

Graphs for data science and ML

Machine Learning for graphs and with graphs

P. Borgnat, CNRS, LP ENSL

1

(5)

Graph Laplacian: An Analogy for a Graph FT

A fundamental analogy

On *any* graph, the **eigenvectors** χ_i of the Laplacian matrix L will be **considered as the Fourier modes**, and its eigenvalues λ_i the associated (squared) frequencies.

Hence, a Graph Fourier Transform is defined as:

$$\hat{x} = \chi^{\top} x$$

where $\boldsymbol{\chi} = (\boldsymbol{\chi}_0 | \boldsymbol{\chi}_1 | \dots | \boldsymbol{\chi}_{N-1}).$

- Two ingredients:
 - Fourier modes = Eigenvectors χ_i (with increasing oscillations)
 - Frequencies = The measures of variations of an eigenvector is linked to its eigenvalue:

$$\frac{||\nabla \boldsymbol{\chi}_i||^2}{||\boldsymbol{\chi}_i||^2} = \lambda_i$$

because: $\forall \mathbf{x} \in \mathbb{R}^N$

$$\sum_{\boldsymbol{x}=(i,j)\in E} A_{ij} (\mathbf{x}_i - \mathbf{x}_j)^2 = \mathbf{x}^\top \mathbf{L} \mathbf{x} \text{ is the Dirichlet norm}$$

LOW FREQUENCY:

HIGH FREQUENCY:

Graph Laplacian: An Analogy for a Graph FT

[Tremblay, Gonçalves, PB, 2017]

Figure 1: Two graph signals and their GFTs. Plots a) and b) represent respectively, a low-frequency and a high-frequency graph signal on the binary Karate club graph [21]. Plots c) and d) are their corresponding GFTs computed for three reference operators: L, L_n and L_d (equivalent to the GFT defined via the adjacency matrix).

Use GSP to process data which are on graphs, or which are the graphs!

(1) Filters on graphs

Example 1: Recovery of signals on graphs

• Denoising of a graph signal, when observing $y = x_0 + \epsilon$, formulated as an inverse problem:

$$x_* = \arg\min_{x} ||x - y||_2^2 + \gamma x^\top L x$$

because remember that : $x^{\top}Lx = \sum A_{ij}(x_i - x_j)^2$ $e=(i,j)\in E$

- Graph-Fourier coefficients: $\hat{x} = \chi^{\top} x$
- Solution: $\hat{X}_{*}(t) = \frac{\text{ivating}}{1 + \gamma \lambda_{i}} f(t) \text{Examples pass" filter)}$ argmin_f { $||f y||_{2}^{2} + \gamma f^{T} \mathcal{L} f$ }

[P. Vandergheynst, EPFL, 2013]

(1) Filters on graphs

Filtering

Definition of graph filtering

We define a linear filter \mathcal{H} by its function *h* in the Fourier domain. It is discrete and defined on the eigenvalues $\lambda_i \rightarrow h(\lambda_i)$.

$$\widehat{\mathcal{H}(x)} = \begin{pmatrix} h(\lambda_0) \, \hat{x}(0) \\ h(\lambda_1) \, \hat{x}(1) \\ h(\lambda_2) \, \hat{x}(2) \\ \dots \\ h(\lambda_{N-1}) \, \hat{x}(N-1) \end{pmatrix} = \widehat{\boldsymbol{H}} \, \hat{x} \text{ with } \widehat{\boldsymbol{H}} = \begin{pmatrix} h(\lambda_0) & 0 & 0 & \dots & 0 \\ 0 & h(\lambda_1) & 0 & \dots & 0 \\ 0 & 0 & h(\lambda_2) & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & h(\lambda_{N-1}) \end{pmatrix}$$

In the node-space, the filtered signal $\mathcal{H}(x)$ can be written: $\mathcal{H}(x) = \chi \, \hat{H} \, \chi^\top x$ In term of calculus of operator on a graph, this reads $\mathcal{H}(x) = h(L) \cdot x$

- Alternative definition: operator **H** that commutes with the reference operator, here the Laplacian (yet could be some "shift", e.g. **A**)
- Parametric formulation: $h(L) = \sum_{k=0}^{K} h_k L^k$ (leads to ARMA filters; to distributed implementations)

(1) Filters on graphs

Example [Tremblay, Gonçalves, PB, 2017]

Figure 3: Illustration of graph filters: a denoising toy experiment. The input signal \mathbf{x} is a noisy version (additive Gaussian noise) of the low-frequency graph signal displayed in Fig. 1. We show here the filtering operation in the graph Fourier domain associated to $\mathbf{R} = \mathbf{L}_{\mathbf{n}}$.

Diffusion on graphs

Functional calculus on graph

Objective: define the effect of function on graph data

We use the simple property that
$$\underline{L}^n XR = \lambda R XR$$

Then, for any polynomial function f , we have $f(\underline{L}) = \sum_{\lambda \in Sp} f(\lambda k) XR XR$
Using approximation theorem, it holds for any function. $= X f(\underline{\Lambda}) X^T$

Example: define a diffusive process on a graph

With the analogy:
$$f(u,t)$$
 is a differior if it follows $\boxed{\begin{array}{c} \frac{\partial f}{\partial t} = -\frac{L}{2} \ f}{\frac{\partial f}{\partial t}} \\ \begin{array}{c} Applying the GFT : \\ \frac{\partial}{\partial t} \ f \left(\frac{\partial h}{\partial t}, t \right) = - \frac{\partial h}{\partial t} \ f \left(\frac{\partial h}{\partial t}, t \right) \\ \end{array} \\ \begin{array}{c} hence \ i \ of \ f \left(\frac{\partial h}{\partial t}, t \right) = - \frac{\partial h}{\partial t} \ f \left(\frac{\partial h}{\partial t}, t \right) = - \frac{d \lambda h}{dt} \ f \left(\frac{\partial h}{\partial t}, t \right) = - \frac{d \lambda h}{dt} \ f \left(\frac{\partial h}{\partial t}, t \right) = - \frac{d \lambda h}{dt} \ f \left(\frac{\partial h}{\partial t}, t \right) \\ \end{array} \\ \begin{array}{c} \text{With for alculas : } \ f \left(\frac{\partial h}{\partial t} = e^{-\frac{d \lambda h}{dt}} \ f \left(\frac{\partial h}{\partial t}, t \right) = - \frac{d \lambda h}{dt} \ f \left(\frac{\partial h}{\partial t}, t \right) \\ \end{array} \\ \begin{array}{c} \text{Explicit expression : } \ f \left(u, t \right) = \frac{d \lambda h}{dt} \ f \left(\frac{\partial h}{\partial t}, t \right) \\ \end{array} \\ \begin{array}{c} \text{This acts as a filter e th an } \\ \end{array} \\ \begin{array}{c} \text{He GFT of the initial condition } f_{0} \end{array} \end{array}$

Diffusion on graphs (2) - Illustration

478

B. Ricaud et al. / C. R. Physique 20 (2019) 474-488

Fig. 1. Illustration of the heat diffusion over a 2-d manifold (top), and over a graph with communities (bottom), at different time τ . In both graphs, the heat spreads from node to node, following the edges. Top: the initial hot spot is a node located on the ear of the bunny. The Bunny graph is a discretization of a 2-d surface, with nodes connected to their nearest neighbours in 3 d. Bottom: The diffusion starts inside a community and quickly spreads within it.

[Ricaud et al., 2019]

- from [Hammond, Gur, Johnson, GlobalSIP 2013] "GRAPH DIFFUSION DISTANCE: A DIFFERENCE MEASURE FOR WEIGHTED GRAPHS BASED ON THE GRAPH LAPLACIAN EXPONENTIAL KERNEL" (Title way too long!)
- They define a Diffusion distance between graphs having the same number of nodes

$$\xi(A_1, A_2; t) = \sum_{i,j} ((\exp(-tL_1))_{i,j} - (\exp(-tL_2))_{i,j})^2$$
$$= ||\exp(-tL_1) - \exp(-tL_2)||_F^2$$
(2)

$$d_{gdd}(A_1, A_2) = \max_t \sqrt{\xi(A_1, A_2; t)}.$$

Fig. 1. (a) Barbell graph, and single-edge perturbations, for N = 5, K = 2. (b) Plot of ratio $d_{gdd}(G^{N,2}, G_{br}^{N,2})/d_{gdd}(G^{N,2}, G_{cc}^{N,2})$ vs N. (c) Plot of $\xi(t)$ for $A_1 = G^{5,2}$, $A_2 = G_{cc}^{5,2}$, red dot indicates maximum, corresponding to $d_{gdd}(A_1, A_2)^2$. (d) Values of normalized edge deletion perturbation, on edges of $G^{5,2}$.

Graph Diffusion Wasserstein Distances & Application to Domain Adaptation for Graphs

From Amélie Barbe PhD thesis (12/2021) ; ECML-PKDD 2020 ;

GRETSI 2019 ; ICTAI 2021 ; GRETSI (2019) ; ICASSP 2022

Joint work with Marc Sebban (LabHC; Saint-Etienne) ; Rémi Gribonval, Paulo Gonçalves, and Titouan Vayer (LIP, Inria, ENS de Lyon) ; Sybille Marcotte (now PhD candidate in Paris)

A parenthesis in advance – Optimal Transport: a generic tool to probe the geometry of probability measures

- Optimal Transport: an approach to compute a distance between 2 distributions, while finding the optimal coupling (or transport plan) between them
- Put forward in Data Science/Processing & ML since...
 - since ~2000 in image processing (Earth Mover Distance); well before in mathematics (cf. [Villani, 2003]); in the 70's for the Mallows distance in statistics,...
 - (see my completely ignored ICASSP paper of 2012: "Using Surrogates and Optimal Transport for Synthesis of Stationary Multivariate Series [...]") (Title way too long!)
- cf. "Computational Optimal Transport" G. Peyré & M. Cuturi, 2019

https://arxiv.org/abs/1803.00567v4

• cf. "A primer on Optimal Transport", Cuturi & Salomon, NIPS 2017 Tutorial

https://optimaltransport.github.io/slides/

(and other resources)

• cf. Titouan Vader's Lectures at the end of this course !

Optimal Transport: a generic tool to probe the geometry of probability measures

• from Cuturi & Salomon "A primer on Optimal Transport", NIPS 2017 Tutorial

Optimal Transport for distributions

• from "Computational Optimal Transport" (G. Peyré & M. Cuturi), 2019

https://arxiv.org/abs/1803.00567v4

Optimal Transport for distributions

• **Optimal Transport:** Consider two finite sets $\mathbb{X} = \{\mathbf{x}_i\}_{i=1}^{|\mathbb{X}|} \in \mathbb{R}^{q \times |\mathbb{X}|}$ and \mathbb{X}' and two distributions on these

$$\mu = \sum_{\mathbf{x}_i \in \mathbb{X}} a_i \delta_{\mathbf{x}_i} \text{ and } \nu = \sum_{\mathbf{x}'_i \in \mathbb{X}'} b_i \delta_{\mathbf{x}'_i} \text{ with } a_i \ge 0, \ b_i \ge 0 \text{ and } \sum_{i=1}^n a_i = 1, \sum_{i=1}^n b_i = 1$$

• Given a cost function \mathcal{C} : $\mathbb{R}^q \times \mathbb{R}^q \to \mathbb{R}_+$, one builds the 2-Wasserstein distance \mathcal{W}_2 as:

$$\mathscr{W}_{2}(\boldsymbol{\mu},\boldsymbol{\nu}) = \inf_{\pi_{i,j}\in\Pi_{a,b}} \left(\sum_{i,j=1}^{n,n'} \pi_{i,j} c(\mathbf{x}_{i},\mathbf{x}_{j}')^{2}\right)^{\frac{1}{2}}$$

where $\Pi_{a,b}$ is the set of joint distributions on $\mathbb{X}\times\mathbb{X}'$

whose marginals are the distributions
$$\mu = \sum_{\mathbf{x}'_i \in \mathbb{X}'} \pi(\cdot, \mathbf{x}'_i)$$
 and $\nu = \sum_{\mathbf{x}_i \in \mathbb{X}} \pi(\mathbf{x}_i, \cdot)$

Optimal Transport for Graphs

- For Graphs: one has to Associate a distribution to a graph
 - A first solution: rely on the the Weisfeiler-Lehman test
 - cf. [Togninalli et al., "Wasserstein Weisfeiler-Lehman graph kernels" NeurIPS 2019]

- A 2nd solution: Comparison through probabilistic models of graph signals
 - ["Graph Optimal Transport", H. Maretic et al. NeuRIPS 2019]
 - for a graph \mathscr{G} with Laplacian L, one considers: $x \sim \nu^{\mathscr{G}} = \mathscr{N}(0, L^{\dagger})$
 - then: compute the 2-Wasserstein distance between Gaussian signals
 - allows graph alignment, gives a structurally-meaningful graph distance,...

Optimal Transport for Graphs or Attributed Graphs

• A third solution: The Gromov-Wasserstein distance

- Mémoli, Found. Comp. Math. 2011; Peyré, Cuturi, Solomon, ICML 2016
- structures are compared through their pairwise distances
- cf. also N. Courty, R. Flamary, T. Vayer [PhD 2020]

• One can then **combine Attributes and Gromov-Wasserstein** characterisation of graphs "Fused Gromov-Wasserstein distance" [Vayer et al., ICML 2019]

Optimal Transport and Graph Signal Processing for Attributed Graphs

- We can leverage (combine) that: Optimal Transport ; Diffusion distance ; and Graph Signal Processing (i.e., process signals by L)
- We generalize the previous ideas, and we consider:
 - two graphs of sizes n and m and their associated Laplacians: \mathbf{L}^s and \mathbf{L}^t
 - the features of these *source* and *target* graphs: $\mathbf{X} \in \mathbb{R}^{m imes r}; \mathbf{Y} \in \mathbb{R}^{n imes r}$
 - a cost function between features: $M(\mathbf{X}, \mathbf{Y}) = [d(x_i, y_j)]$ for any

 $\mathbf{X} \in \mathbb{R}^{m \times r}; \mathbf{Y} \in \mathbb{R}^{n \times r}$

• the diffused features: $\tilde{\mathbf{X}} = \exp(-\tau^s \mathbf{L}^s) \cdot \mathbf{X}$ and $\tilde{\mathbf{Y}} = \exp(-\tau^t \mathbf{L}^t) \cdot \mathbf{Y}$

The Diffusion Wasserstein Distances for Attributed Graphs

• Then, we define it as:

$$\mathrm{DW}_p^p(\mu,\nu\mid\tau^s,\tau^t)=\min_{\gamma\in\Pi(a,b)}\langle\gamma,\tilde{M}^p\rangle.$$

- Theoretically, it has good properties:
 - it is a distance
 - we have bounds for small and large au

0.14

• it's efficient to be computed, more than Fused GW

The Diffusion Wasserstein Distances for Attributed Graphs

$$\mathsf{DW}_p^p(\mu,\nu\mid\tau^s,\tau^t)=\min_{\gamma\in\Pi(a,b)}\langle\gamma,\tilde{M}^p\rangle.$$

(a) Distributions before alignment.

 $\exp(-\tau^{s}\mathsf{L}^{s})$

 $X^t = \exp(-\tau^t L^t)$

Х*^s* —

(b) Distributions after alignment.

 $\min_{\gamma\in\Pi(a,b)}\left\{\langle\gamma,\tilde{M}^{p}\rangle_{F}\right\}$

Ñ

 $DW_p^p(U^s, U^t)$

- Experimentally, it works well: the task for comparison is Domain Adaptation
 - by itself a cheap way for DA on Attr. Graphs

• can be combined with Fused GW, for an even better

DifFused GW distance, which has best perf. !

The Diffusion Wasserstein Distances for Attributed Graphs

 $\mathsf{DW}_p^p(\mu,\nu\mid\tau^s,\tau^t) = \min_{\gamma\in\Pi(a,b)} \langle \gamma, \tilde{M}^p \rangle.$

 Experimentally, it works well: the task for comparison is Domain Adaptation

0.2

0.0

DFGW FGW

from [Barbe et al., ECML-PKDD 2020]

21

(1) Filters on graphs - sequel

- On board =
 - Various definitions of filters in graphs
 - Implementation of graph filters
 - Shift operators and frequencies

Simple Motivating Examples

• Tikhonov regularization for denoising: $\operatorname{argmin}_{f} \{ ||f - y||_{2}^{2} + \gamma f^{T} \mathcal{L} f \}$

Classical wavelets [Hammond et al., ACHA 2011]

The wavelet at scale *s* centered around *a* is given by:

$$\psi_{s,u}(t) = \frac{1}{s}\psi\left(\frac{t-u}{s}\right) = \int_{-\infty}^{\infty} \hat{\delta}_{u}(\omega)\hat{\psi}(s\omega) \exp^{i\omega t} d\omega$$

	Classical (continuous) world	Graph world
Real domain	t	node <i>a</i>
Fourier domain	ω	eigenvalues λ_i
Filter kernel	$\hat{\psi}(\omega)$	$h(\lambda_i) \Leftrightarrow oldsymbol{\hat{H}}$
Filter bank	$\hat{\psi}(m{s}\omega)$	$h(oldsymbol{s}\lambda_i) \Leftrightarrow oldsymbol{\hat{H}_s}$
Fourier modes	$\exp^{-i\omega t}$	eigenvectors χ_i
Fourier transf. of x	$\hat{x}(\omega) = \int_{-\infty}^{\infty} x(t) \exp^{-i\omega t} dt$	$\hat{x} = \boldsymbol{\chi}^{ op} x$

In the graph world by analogy:

$$\psi_{m{s},m{a}} = oldsymbol{\chi} \, oldsymbol{\hat{h}}_{m{s}} \hat{\delta_a} = oldsymbol{\chi} \, oldsymbol{\hat{H}}_{m{s}} \, oldsymbol{\chi}^ op \delta$$

Generalized translations

[Shuman, Ricaud, Vandergheynst, 2014]

• Classical translation (continuous world)

$$(T_{\tau}g)(t) = g(t-\tau) = \int_{\mathbb{R}} \hat{g}(\xi) e^{-i2\pi\tau\xi} e^{-i2\pi t\xi} d\xi$$

• Graph translations by fundamental analogy:

$$(T_n f)(a) = \sum_{i=0}^{N-1} \hat{f}(i)\chi_i^*(n)\chi_i(a)$$

• Example on the Minnesota road networks

Simple Motivating Examples

• Tikhonov regularization for denoising: $\operatorname{argmin}_{f} \{ ||f - y||_{2}^{2} + \gamma f^{T} \mathcal{L} f \}$

• Wavelet denoising: $\operatorname{argmin}_{a} \left\{ ||f - W^*a||_2^2 + \gamma ||a||_{1,\mu} \right\}$

EPFL – Signal Processing Laboratory (LTS2) <u>http://lts2.epfl.ch</u>

5

 $^{:T}\mathcal{L}f\}$

 $^{T}\mathcal{L}f$

-0.2 -0.4 -0.6

0.2

-0.2

-0.4

-0.6

GraphWave (2018)

Learning Structural Node Embeddings via Diffusion Wavelets

Claire Donnat, Marinka Zitnik, David Hallac, Jure Leskovec Stanford University {cdonnat,marinka,hallac,jure}@stanford.edu

KDD '18, August 19–23, 2018, London, United Kingdom

- Use wavelets to have a multi-scale view of the neighbourhood of each node $\Psi_a = U \operatorname{Diag}(g_s(\lambda_1), \dots, g_s(\lambda_N)) U^T \delta_a$, (1)
- Then embed each node with the wavelet coefficients

Find multiscale communities in complex: with wavelets on graphs

- A means to find communities in networks ? Yes
- Some examples of social networks:

Zachary Karatee Club; Sociopatterns data (ISI Turin, CPT Marseille)

Find multiscale communities in complex : with wavelets on graphs

Filterbanks-based spectral graph clustering

- Similarity: $D_s(a, b) = 1 \frac{f_{s,a}^{\top} f_{s,b}}{||f_{s,a}||_2 ||f_{s,b}||_2}$.
- Classification using hierarchical agglomerative clustering with average-linkage
- (Not detailed): Add stochasticity in the measurement

$$\mathbf{f}_{\boldsymbol{s},\boldsymbol{a}} = \boldsymbol{r}^\top \mathbf{H}_{\boldsymbol{s}} \boldsymbol{\chi}^{-1} \boldsymbol{\delta}_{\boldsymbol{a}}$$

where $\mathbf{r} \in \mathbb{R}^{N \times \eta}$ is i.i.d., centered, normal

- N. Tremblay and P. Borgnat, Graph Wavelets for Multiscale Community Mining, IEEE TSP, 62: 20, p. 5227, 2014

- N. Tremblay, G. Puy, P. Borgnat, R. Gribonval, P. Vandergheynst, ICASSP 2016

Find communities in complex : with wavelets on graphs

Multiscale community detection on networks

[Tremblay, Borgnat 2014]

between intersections in V. The corresponding OD matrix is \underline{T} of size $N_V \times N_V$

and magnetic loops, on links $l \in L$ produce N_L measures represented by the set $d_{\underline{q}}$ reak just for fun: more complex inverse problems on graphs—

Thus, the OD matrix estimation problem amounts to solving the following

inverse problem:

An Estimation $(\underline{I}, \underline{q})$ Argmin $(\mathcal{I}, \underline{I}) + \gamma_2 \mathcal{D}_2(\underline{q}, \underline{q})$ pairs of Bluetooth detectors with paths shorter than 300m). Link Dependent $(\mathcal{I}, \underline{q})$ Destination For the 6 and to 9 a.m. time interval, traffic has the following characteristics:

• LODMeestimation engineered as an inverse torolens representingumulated number of traffic counts is 3 252 172.

the relative belief in a prior knowledge of the OD matrix, $\underline{\tilde{T}}$ and the observed Bluetooth OD penetration rate, computed as per Equation (18), is $\hat{Q} \in \operatorname{Argmin} \left\{ \begin{array}{l} \gamma_{TC} f_{TC}(\underline{Q}) + \gamma_{P} f_{P}(\underline{Q}) + \gamma_{C} f_{C}(\underline{Q}) + \gamma_{K} f_{K}(\underline{Q}) + \gamma_{TV} f_{TV}(\underline{Q}) \right\}$ Equation (18), is traffi<u>e</u> counts $\underline{\tilde{q}}$, respectively. The assignment function, F, relates $\underline{\Theta}$ flows ito

- Prior information available:
 - <u>B</u> trajectories that give sampled LOD counts
 - \overline{q} counts on roads (without OD information)
- The total number of Pehicles is unknown case study results

s composed of 39 100

Figure 3a illustrates the traffic count values for roads in \widetilde{L} during the morning

- peak hours, and Figure 3b presents, for one OD (Brisbane CBD to Moorooka),
- Comparison of traffic counts on roads:

• The Bluetooth LOD matrix

$$I_{TV}(\underline{\underline{\mathbf{G}}}) = \sum_{i \sim \mathcal{N}_{i'}} \sum_{j,l} \omega_{ij'} |\mathbf{Q}_{ij} - \mathbf{Q}_{i'j}| + \sum_{j \sim \mathcal{N}_{j'}} \sum_{i,l} \omega_{jj'} |\mathbf{Q}_{ij} - \mathbf{Q}_{ij}|$$

where $\mathcal{N}_{i'}$ is the neighbourhood of i' and $\omega_{ii'} \ge 0$ are weights (e.g., taken as exp(-distance/ d_0))

Estimated here; more smooth!

Create graphs which describe data from classical methods, or statistical models, or considerations from GSP

Objective: capture similarities between data points $x_1, \ldots, x_N \mapsto y_1, \ldots, y_N$

- This is a standard $\stackrel{x_i \in \mathbb{R}^L}{\text{step}}$ in classification / clustering!
- Hence, several manners to code these similarities in a graph:

selecting k-nearest neighbours of each point with distance $d(x_i, x_j)$ OR

selecting all points in a neighbourhood $d(x_i, x_j) \leq \epsilon$

$$\mathbf{W}(i,j) = e^{-d(x_i,x_j)^2/t}$$

Objective: capture similarities between data points

Distance functions

- Given X_u and X_v, how far are they from one another ?
- Euclidean distance (or its square): $\sum_{n} (x_{nu} x_{nv})^2$
- ℓ_1 or Manhattan distance: $\sum_n |x_{nu} x_{nv}|$
- Mahalanobis distance: $\sqrt{\sum_n (x_{nu} x_{nv})^2 / \sigma_n^2}$ or more generally $\sqrt{(X_u X_v)^\top C^{-1} (X_u X_v)}$
- From correlations, e.g. 1 − X_u · X_v
- From kernels: K(X_u, X_v), with K a "kernel" eg. Gaussian one: exp(-(X_u X_v)²/2σ²)

Objective: keep strong similarities (only) between data points

Great a graph "connecting the dots", i.e. find edges to connect data points. Several possibilities:

Mininimal Spanning Tree: the tree with smallest sum of edge lengths connecting all nodes

 $x_1,\ldots,x_N\mapsto y_1,\ldots,y_N$

Objective: $k \in \mathbb{P}^{\mathbb{R}^{L}}$ strong^{*i*} similarities (only) between data points

Great a graph "connecting the dots", i.e. find edges to connect data points. Several possibilities:

 $d(x_i, x_j)$

Objective: keep strong similarities (only) between data points

 $x_1,\ldots,x_N\mapsto y_1,\ldots,y_N$

Great a graph "connecting the dots", i.e. find edges to connect data points. Several possibilities:

Objective: keep strong similarities (only?) between data points

Great a graph "connecting the dots", i.e. find edges to connect data points. Several possibilities:

> The fully connected graph:

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example: Gaussian similarity function $s(x_i, x_j) = \exp(-\frac{\|x_i - x_j\|^2}{2\sigma^2})$

interest of the 3 previous solutions: **sparse graphs** !

for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

Examples

A Tutorial on Spectral Clustering, Ulrike von Luxburg,

Interlude: you know other methods!

2-a) model the local neighbourhood relationships between the data points

=> Just what we described

Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points A possible solution: **Hierarchical clustering**

f

with two broad strategies: Agglomerative (a "bottom-up" approach) vs. Divisive (a "top-down" approach)

abcdet

Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points A possible solution: **Hierarchical clustering**

- Agglomerative clustering:
 - First merge very similar instances
 - Incrementally build larger clusters out of smaller clusters
- Algorithm:
 - Maintain a set of clusters
 - Initially, each instance in its own cluster
 - Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there's only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram

Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points A possible solution: **Hierarchical clustering**

An issue involved in Agglomerative clustering

- How should we define "closest" for clusters with multiple elements?
- Many options:
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
- Different choices create different clustering behaviors

Closest pair (single-link clustering)

Farthest pair (complete-link clustering)

Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points A possible solution: **Hierarchical clustering**

An issue involved in Agglomerative clustering

- How should we define "closest" for clusters with multiple elements?
- Many options:
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
- Different choices create
 different clustering behaviors

Clustering Behavior

Interlude: you know other methods!

• 2-c) Learn a graph that captures things from the data

The general view

(some slides thanks to Bouchard, Breloy, Mian, Hippert-Ferrer)

$$\begin{bmatrix} x_9 \\ x_9 \\ x_8 \\ x_7 \\ x_6 \\ x_7 \\ x_6 \\ x_6 \\ x_6 \\ x_7 \\ x_6 \\ x$$

46

The general view of Graph learning

(some slides thanks to Bouchard, Breloy, Mian, Hippert-Ferrer)

Graph learning: with graphical model

An **edge** encodes the "*relationship*" between two **nodes**

We can consider a statistical definition of relationship [Dem72; Lau96]

"Connection in the graph = conditional dependence"

The **conditional dependence** $\neg(x_1 \perp x_2)$ holds if

$$P(x_1|x_2, \underbrace{x_3, \cdots, x_p}_{\mathbf{x}_{\perp}}) \neq P(x_1|\mathbf{x}_{\perp})$$

" x_2 adds information to \mathbf{x}_{\perp} in order to predict x_1 "

Graph learning: with graphical model

Graph learning: with graphical model

Holds for

- Gaussian model
- Most Elliptical distributions
- Semiparametric Gaussian copula aka "nonparanormal"

Key property of GGM: the precision matrix is 0 iif the partial correlation coefficient is 0

Graph learning: with graphical model

A Gaussian graphical model implies a sparse precision matrix $\Theta = \Sigma^{-1}$

=> probabilistic approaches for p(G|X)

Graphical Lasso (GLasso) \Leftrightarrow regularized MLE of Θ

 \longrightarrow Graph drawn from Θ 's support

Graph learning: with graphical model

Solution $\boldsymbol{\Theta}$ such that: $-\boldsymbol{\Theta}^{-1} + \mathbf{S} + \lambda \boldsymbol{\Gamma} = \mathbf{0}$,

where Γ is a matrix of element-wise signs of Θ , *i.e.*, $\Gamma_{ij} = \operatorname{sign}(\Theta_{ij})$ if $\Theta_{ij} \neq 0$, $\Gamma_{ij} \in [-1, 1]$ if $\Theta_{ij} = 0$

Positivity yields: $W_{ii} = S_{ii} + \lambda$, where $\mathbf{W} = \mathbf{\Theta}^{-1}$

GLasso based on **block-coordinate method**:

$$\begin{pmatrix} \mathbf{W}_{11} & \mathbf{W}_{12} \\ \mathbf{W}_{21} & W_{22} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\Theta}_{11}^{-1} + \frac{\boldsymbol{\Theta}_{11}^{-1} \boldsymbol{\Theta}_{12} \boldsymbol{\Theta}_{21} \boldsymbol{\Theta}_{11}^{-1}}{\boldsymbol{\Theta}_{22} - \boldsymbol{\Theta}_{21} \boldsymbol{\Theta}_{11}^{-1} \boldsymbol{\Theta}_{12}} & -\frac{\boldsymbol{\Theta}_{11}^{-1} \boldsymbol{\Theta}_{12}}{\boldsymbol{\Theta}_{22} - \boldsymbol{\Theta}_{21} \boldsymbol{\Theta}_{11}^{-1} \boldsymbol{\Theta}_{12}} \\ -\frac{\boldsymbol{\Theta}_{21} \boldsymbol{\Theta}_{11}^{-1}}{\boldsymbol{\Theta}_{22} - \boldsymbol{\Theta}_{21} \boldsymbol{\Theta}_{11}^{-1} \boldsymbol{\Theta}_{12}} & \frac{1}{\boldsymbol{\Theta}_{22} - \boldsymbol{\Theta}_{21} \boldsymbol{\Theta}_{11}^{-1} \boldsymbol{\Theta}_{12}} \end{pmatrix}$$

53

Graph learning: with graphical model

For the considered block: $\mathbf{\Theta}_{11}^{-1}\mathbf{\Theta}_{12}W_{22} + \mathbf{S}_{12} + \lambda\mathbf{\Gamma}_{12} = \mathbf{0}$

Equivalent to: minimize $\frac{1}{2} \boldsymbol{\alpha}^\top \boldsymbol{\Theta}_{11}^{-1} \boldsymbol{\alpha} + \boldsymbol{\alpha}^\top \mathbf{S}_{12} + \lambda \|\boldsymbol{\alpha}\|_1$

Then: $\Theta_{12} = \alpha / W_{22}$ $\Theta_{22} = \frac{1}{W_{22}} + \Theta_{21} \Theta_{11}^{-1} \Theta_{12}$

From there:

- $\Theta_{11}^{-1} = \mathbf{W}_{11} \mathbf{W}_{12}\mathbf{W}_{21}/W_{22}$
- Update **W** through the block identity

Algorithm

- 1. Initialize $\mathbf{W} = \operatorname{diag}(\mathbf{S}) + \lambda \mathbf{I}_p$
- While not convergence, cycle around the columns:

 a. Rearrange rows/columns so that target one is last
 b. Compute Θ⁻¹₁₁ = W₁₁ W₁₂W₂₁/W₂₂
 c. Solve minimize ½α^TΘ⁻¹₁₁α + α^TS₁₂ + λ||α||₁
 d. Update Θ₁₂ = α/W₂₂ and Θ₂₂ = ¼/W₂₂ + Θ₂₁Θ⁻¹₁₁Θ₁₂
 e. Update Θ and W from block identity, ensuring ΘW = I_p

 Output precision Θ and covariance W

Graph learning: with graphical model

EXAMPLE [Costard, 2014]: we generate 600 observations according to the GMM

Then, we use graphical lasso, with varying penalisation parameter

Next question is: How to choose λ ? (See Costard PhD thesis, and ask Titouan V. for more recent answer)

Graph learning: with GSP

- Connecting the dots: infer networks from GSP as in Segarra et al. (2017); Pasdeloup et al. (2018); Mateos et al. (2019)
- Learning of Laplacian or Adjacency matrices from a constraint of smoothness of the data, operator constraints, structural constraints, spectral constraints, as in (Kalofolias, 2016; Dong et al., 2016; Thanou et al., 2017; Egilmez et al., 2017; Dong et al., 2019),... (+ Apologies to all the missing references)

into 4 graphs:

Graph learning: with GSP

Smoothness of a graph signal measured by graph signal variation

$$\operatorname{GSV}(\mathbf{x}) = \sum_{q,\ell} A_{q,\ell} (x_q - x_\ell)^2 = \mathbf{x}^\top \mathbf{L} \mathbf{x}$$

Total GSV for a **data matrix \mathbf{X}**

$$\sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{L} \mathbf{x}_{i} = \mathrm{Tr}(\mathbf{X}^{\top} \mathbf{L} \mathbf{X}) \propto \mathrm{Tr}(\mathbf{L} \mathbf{S}) \qquad \text{with } \mathbf{S} = \mathbf{X} \mathbf{X}^{\top} / n$$

Could we **learn the graph** that yields the "smoothest" observation **X** ?

 $\underset{L \in \mathcal{L}}{\operatorname{minimize}} \quad \operatorname{Tr}(\mathbf{X}^\top \mathbf{L} \mathbf{X}) \quad \Rightarrow \quad \text{trivial solution } \mathbf{L} = \mathbf{0}$

 \rightarrow **Solution 1**: design of fitting-penalties to get meaningful solutions

 \rightarrow **Solution 2**: Link the problem to gaussian graphical models

Graph learning: with GSP

A generic problem formulation

- Some works equivalently formalized the problem wrt ${\bf A}$
- Some works considered constraints instead of penalty f_+
- The construction and motivation for each terms evolved between 2016-2023

From Kalofolias 2016:

Promoting smoothness = graph sparsity

$$\mathbf{Z} \in \mathbb{R}^{p \times p} : \|\mathbf{x}_i - \mathbf{x}_j\|_2^2, \qquad \operatorname{Tr}(\mathbf{X}^\top \mathbf{L} \mathbf{X}) = \frac{1}{2} \operatorname{Tr}(\mathbf{A} \mathbf{Z}) = \frac{1}{2} \|\mathbf{A} \odot \mathbf{Z}\|_1$$
weighted ℓ -1 norm

$$\operatorname{Tr}(\mathbf{X}^{\top}\mathbf{L}\mathbf{X}) + \lambda \|\mathbf{A}\|_{1} = \frac{1}{2} \|\mathbf{A} \odot (2\lambda \mathbf{1}\mathbf{1}^{\top} + \mathbf{Z})\|_{2}$$

ightarrow Adding another sparsity term not necessarily useful

Graph learning: with GSP

 $\underset{\mathbf{A}\in\mathcal{A}}{\text{minimize}} \quad f(\mathbf{A}) + \|\mathbf{A}\odot\mathbf{Z}\|_1$

From Kalofolias 2016:

Example 1 – Gaussian kernel graph

 $f(\mathbf{A}) = \sigma^2 \sum_{ij} A_{ij} (\log(A_{ij}) - 1)$

Solution:

$$A_{ij} = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|_2^2}{\sigma^2}\right)$$

promotes graph density by penalizing big weights while allowing small ones

Example 2 $f(\mathbf{A}) = \alpha \|\mathbf{A}\|_{2}^{2} + \alpha \|\mathbf{A}\|_{2}^{2}$ $(= \alpha \|\mathbf{L}\|_{2}^{2}),$ subject to $\|\mathbf{A}\|_{1} = s$ [Don+16]

force degrees to be positive, do not prevent edges to be zero

Example 3
$$f(\mathbf{A}) = \frac{\beta}{2} \|\mathbf{A}\|_2^2 - \alpha \mathbf{1}^\top \log(\mathbf{A}\mathbf{1}), \quad \alpha > 0, \beta \ge 0$$
 [Kal16]
promotes graph density

Solve these **optimization problems** \rightarrow primal dual techniques from [KP15]

Graph learning: with GSP

(P-stat)
$$\min_{W \in \mathscr{W}} f(W) = \min_{W \in \mathscr{W}} \|W \circ Z\|_{\mathbf{1}} - \alpha \mathbf{1}^{\top} \log(W \mathbf{1}) + \beta \|W\|_{F}^{\mathbf{2}}.$$

Key quantity:

Given $Z_{ij} = ||x_i - x_j||^2$, the total **global variations** on the graph of $X \in \mathbb{R}^{N \times m}$ (having *m* components per node, e.g. 12 for a monthly signal spanning a year) are:

$$\frac{1}{2} \sum_{(i,j)\in V\times V} W_{ij} \|x_i - x_j\|^2 = \|W \circ Z\|_1$$

 $\mathcal{W} = \{ W \in \mathbb{R}^{N \times N}_+ \text{ s.t. } W = W^\top, \operatorname{diag}(W) = 0 \}: \text{ admissible set.}$

From Kalofolias 2016:

Graph learning: with GSP — development 1: Gaussian Markov Random Fields

Combine loss from graphical lasso and behaviour of the Laplacian of a graph:

From Elgimez, Pavel, Ortega, 2017

$$\begin{array}{c} \underset{\mathbf{L} \in \mathcal{L}}{\text{minimize}} & \operatorname{Tr}(\mathbf{L} \ \mathbf{S}) - \log \det(\mathbf{L}) + \|\mathbf{L} \odot \mathbf{H}\|_{1} \\ \text{sample covariance matrix} & \text{symmetric regularization matrix} \end{array}$$

$$\begin{array}{c} \\ \ell \text{-1 norm penalty:} & \operatorname{Since} \forall i \neq j, \ L_{ij} \leq 0, \ L_{ii} > 0, \ \text{one can choose } \mathbf{H} \ \text{such that} \\ \|\mathbf{L} \odot \mathbf{H}\|_{1} = & \operatorname{Tr}(\mathbf{L}\mathbf{H}) \\ & & \\$$

Graph learning: with GSP — development 2: Robust or Structured GL

From Hippert-Ferrer, ECML 2023

Code

https://github.com/ahippert/graphfactormodel

Graph learning: with GSP — development 2: Robust or Structured GL

From Hippert-Ferrer, ECML 2023

aph learning: with GSP — development 3: time-series

Richiardi et al. (2013)

ctions apply

[G. Frusque, 2020]

Model of 4 signals with temporal synchrony

Corresponding functional connectivity in function of time samples

Recordings of iEEG for Epileptic treatment

Example of recording:

a multivariate signal...

3	0 the way of	Mary harrigen frankrigen		menunaralmant	manifiliti		Millingund
2	5	who have	h-h-h-h-h-h-h-h-h-h-h-h-h-h-h-h-h-h-h-			Man Marker	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2						WWWW	MANY
1	5	and an trate grade		NMMMMM ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		anter an an an	here have been a second and the seco
	Manhhalman	mal mandred an	r 1+ - rest ++ - + /r/*****	www.		-M	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1	0						
1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n				
1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					and and a second s

63

Graph learning: with GSP — development 3: time-series

The general idea: add a "smoothness" term in time, or "sparsity"

From Hallac et al., 2017

Figure 1: Three sensors with associated time series readings. Based on such data, we infer a time-varying network that reveals 1) the dependencies between the different sensors, and 2) when and how these dependencies change over time.

Kalofolias et al. (2017): a time-varying setting with smooth variations of the inferred graphs, thanks to a Tikhonov regularization term

$$\sum_{k=2}^T \|W_k - W_{k-1}\|_F^2$$

Yamada et al. (2019, 2020) temporal sparsity prior with l₁ norm better suited to sharp changes

(see Hallac et al. (2017); Jung et al. (2015) for graph-lasso)

Yamada et al. (2020): group lasso term (global changes at sparse time points) vs. fused lasso term (local change at sparse time points).

Graph learning: with GSP – development 3: time-series

Optimization problem for Dynamic graph learning: (P-dyn)

$$\min_{W_k \in \mathscr{W}} \sum_{k=1}^T f_k(W_k) + \eta \sum_{k=2}^T \|W_k - W_{k-1}\|_1,$$

with $f_k(W_k)$ as in (P-stat) with parameters α_k and β_k

Solution of the optimization problem:

Primal dual optimization algorithm as in Yamada et al. (2019, 2020) using the primal-dual splitting framework of Condat (2013).

Fig. 5. The visualization of the temporal variations in the time-varying graph learned from the dataset based on the graph that produces large fluctuations at few time slots.

From Yamada et al., 2020

Create a graph to r

Graph learning: with GSP – d

An example on dynamic point cloud

(a) Ground truth

From ramada et al., 2020

1600

1400

1200

1000

800

66

End of the story (?)

Some topics we did not cover (even in G SP+ML):

- Sampling on graphs (of nodes ? of edges ? sampling theorem)
- Stochastic processes on graph and spectral estimation
- Design of filters, wavelets, filter banks,... vertex-frequency,...
- Graph simplification: coarsening, pooling, sparsification
- Applications to images, point clouds,...
- Higher-orders: Hypergraphs, Simplicial Complexes, Hodge Laplacian
- and topics I don't even know about...

Advertisement: we hire M2 and PhD!

