graphs !

for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

13

Create a graph to represent the data

Data points epsilon-graph, epsilon=0.3

Examples

A Tutorial on Spectral Clustering, Ulrike von Luxburg,

Create a graph to represent the data

Interlude: you know other methods!

2-a) model the local neighbourhood relationships between the data points

Create a graph to represent the data

Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points
A possible solution: Hierarchical clustering

o Main idea: group together closest points

Fom freature domain: ~ to Tree clustering
— (58 b C d e f)
a)
, Pl “r
b de
Y»
def
y -
b (; bedef
> o S f | Y X
C e f e abcdef

with two broad strategies: Agglomerative (a "bottom-up"” approach) vs. Divisive (a "top-down" approach)

16

Create a graph to represent the data

Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points
A possible solution: Hierarchical clustering

* Agglomerative clustering:

— First merge very similar instances

— Incrementally build larger clusters out * o
of smaller clusters . °. .

* Algorithm: e . ©®oe s
— Maintain a set of clusters . o ®e

— Initially, each instance in its own °
cluster ® e

— Repeat: e o
* Pick the two closest clusters

 Merge them into a new cluster
» Stop when there’s only one cluster left

* Produces not one clustering, but a /
family of clusterings represented f{ Q \
by a dendrogram ;

Create a graph to represent the data

Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points
A possible solution: Hierarchical clustering

An issue involved in Agglomerative clustering

« How should we define “closest” for clusters
with multiple elements?

Closest pair Farthest pair
5 Many optionS' (single-link clustering) (complete-link clustering)
— Closest pair
(single-link clustering) e .
— Farthest pair manslh R
(complete-link clustering)
— Average of all pairs 34 78 34 7§
* Different choices create

d |ffe rent CI USte r| ng behaV|OrS [Pictures from Thorsten Joachims]

18

Create a graph to represent the data

Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points
A possible solution: Hierarchical clustering

An issue involved in Agglomerative clustering Clustering Behavior
» How should we define “closest” for clusters Average Farthest Nearest

with multiple elements?

* Many options:
— Closest pair [l
(single-link clustering) T[] ey

— Farthest pair | i
(complete-link clustering)

— Average of all pairs

 Different choices create

different clustering behaviors

19 Mouse tumor data from [Hastie ef al.]

Create a graph to represent the data

Interlude: you know other methods!

« 2-c) Learn a graph that captures things from the data
» The general setting:

from observations.... ...find a graph....
Given learn
matrix X graph G
u
1 IEZ O \ 8 ..I..
= —=> QY = -
| N _
I
* weighted
adjacency
rows: objects matrix W

20

...that models well the data

here: some model is useful
e.g.: Gaussian model

 Gaussian Graphical Models
 Bayesian Networks

 Methods with optimization
inside!

Back to 2) Laplacian eigenmaps

Objective: embeddings of graphs from spectral features

» Objective of embedding: embed vertices in low
dimensional space, so as to discover geometry

xicR? - y; e R¥ withk < d

®*e ¢ o
*e
®

21

Laplacian eigenmaps
Formulation

W captures similarities among data points z; € R”

Suppose we embed in 1 dimension (P=1)

arg min E:W(z,])(yZ —y;)° o= — arg min y! Ly

Y1y YN yeRN

Add a constraint to avoid collapse y=0: y' Dy =1

Avoid trivial eigenvector: y' D1 = 0

arg min y! Ly
y € RY

— y' Dy =1

' D1 =0

22

Laplacian eigenmaps

Full problem

When we embed in P dimension (P > 1)

2 . -W- . . . — .)
rgylfp}g]v;; (i, D) lyi — ;13

Algorithm: Laplacian Eigenmaps

Collect the coordinates of embedded points as lines of matrix Y

arg min tr(Y*LY)
Y RNXP

YIDY =1

Laplacian Eigenmaps produces coordinate maps that are smooth

functions/signals over the original graph.

23

Laplacian eigenmaps

e Some examples

24

Laplacian eigenmaps
FExamples: text

0.03

0.025
0.02 -
0.015
0.01

: e
) SR
0.0051- . .) \

w3
e "

—0.005 -

-0.01

-0.015 : ‘ : : ‘
~0.015 -0.01 -0.005 \0.01 0.015 0.0

T T T T T T T T '. has T T
I] e inN i >
0.028 —_0.011 - | didn’t
0.0135 = * felt . could 7]
0.0275 |- ‘be — *on * told
o, FinNnd O0.013 [~ did I
make .
‘say . was
- — upon
look eunder
had get —0O0. 0115 |- R a'ong — got
0.0265 stake T o0.012 — —
give)
gy e during s caAN would
0.026 - , at O.0115 - * might m
e Never
s doO , from
0.0255 — a;gﬁg‘ﬁstof O.011 -
.help. become —0.012 - T between 7]
go may
toward 0.0105 | should —
0.025 |- e kNow — . will
e armong must
O. 01 —
0.024a5 — -
s does
0.0095 | weré&]
—0. 0125 -]
0.024 . put -
=2 a4 (S 8 0. 015 0.016 0O0.017 0O.018 7 8 o 10
—3 —3
>x 10 >x 10

M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reductiorsand data representation,” Neural Comput, vol. 15, no. 6, pp. 1373—1396, 20083.

placian eigenmaps

0.015

0.01

0.005

-0.005

-0.0

Fxamples: speech

1
-0.015

—8

—7 .8

—7 .6

_7.a
x 10

3

26

20

—a

10

h#
[)
h# —
[)
« Ikl
h# —
[)
h#]
[)
[)
dcl
[)
gcl
h#]
7.5 8.5 o.5
x 10 =

3) Locally Linear Embeddings
* Introduced 2000

» A node features can be represented as a linear combination of
ts neighbors

= 2 AT
J

» Objective function:

y*=min) ||¥,—) AV
i J

Sam T. Roweis & La\ggence K. Saul (2000) “Nonlinear Dimensionality Reduction by Locally Linear Embedding”.

3) Locally Linear Embeddings

‘ . © 9 _ (@ selectneighbors
O O
o O--nul .
o ° O h
s S
o
O
Oo . o o
o o
Reconstruct with
linear weights

-
-
-
-
-
-
-".
.....

Map to embedded coordinates

Sam T. Roweis & La\%rence K. Saul (2000) “Nonlinear Dimensionality Reduction by Locally Linear Embedding”.

4) Random-Walk based Representations

DeepWalk, Node2Vec,...

=> in truth, instances of encoder / decoder framework

o Lv
/ \\u encode nodes &
S~ / \ “““““““
\ / D
ENC(v)
original network embedding space

Figure 3.1: Illustration of the node embedding problem. Our goal is to learn an
encoder (ENC), which maps nodes to a low-dimensional embedding space. These
embeddings are optimized so that distances in the embedding space reflect the
relative positions of the nodes in the original graph.

29

e W. Hamilton: Articles in 2017

 Book: Graph Representation
Learning, 2020

4) Node Embedding by Encoder/Decoder

ENC:)V — Qid, DEC : R? x R* — R,

o
’o ~
@ encode node

@ decode neiﬁhborhood '
' -]

]
Z
(embegding)

Figure 3.2: Overview of the encoder-decoder approach. The encoder maps
the node u to a low-dimensional embedding z,,. The decoder then uses z, to
reconstruct u’s local neighborhood information.

30

« W. Hamilton, 2077

4) Node Embedding by Encoder/Decoder

P "

DEC(ENC(u), ENC(v)) = DEC(Zy, Zy) = S|u, v|.

N BE=

(embe éltd ng)

e

To train the representation, use a global loss for Auto-Encoding

L=) ((DEC(2y,2y),S[u,v])

(u,v)ED

« W. Hamilton, 2077

4) Node Embedding by Encoder/Decoder

One finds known methods:

Type Method Decoder Proximity measure Loss function (¥)
Laplacian Eigenmaps [4] ||z; — z;]|3 general DEC(2;,%;) - Sg(vi, v;)

Matrix Graph Factorization [1] Z,;_Zj A DEC(Zj, %) — Sg(vi, vj) ;
factorization GraRep [9] 7, 7] A j, Azz,j’ co A/],ij DEC(2;,25) — 5g(vs, ;) |3
HOPE [44] 7. 7, general DEC(zi,%;) — sg(vi, v;)||3

sz :
DeepWalk [46] £t ijzk PG (vj\vz-) —56 (Uz', Uj) log(DEC(Zi, Zj))

Random walk Zke": :
node2vec [27] = “ o pg(vjlvi) (biased) —sg(vi, v;) log(DEC(24, 25))

key € "

pg(vj | v:): probability of visiting v;0on a fixed-length random walk started
from v,

« W. Hamilton, 2077

32

4) Node Embedding by Encoder/Decoder

One finds known methods:

Two examples

1. Distributed large scale natural graph factorisation (S =A):

7* —arg min ||Z1Z -8 | AIE
< min | 3+ 211213

solved with SGD in p with vertex partitioning

for large graphs
— Z 2 <j = S@J Z [EAlE

(7,7)

33

4) Node Embedding by Encoder/Decoder

One finds known methods:

Two examples

2. GraRep: models k-hops relationships (S = D™'A) pr(xi|z;) = Sfj

T

Inner product decoder: o (wj Ci) ~ Dk (:I}Z‘:E]) target and context latent vectors

k-hop Cross entropy loss: L = Z Li(w;)
jev
Li(w;) = Zpk(azz\xj) log a(w;-rcz-) + AEo/ p, (v {108 a(—ijc’)}

1€V noise contrastive sampling: choose ¢’ from a noise distribution

(here: at random independently of target w) and maximise
probability that it is not a context of w

34

4) Node Embedding by Encoder/Decoder

One finds known methods:

Two examples

2. GraRep:

Choice of negative sampling distribution allows a factorization-based solution
for the product W(zl;)C(k) — Y(k)

Ak
Y(ryij = log (-)
YT ey Al

SOIVG fOI‘ W(k) by SVD

and concatenate k=1,.... K

_ 77(d)(d) (v (dNT
Y(k) ~ U(k:) Z(k) (V(k))

35

4) Node Embedding by Encoder/Decoder

Limitations

These techniques are transductive: you learn embeddings of observed nodes

but you don’t obtain a way to directly compute embeddings to unseen nodes.

They don’t easily leverage node features. No parameter sharing among nodes.

The lack of an encoder - a direct way to map a single (attributed) node

to 1ts latent code - 1s a weakness

36

« Exemple on a Cligue Ring: 5 cliques of size 20 connected by an edge as if on a ring

| & LLE

0.4 1

0.2 -

. 0.0 -

_0_2 -

0.00 -
—0.05 - ‘
0.10 -

1 1

_0.4 -

Spring layout

0.25 A

—0.25 A

37

Embeddings of graphs in low dimension

Objective: find new coordinates => What for ?

« Common tasks:

» Link prediction (supervised)

» Graph reconstruction (unsupervised link prediction ¢ / ad hoc)

» Community detection (unsupervised)

» Node classification (supervised community detection)

» Role definition (Variant of node classification, can be unsupervised)
» Visualisation (distances, like unsupervised)

38

Conclusion
Of Graph Embeddings and (Shallow) Representation Learning

Efficient methods for Vizualization
e (see also t-SNE, UMAP)

Good to see / display structures in the graphs (and possibly explore /use them)

OK for some representation learning (Lapl. maps, LLE, ENC/DEC)

Less OK: not inductive; could use Deep ReprlLearn. => see Graph Neural Networks

39

