
P. Borgnat, CNRS, LP ENSL (5)

Graphs for data science and ML

Machine Learning for graphs and with graphs

1

Graph Laplacian: An Analogy for a Graph FT

Introduction Graph SP First examples Cuts, clustering GSP on directed graphs Other Examples End

Fourier modes: examples in 1D and in graphs

LOW FREQUENCY: HIGH FREQUENCY:

p. 17

Introduction Digraph FT Learning / SSL Learning / parametric Learning / combination Ending

A Fundamental analogy for undirected graphs
[Shuman et al., IEEE SP Mag, 2013]

A fundamental analogy
On any graph, the eigenvectors �i of the Laplacian matrix L will be
considered as the Fourier modes, and its eigenvalues �i the associated
(squared) frequencies.

Hence, a Graph Fourier Transform is defined as:
x̂ = �> x

where � = (�0|�1| . . . |�N�1).

• Two ingredients:
• Fourier modes = Eigenvectors �i (with increasing oscillations)
• Frequencies = The measures of variations of an eigenvector is linked to its

eigenvalue:
||r�i ||2

||�i ||2
= �i

because: 8x 2 RN
X

e=(i,j)2E

Aij (xi � xj)
2 = x>Lx is the Dirichlet norm

p. 3

2

Graph Laplacian: An Analogy for a Graph FT

Examples of Fourier modes ; oscillation and smoothness

[Tremblay, PB]

[Tremblay, Gonçalves, PB, 2017]

[Vandergheynst & Shuman, 2013]

3

Use GSP to process data
which are on graphs,

or which are the graphs!

4

Introduction GSP Examples GSP on Digraph Learning on graphs Numerical explorations Ccl

Example 1: Recovery of signals on graphs
• Denoising of a graph signal, when observing y = x0 + ✏, formulated as

an inverse problem:

x⇤ = arg min
x

||x � y ||
2
2 + �x

>
Lx

because remember that : x
>

Lx =
X

e=(i,j)2E

Aij(xi � xj)
2

• Graph-Fourier coefficients: x̂ = �>
x

• Solution: x̂⇤(i) =
1

1 + ��i

ŷ(i) (1st-order “low pass” filter)

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Simple Motivating Examples
! Tikhonov regularization for denoising:

5

argminf

�
||f � y||22 + �fT Lf

�

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Original Noisy Denoised

[P. Vandergheynst, EPFL, 2013]
p. 12

(1) Filters on graphs

5

Introduction GSP Examples GSP on Digraph Learning on graphs Numerical explorations Ccl

Filtering

Definition of graph filtering
We define a linear filter H by its function h in the Fourier domain.

It is discrete and defined on the eigenvalues �i ! h(�i).

[H(x) =

0

@
h(�0) x̂(0)
h(�1) x̂(1)
h(�2) x̂(2)

...
h(�N � 1) x̂(N�1)

1

A = Ĥ x̂ with Ĥ =

0

@
h(�0) 0 0 ... 0

0 h(�1) 0 ... 0
0 0 h(�2) ... 0
...
0 0 0 ... h(�N � 1)

1

A

In the node-space, the filtered signal H(x) can be written:
H(x) = � Ĥ �>

x

In term of calculus of operator on a graph, this reads
H(x) = h(L) · x

• Alternative definition: operator H that commutes with the reference
operator, here the Laplacian (yet could be some “shift”, e.g. A)

• Parametric formulation: h(L) =
P

K

k=0 hk L
k

(leads to ARMA filters; to distributed implementations)p. 13

(1) Filters on graphs

6

Filtering of graph data

Definition

Example [Tremblay, Gonçalves, PB, 2017]

(1) Filters on graphs

7

Functional calculus on graph

Objective: define the effect of function on graph data

Example: define a diffusive process on a graph

[Ricaud et al., 2019]

we use thesimpleproperty that Ê XÊ
Then foranypolynomial fonction f we have f E Eeg flakÇIÊ
Usingapproximationtheorem itholdsforanyfunction

KE ET

Withtheanalogy fluid is a diffusionifitfollows J
ApplyingtheGET ftp.t ahflak E

hence if flute flu wehave flakE e f de
With fetalcalculas ftp.ethfoff
Explicitexpression flu Ig e h folah Xp a

Thisactsas afilter e than
theGET oftheinitialcondition

Diffusion on graphs

8

Diffusion on graphs (2) — Illustration

Functional calculus on graph

Objective: define the effect of function on graph data

Example: define a diffusive process on a graph

[Ricaud et al., 2019]

we use thesimpleproperty that Ê XÊ
Then foranypolynomial fonction f we have f E Eeg flakÇIÊ
Usingapproximationtheorem itholdsforanyfunction

KE ET

Withtheanalogy fluid is a diffusionifitfollows J
ApplyingtheGET ftp.t ahflak E

hence if flute flu wehave flakE e f de
With fetalcalculas ftp.ethfoff
Explicitexpression flu Ig e h folah Xp a

Thisactsas afilter e than
theGET oftheinitialcondition

9

• from [Hammond, Gur, Johnson, GlobalSIP 2013] “GRAPH DIFFUSION
DISTANCE: A DIFFERENCE MEASURE FOR WEIGHTED GRAPHS BASED ON THE
GRAPH LAPLACIAN EXPONENTIAL KERNEL” (Title way too long!)

• They define a Diffusion distance between graphs having the same number of
nodes

diagonal. Note that we are not restricting ourselves to unweighted
(binary) graphs. We will make frequent use of the (unnormalized)
graph Laplacian operator [5] , defined by Ln = Dn � An (for n =
1, 2) , where Dn is a diagonal degree matrix for the adjacency An,
i.e. (Dn)i,i =

PN
j=1(An)i,j .

To describe the diffusion process on a graph with adjacency A
(for convenience, we suppress the subscript), we let v(t) 2 RN be
a time-varying vector representing the value of the quantity that is
undergoing diffusion at each vertex. The edge weights ai,j describe
the conductivity between vertices, so that for two vertices i and j,
the quantity ai,j(vi(t) � vj(t)) represents the flux from vertex i
to vertex j across the edge connecting them. Summing over these
fluxes for each vertex yields v0j(t) =

P
i ai,j(vi(t) � vj(t)). It is

straightforward to verify that this may be written as

v0(t) = �Lv(t) (1)

where L is the graph Laplacian corresponding to A. With initial
conditions v(0) at time t = 0, equation 1 has the analytic solution
v(t) = exp(�tL)v(0). Here exp(�tL) is an N ⇥N matrix-valued
function of t, known as the Laplacian exponential diffusion kernel
[6]. We now consider letting v(0) = ej , where ej 2 RN is the
unit vector with all zeros except in the j th component. Running the
diffusion up to time t gives the diffusion pattern exp(�tL)ej , which
is precisely the j th column of exp(�tL).

We are now ready to define the graph diffusion distance. The
columns of the Laplacian exponential kernels, exp(�tL1) and
exp(�tL2), describe the different diffusion patterns centered at
each vertex generated by diffusion up to time t under the two
different sets of weighted edges. Computing the sum of squared
differences between these patterns, summed over all the vertices,
yields

⇠(A1, A2; t) =
X

i,j

((exp(�tL1))i,j � (exp(�tL2))i,j)
2

= || exp(�tL1)� exp(�tL2)||2F (2)

where || · ||F is the matrix Frobenius norm. This defines a family
of distance measures depending on the diffusion time t. The graph
diffusion distance is given by

p
⇠ at the time of maximal difference,

i.e. dgdd(A1, A2) = maxt

p
⇠(A1, A2; t).

Given the spectral decomposition L = V ⇤V 0, the Laplacian
exponential may be computed by

exp(�tL) = V exp(�t⇤)V 0, (3)

where for ⇤, exp(�t⇤) is diagonal with ith entry given by e�t⇤i,i .
We compute dgdd(A1, A2) by first diagonalizing L1 and L2, then,
a straightforward application of (3) and (2) allows computation of
⇠(A1, A2; t) for any fixed t. Finally, we optimize over t by a line
search to give dgdd(A1, A2).

For completeness, we mention here that later we will be compar-
ing the GDD to the simpler edge difference distance, dedd, defined
for two adjacency matrices by

dedd(A1, A2) = |A1 �A2|F . (4)

2.1. Properties of GDD

The GDD is a metric, in the strict mathematical sense, i.e.

Proposition 2.1 For any N ⇥N adjacency matrices A,B,C
i) dgdd(A,B) � 0, and dgdd(A,B) = 0 iff A = B
ii) dgdd(A,B) = dgdd(B,A)
iii) dgdd(A,C) dgdd(A,B) + dgdd(B,C)

(a) (b)

0 10
0

0.1

t

(c) (d)

Fig. 1. (a) Barbell graph, and single-edge perturbations, for N = 5,
K = 2. (b) Plot of ratio dgdd(G

N,2, GN,2
br)/dgdd(G

N,2, GN,2
cc) vs

N . (c) Plot of ⇠(t) for A1 = G5,2, A2 = G5,2
cc , red dot indicates

maximum, corresponding to dgdd(A1, A2)
2. (d) Values of normal-

ized edge deletion perturbation, on edges of G5,2.

Proof Consider the mapping � : A ! e�tA taking A into
C([0,1),RN⇥N), the space of continuous functions from non-
negative real numbers to N ⇥ N matrices. First note that � is
one-to-one, as follows : �(A) = �(B) implies e�tA = e�tB for all
t � 0, then differentiating gives �Ae�tA = �Be�tB , and letting
t ! 0 shows A = B.

Next note that dgdd(A,B) = supt�0||�(A)(t) � �(B)(t)||F ,
so the GDD can be written in terms of the supremum norm, using
the fact the || · ||F is a proper norm. That dgdd is a metric follows
from the properties of the supremum norm.

We note some simple properties of ⇠. First, at t = 0, the dif-
fusion patterns are still equal to their initial conditions for both A1

and A2, and are thus all equal, which implies ⇠(A1, A2; 0) = 0.
Secondly, for any connected graph, i.e. a graph where any two ver-
tices can be connected by some path with nonzero edge weights, as
t ! 1 each diffusion pattern will converge to the constant vec-
tor (1/N, 1/N..., 1/N)T . This implies that if A1 and A2 are both
connected, then limt!1 ⇠(A1, A2; t) = 0 (see Figure 1(c)).

Finally, we note an interesting connection between the GDD and
|L1�L2|F , the Frobenius norm of the difference of the graph Lapla-
cians. This quantity is closely related to the edge difference distance,
specifically |L1 � L2|2F = dedd(A1, A2) +

P
i((d1)i � (d2)i)

2,
where (dn)i = (Dn)i,i is the weighted degree of vertex i for graph
n (for n = 1, 2). We have seen that ⇠(t) grows from zero at the
origin before decaying, and that the GDD is determined by its maxi-
mum value. Interestingly, ||L1 � L2||F is related to the growth of ⇠
at the origin, in particular

Proposition 2.2 ⇠(t) satisfies ⇠(0) = 0, ⇠0(0) = 0, and ⇠00(0) =
2||L1 � L2||2F , where the derivatives are understood as the right-

hand limits limt!0+⇠
0(t), limt!0+⇠

00(t).

Proof ⇠(0) = 0 was shown previously. Using the matrix relation
||X||2F = tr(XTX), and that e�tL is symmetric for symmetric L,

diagonal. Note that we are not restricting ourselves to unweighted
(binary) graphs. We will make frequent use of the (unnormalized)
graph Laplacian operator [5] , defined by Ln = Dn � An (for n =
1, 2) , where Dn is a diagonal degree matrix for the adjacency An,
i.e. (Dn)i,i =

PN
j=1(An)i,j .

To describe the diffusion process on a graph with adjacency A
(for convenience, we suppress the subscript), we let v(t) 2 RN be
a time-varying vector representing the value of the quantity that is
undergoing diffusion at each vertex. The edge weights ai,j describe
the conductivity between vertices, so that for two vertices i and j,
the quantity ai,j(vi(t) � vj(t)) represents the flux from vertex i
to vertex j across the edge connecting them. Summing over these
fluxes for each vertex yields v0j(t) =

P
i ai,j(vi(t) � vj(t)). It is

straightforward to verify that this may be written as

v0(t) = �Lv(t) (1)

where L is the graph Laplacian corresponding to A. With initial
conditions v(0) at time t = 0, equation 1 has the analytic solution
v(t) = exp(�tL)v(0). Here exp(�tL) is an N ⇥N matrix-valued
function of t, known as the Laplacian exponential diffusion kernel
[6]. We now consider letting v(0) = ej , where ej 2 RN is the
unit vector with all zeros except in the j th component. Running the
diffusion up to time t gives the diffusion pattern exp(�tL)ej , which
is precisely the j th column of exp(�tL).

We are now ready to define the graph diffusion distance. The
columns of the Laplacian exponential kernels, exp(�tL1) and
exp(�tL2), describe the different diffusion patterns centered at
each vertex generated by diffusion up to time t under the two
different sets of weighted edges. Computing the sum of squared
differences between these patterns, summed over all the vertices,
yields

⇠(A1, A2; t) =
X

i,j

((exp(�tL1))i,j � (exp(�tL2))i,j)
2

= || exp(�tL1)� exp(�tL2)||2F (2)

where || · ||F is the matrix Frobenius norm. This defines a family
of distance measures depending on the diffusion time t. The graph
diffusion distance is given by

p
⇠ at the time of maximal difference,

i.e. dgdd(A1, A2) = maxt

p
⇠(A1, A2; t).

Given the spectral decomposition L = V ⇤V 0, the Laplacian
exponential may be computed by

exp(�tL) = V exp(�t⇤)V 0, (3)

where for ⇤, exp(�t⇤) is diagonal with ith entry given by e�t⇤i,i .
We compute dgdd(A1, A2) by first diagonalizing L1 and L2, then,
a straightforward application of (3) and (2) allows computation of
⇠(A1, A2; t) for any fixed t. Finally, we optimize over t by a line
search to give dgdd(A1, A2).

For completeness, we mention here that later we will be compar-
ing the GDD to the simpler edge difference distance, dedd, defined
for two adjacency matrices by

dedd(A1, A2) = |A1 �A2|F . (4)

2.1. Properties of GDD

The GDD is a metric, in the strict mathematical sense, i.e.

Proposition 2.1 For any N ⇥N adjacency matrices A,B,C
i) dgdd(A,B) � 0, and dgdd(A,B) = 0 iff A = B
ii) dgdd(A,B) = dgdd(B,A)
iii) dgdd(A,C) dgdd(A,B) + dgdd(B,C)

(a) (b)

0 10
0

0.1

t

(c) (d)

Fig. 1. (a) Barbell graph, and single-edge perturbations, for N = 5,
K = 2. (b) Plot of ratio dgdd(G

N,2, GN,2
br)/dgdd(G

N,2, GN,2
cc) vs

N . (c) Plot of ⇠(t) for A1 = G5,2, A2 = G5,2
cc , red dot indicates

maximum, corresponding to dgdd(A1, A2)
2. (d) Values of normal-

ized edge deletion perturbation, on edges of G5,2.

Proof Consider the mapping � : A ! e�tA taking A into
C([0,1),RN⇥N), the space of continuous functions from non-
negative real numbers to N ⇥ N matrices. First note that � is
one-to-one, as follows : �(A) = �(B) implies e�tA = e�tB for all
t � 0, then differentiating gives �Ae�tA = �Be�tB , and letting
t ! 0 shows A = B.

Next note that dgdd(A,B) = supt�0||�(A)(t) � �(B)(t)||F ,
so the GDD can be written in terms of the supremum norm, using
the fact the || · ||F is a proper norm. That dgdd is a metric follows
from the properties of the supremum norm.

We note some simple properties of ⇠. First, at t = 0, the dif-
fusion patterns are still equal to their initial conditions for both A1

and A2, and are thus all equal, which implies ⇠(A1, A2; 0) = 0.
Secondly, for any connected graph, i.e. a graph where any two ver-
tices can be connected by some path with nonzero edge weights, as
t ! 1 each diffusion pattern will converge to the constant vec-
tor (1/N, 1/N..., 1/N)T . This implies that if A1 and A2 are both
connected, then limt!1 ⇠(A1, A2; t) = 0 (see Figure 1(c)).

Finally, we note an interesting connection between the GDD and
|L1�L2|F , the Frobenius norm of the difference of the graph Lapla-
cians. This quantity is closely related to the edge difference distance,
specifically |L1 � L2|2F = dedd(A1, A2) +

P
i((d1)i � (d2)i)

2,
where (dn)i = (Dn)i,i is the weighted degree of vertex i for graph
n (for n = 1, 2). We have seen that ⇠(t) grows from zero at the
origin before decaying, and that the GDD is determined by its maxi-
mum value. Interestingly, ||L1 � L2||F is related to the growth of ⇠
at the origin, in particular

Proposition 2.2 ⇠(t) satisfies ⇠(0) = 0, ⇠0(0) = 0, and ⇠00(0) =
2||L1 � L2||2F , where the derivatives are understood as the right-

hand limits limt!0+⇠
0(t), limt!0+⇠

00(t).

Proof ⇠(0) = 0 was shown previously. Using the matrix relation
||X||2F = tr(XTX), and that e�tL is symmetric for symmetric L,

diagonal. Note that we are not restricting ourselves to unweighted
(binary) graphs. We will make frequent use of the (unnormalized)
graph Laplacian operator [5] , defined by Ln = Dn � An (for n =
1, 2) , where Dn is a diagonal degree matrix for the adjacency An,
i.e. (Dn)i,i =

PN
j=1(An)i,j .

To describe the diffusion process on a graph with adjacency A
(for convenience, we suppress the subscript), we let v(t) 2 RN be
a time-varying vector representing the value of the quantity that is
undergoing diffusion at each vertex. The edge weights ai,j describe
the conductivity between vertices, so that for two vertices i and j,
the quantity ai,j(vi(t) � vj(t)) represents the flux from vertex i
to vertex j across the edge connecting them. Summing over these
fluxes for each vertex yields v0j(t) =

P
i ai,j(vi(t) � vj(t)). It is

straightforward to verify that this may be written as

v0(t) = �Lv(t) (1)

where L is the graph Laplacian corresponding to A. With initial
conditions v(0) at time t = 0, equation 1 has the analytic solution
v(t) = exp(�tL)v(0). Here exp(�tL) is an N ⇥N matrix-valued
function of t, known as the Laplacian exponential diffusion kernel
[6]. We now consider letting v(0) = ej , where ej 2 RN is the
unit vector with all zeros except in the j th component. Running the
diffusion up to time t gives the diffusion pattern exp(�tL)ej , which
is precisely the j th column of exp(�tL).

We are now ready to define the graph diffusion distance. The
columns of the Laplacian exponential kernels, exp(�tL1) and
exp(�tL2), describe the different diffusion patterns centered at
each vertex generated by diffusion up to time t under the two
different sets of weighted edges. Computing the sum of squared
differences between these patterns, summed over all the vertices,
yields

⇠(A1, A2; t) =
X

i,j

((exp(�tL1))i,j � (exp(�tL2))i,j)
2

= || exp(�tL1)� exp(�tL2)||2F (2)

where || · ||F is the matrix Frobenius norm. This defines a family
of distance measures depending on the diffusion time t. The graph
diffusion distance is given by

p
⇠ at the time of maximal difference,

i.e. dgdd(A1, A2) = maxt

p
⇠(A1, A2; t).

Given the spectral decomposition L = V ⇤V 0, the Laplacian
exponential may be computed by

exp(�tL) = V exp(�t⇤)V 0, (3)

where for ⇤, exp(�t⇤) is diagonal with ith entry given by e�t⇤i,i .
We compute dgdd(A1, A2) by first diagonalizing L1 and L2, then,
a straightforward application of (3) and (2) allows computation of
⇠(A1, A2; t) for any fixed t. Finally, we optimize over t by a line
search to give dgdd(A1, A2).

For completeness, we mention here that later we will be compar-
ing the GDD to the simpler edge difference distance, dedd, defined
for two adjacency matrices by

dedd(A1, A2) = |A1 �A2|F . (4)

2.1. Properties of GDD

The GDD is a metric, in the strict mathematical sense, i.e.

Proposition 2.1 For any N ⇥N adjacency matrices A,B,C
i) dgdd(A,B) � 0, and dgdd(A,B) = 0 iff A = B
ii) dgdd(A,B) = dgdd(B,A)
iii) dgdd(A,C) dgdd(A,B) + dgdd(B,C)

(a) (b)

0 10
0

0.1

t

(c) (d)

Fig. 1. (a) Barbell graph, and single-edge perturbations, for N = 5,
K = 2. (b) Plot of ratio dgdd(G

N,2, GN,2
br)/dgdd(G

N,2, GN,2
cc) vs

N . (c) Plot of ⇠(t) for A1 = G5,2, A2 = G5,2
cc , red dot indicates

maximum, corresponding to dgdd(A1, A2)
2. (d) Values of normal-

ized edge deletion perturbation, on edges of G5,2.

Proof Consider the mapping � : A ! e�tA taking A into
C([0,1),RN⇥N), the space of continuous functions from non-
negative real numbers to N ⇥ N matrices. First note that � is
one-to-one, as follows : �(A) = �(B) implies e�tA = e�tB for all
t � 0, then differentiating gives �Ae�tA = �Be�tB , and letting
t ! 0 shows A = B.

Next note that dgdd(A,B) = supt�0||�(A)(t) � �(B)(t)||F ,
so the GDD can be written in terms of the supremum norm, using
the fact the || · ||F is a proper norm. That dgdd is a metric follows
from the properties of the supremum norm.

We note some simple properties of ⇠. First, at t = 0, the dif-
fusion patterns are still equal to their initial conditions for both A1

and A2, and are thus all equal, which implies ⇠(A1, A2; 0) = 0.
Secondly, for any connected graph, i.e. a graph where any two ver-
tices can be connected by some path with nonzero edge weights, as
t ! 1 each diffusion pattern will converge to the constant vec-
tor (1/N, 1/N..., 1/N)T . This implies that if A1 and A2 are both
connected, then limt!1 ⇠(A1, A2; t) = 0 (see Figure 1(c)).

Finally, we note an interesting connection between the GDD and
|L1�L2|F , the Frobenius norm of the difference of the graph Lapla-
cians. This quantity is closely related to the edge difference distance,
specifically |L1 � L2|2F = dedd(A1, A2) +

P
i((d1)i � (d2)i)

2,
where (dn)i = (Dn)i,i is the weighted degree of vertex i for graph
n (for n = 1, 2). We have seen that ⇠(t) grows from zero at the
origin before decaying, and that the GDD is determined by its maxi-
mum value. Interestingly, ||L1 � L2||F is related to the growth of ⇠
at the origin, in particular

Proposition 2.2 ⇠(t) satisfies ⇠(0) = 0, ⇠0(0) = 0, and ⇠00(0) =
2||L1 � L2||2F , where the derivatives are understood as the right-

hand limits limt!0+⇠
0(t), limt!0+⇠

00(t).

Proof ⇠(0) = 0 was shown previously. Using the matrix relation
||X||2F = tr(XTX), and that e�tL is symmetric for symmetric L,

Diffusion on graphs (3) — Use to define a distance between graphs

10

Graph Diffusion Wasserstein Distances
& Application to Domain Adaptation for Graphs

From Amélie Barbe PhD thesis (12/2021) ; ECML-PKDD 2020 ;

GRETSI 2019 ; ICTAI 2021 ; GRETSI (2019) ; ICASSP 2022

Joint work with Marc Sebban (LabHC; Saint-Etienne) ; Rémi Gribonval, Paulo Gonçalves,
and Titouan Vayer (LIP, Inria, ENS de Lyon) ; Sybille Marcotte (now PhD candidate in Paris)

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Diagramme du calcul de Di↵usion-Wasserstein

X
s

X
t

X̃
s

X̃
t

M̃ DW
p
p(U

s ,Ut
)

exp(�⌧ sLs)·

exp(�⌧ tLt)·

min
�2⇧(a,b)

n
h�, M̃piF

o

Avantages :

I Un seul terme pour attributs et structure

I ⌧ s et ⌧ t pour régler le compromis entre les deux modalités

I di↵usion lisse les attributs (filtre passe-bas)

19 / 41

11

A parenthesis in advance — Optimal Transport:
a generic tool to probe

the geometry of probability measures

• Optimal Transport: an approach to compute a distance between 2 distributions, while finding the
optimal coupling (or transport plan) between them

• Put forward in Data Science/Processing & ML since…
• since ~2000 in image processing (Earth Mover Distance); well before in mathematics (cf. [Villani, 2003]);

in the 70’s for the Mallows distance in statistics,…
• (see my completely ignored ICASSP paper of 2012: “Using Surrogates and Optimal Transport for Synthesis of Stationary Multivariate Series […]”)

(Title way too long!)

• cf. “Computational Optimal Transport” G. Peyré & M. Cuturi, 2019

https://arxiv.org/abs/1803.00567v4
• cf. “A primer on Optimal Transport”, Cuturi & Salomon, NIPS 2017 Tutorial

https://optimaltransport.github.io/slides/ (and other resources)
• cf. Titouan Vader’s Lectures at the end of this course !

12

https://arxiv.org/abs/1803.00567v4
https://optimaltransport.github.io/slides/

Optimal Transport: a generic tool to probe
the geometry of probability measures

What is Optimal Transport?

3

Generative
Models
vs. data

h1

Color Histograms

h2

Bags
of features

d

p✓

p✓0

Statistical Models Brain Activation Maps

µ

latent
space

The natural geometry for probability measures

• from Cuturi & Salomon “A primer on Optimal Transport”, NIPS 2017 Tutorial
13

Chapter 1. Preliminaries

Figure 1.6: A toy optimal transport problem. On the left are blue heaps,
representing the source distribution. On the right are red holes, representing
the target distribution. Solving the corresponding optimal transport problem
consists in finding how to fill the holes with the heaps in a way that minimizes
the total transport cost.

Figure 1.7: Optimal transport map solving the OT problem of Figure 1.6. Low
matrix entries are lighter, and high matrix entries are darker.

the target (distribution). Knowing that the cost of moving some material from
a heap to a hole can be defined as the Euclidean distance Îxi ≠ yjÎ2 between
the two, an interesting question is to find the least costly way to do so. This
example uses heaps of material and holes; a more concrete example would be
moving products from factories to warehouses while minimizing fuel cost.

The solution of this discrete problem is called a transport map. It is a matrix
“

ú (œ R10◊10
+ here) where each entry “i,j indicates the quantity of material

transported from a heap to a hole. A visualisation of this matrix is given on
Figure 1.7. This matrix satisfies the following equation (with n = m = 10):

“
ú = argmin

“œRn◊m

“1n=a
“T 1m=b

Y
]

[

nÿ

i=1

mÿ

j=1
“i,j · Îxi ≠ yjÎ2

Z
^

\ . (1.10)

This equation states that the optimal transport map minimizes the total cost
of transport qn

i=1
qm

j=1 “i,j · Îxi ≠ yjÎ2, while conserving the masses (“1n = a

and “
T 1m = b).

In this example, some quantity of mass (either present [heaps] or required
[holes]) is present at various points on a 1D line. The OT framework abstracts
this, simply working with distributions in some probability measure space; the

14

Optimal Transport for distributions

• from “Computational Optimal Transport” (G. Peyré & M.
Cuturi), 2019

https://arxiv.org/abs/1803.00567v4

Problem of Monge : « Mémoire sur la
théorie des déblais et des remblais »,

1776

Chapter 1. Preliminaries

Figure 1.6: A toy optimal transport problem. On the left are blue heaps,
representing the source distribution. On the right are red holes, representing
the target distribution. Solving the corresponding optimal transport problem
consists in finding how to fill the holes with the heaps in a way that minimizes
the total transport cost.

Figure 1.7: Optimal transport map solving the OT problem of Figure 1.6. Low
matrix entries are lighter, and high matrix entries are darker.

the target (distribution). Knowing that the cost of moving some material from
a heap to a hole can be defined as the Euclidean distance Îxi ≠ yjÎ2 between
the two, an interesting question is to find the least costly way to do so. This
example uses heaps of material and holes; a more concrete example would be
moving products from factories to warehouses while minimizing fuel cost.

The solution of this discrete problem is called a transport map. It is a matrix
“

ú (œ R10◊10
+ here) where each entry “i,j indicates the quantity of material

transported from a heap to a hole. A visualisation of this matrix is given on
Figure 1.7. This matrix satisfies the following equation (with n = m = 10):

“
ú = argmin

“œRn◊m

“1n=a
“T 1m=b

Y
]

[

nÿ

i=1

mÿ

j=1
“i,j · Îxi ≠ yjÎ2

Z
^

\ . (1.10)

This equation states that the optimal transport map minimizes the total cost
of transport qn

i=1
qm

j=1 “i,j · Îxi ≠ yjÎ2, while conserving the masses (“1n = a

and “
T 1m = b).

In this example, some quantity of mass (either present [heaps] or required
[holes]) is present at various points on a 1D line. The OT framework abstracts
this, simply working with distributions in some probability measure space; the

14

One solution:

With relaxation of
Kantorovich

14

https://arxiv.org/abs/1803.00567v4

• Optimal Transport: Consider two finite sets and and two distributions on these

 with

• Given a cost function , one builds the 2-Wasserstein distance as:

where is the set of joint distributions on

whose marginals are the distributions and

𝕏 = {xi}|𝕏|
i=1 ∈ ℝq×|𝕏| 𝕏′

μ = ∑
xi∈𝕏

aiδxi
 and ν = ∑

x′ i∈𝕏′

biδx′ i
ai ≥ 0, bi ≥ 0 and

n

∑
i=1

ai = 1,
n′

∑
i=1

bi = 1

c : ℝq × ℝq → ℝ+ 𝒲2

𝒲2(μ, ν) = inf
πi, j∈Πa,b

(
n,n′

∑
i,j=1

πi,jc(xi, x′ j)2)
1
2

Πa,b 𝕏 × 𝕏′

μ = ∑
x′ i∈𝕏′

π(⋅ , x′ i) ν = ∑
xi∈𝕏

π(xi, ⋅)

Optimal Transport for distributions

15

Optimal Transport for Graphs

• For Graphs: one has to Associate a distribution to a graph

- A first solution: rely on the the Weisfeiler-Lehman test

- cf. [Togninalli et al., “Wasserstein Weisfeiler-Lehman graph kernels“ NeurIPS 2019]

• A 2nd solution: Comparison through probabilistic models of graph signals

- ["Graph Optimal Transport”, H. Maretic et al. NeuRIPS 2019]

- for a graph with Laplacian L, one considers:

- then: compute the 2-Wasserstein distance between Gaussian signals

- allows graph alignment, gives a structurally-meaningful graph distance,…

𝒢 x ∼ ν𝒢 = 𝒩(0, L†)

16

Optimal Transport for Graphs or Attributed Graphs

• A third solution: The Gromov-Wasserstein distance

- Mémoli, Found. Comp. Math. 2011; Peyré, Cuturi, Solomon, ICML 2016

- structures are compared through their pairwise distances

- cf. also N. Courty, R. Flamary, T. Vayer [PhD 2020]

• One can then combine Attributes and Gromov-Wasserstein characterisation of graphs

“Fused Gromov-Wasserstein distance” [Vayer et al., ICML 2019]

•

Optimal Transport for structured data
with application on graphs

Titouan Vayer
Joint work with Laetitia Chapel, Remi Flamary, Romain Tavenard and Nicolas Courty

A novel distance between labeled graphs
based on optimal transport

28 Chapter 2. Generality about optimal transport

Figure 2.8: The GW problem considers two probability measures µ œ P(X), ‹ œ P(Y) over two spaces that do
not necessarily share a common metric. It is built upon the similarities cX , cY within each space and on a measure
of the distortion between each pair of points

--cX (x, x
Õ) ≠ cY(y, y

Õ)
--.

in depth in [Sturm 2012]. Another possibility is to consider triplets (X , cX , µ) where cX is a integrable
function, this notion refers to measure networks and was studied in [Chowdhury 2019a].

The GW objective is constructed so that if an optimal coupling fi maps x to y and xÕ to yÕ then the
couple (x, xÕ) should be “as similar” in X as (y, yÕ) in Y. When cX , cY are distances it implies that x, xÕ

are as close in X as y, yÕ in Y . In this work we consider a general setting where cX , cY are continuous and
X , Y are Polish spaces and we will detail the two previous settings.

As for the linear OT problem the equation (2.41) always admits a solution. To show that we define
L(x, xÕ, y, yÕ) =

--cX (x, xÕ) ≠ cY(y, yÕ)
--. If �(µ, ‹) is compact and the functionnal fi æ

´ ´
Ldfidfi is l.s.c.

for the weak-convergence, Weierstrass theorem (see Memo 2.2.1) proves that the infimum will be attained
at some optimal coupling. The first condition is a well-known result in OT theory provided that X , Y are
Polish spaces [Santambrogio 2015, Theorem 1.7]. For the lower semi-continuity w.r.t. the weak-convergence
we can show that it su�ces that L be itself l.s.c. using the following lemma:

Lemma 2.2.1. Let � be a Polish space. If f : � ◊ � æ R+ fi {+Œ} is lower semi-continuous, then the
functional J : P(�) æ R fi {+Œ} with J(µ) =

´ ´
f(w, wÕ)dµ(w)dµ(wÕ) is l.s.c. for the weak convergence

of measures.

Proof. Since f is l.s.c. and bounded from below by 0 we can consider (fk)k a sequence of continuous and
bounded functions converging increasingly to f (see e.g [Santambrogio 2015]). By the monotone convergence
theorem Jk(µ) æ J(µ) def= supk Jk(µ) = supk

´ ´
fkdµdµ. Moreover every Jk is continuous for the weak

convergence. Using theorem 2.8 [Billingsley 1999] on the Polish space � ◊ � we know that if µn converges
weakly to µ then the product measure µn ¢ µn converges weakly to µ ¢ µ. In this way limnæŒ Jk(µn) =
Jk(µ) since fk are continuous and bounded. In particular every Jk is l.s.c. We can conclude that J is
l.s.c. as the supremum of l.s.c. functionals on the metric space of (P(�), ”) (see e.g. [Santambrogio 2015]).
Here we equipped P(�) with a metric ” as e.g. ”(µ, ‹) =

q
Œ

k=1 2≠k|
´

� fkdµ ≠
´

� fkd‹| (see remark 5.11
in [Ambrosio 2005]).

Memo 2.2.1 (Weierstrass theorem). The Weierstrass theorem states that if f : X æ R fi +Œ is
l.s.c. and X is compact then there exists xú = infxœX f(x) (see box 1.1 in [Santambrogio 2015]).

17

Optimal Transport and Graph Signal Processing for Attributed Graphs

• We can leverage (combine) that: Optimal Transport ; Diffusion distance ; and Graph
Signal Processing (i.e., process signals by L)

• We generalize the previous ideas, and we consider:

• two graphs of sizes and and their associated Laplacians:

• the features of these source and target graphs:

• a cost function between features: for any

• the diffused features: and

n m Ls and Lt

X ∈ ℝm×r; Y ∈ ℝn×r

M(X, Y) = [d(xi, yj)]
X ∈ ℝm×r; Y ∈ ℝn×r

X̃ = exp(−τsLs) ⋅ X Ỹ = exp(−τtLt) ⋅ Y
Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Diagramme du calcul de Di↵usion-Wasserstein

X
s

X
t

X̃
s

X̃
t

M̃ DW
p
p(U

s ,Ut
)

exp(�⌧ sLs)·

exp(�⌧ tLt)·

min
�2⇧(a,b)

n
h�, M̃piF

o

Avantages :

I Un seul terme pour attributs et structure

I ⌧ s et ⌧ t pour régler le compromis entre les deux modalités

I di↵usion lisse les attributs (filtre passe-bas)

19 / 41

18

The Diffusion Wasserstein Distances for Attributed Graphs

• Then, we define it as:

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Graph Di↵usion Wasserstein Distances 7

so that exp(�⌧L) is a matrix characterizing the graph at some scale ⌧ . Then,
to compare two graphs of the same size (m nodes), given their Laplacian L1

and L2, the authors of [9] propose to consider || exp(�⌧L1)� exp(�⌧L2)||F and
keep the minimum value of this quantity over all the possible ⌧ ’s. While they
show that it is a distance, and that it captures well structural (dis)similarities
between graphs, its shortcoming is that (i) it can only be used with graphs of
the same size, (ii) it forgets about existing features on these graphs and (iii) it
cannot be directly used in an OT setting.

To introduce our proposed Di↵usion Wasserstein distance, we leverage the
closed-form solution of the heat equation applied now to r features X 2 Rm⇥r

on the graph: exp(�⌧L)X. Each such term describes now the smoothing of all
the features on the graph structure, at a specific characteristic scale ⌧ , as seen in
Fig. 2(b). Because it combines features and structure, this solution will be central
in the following definition of our new distance between graphs with features.

Definition 1. Consider a source graph G
s
, a target graph G

t
represented through

two discrete probability measures µ and ⌫ (cf (2)) with weights vectors a 2 Rm
,

b 2 Rn
and Laplacian matrices Ls

2 Rm⇥m
and Lt

2 Rn⇥n
. Let X 2 Rm⇥r

,

Y 2 Rn⇥r
represent the sample sets associated to the features on their vertices.

Given parameters 0 ⌧ s, ⌧ t < 1, consider the di↵used sample sets X̃, Ỹ
represented by the matrices X̃ = exp(�⌧ sLs)X 2 Rm⇥r

, Ỹ = exp(�⌧ tLt)Y 2

Rn⇥r
and define M̃(⌧ s, ⌧ t) := M(X̃, Ỹ) 2 Rm⇥n

, a cost matrix between features

that takes into account the structure of the graphs through di↵usion operators.

We define the Di↵usion Wasserstein distance (DW) between µ and ⌫ as:

DW
p
p(µ, ⌫ | ⌧ s, ⌧ t) = min

�2⇧(a,b)
h�, M̃p

i. (4)

Here again M̃p
is the entrywise p-th power of M̃ . The underlying distance is

implicit in M(·, ·). For the sake of concision, the dependency on ⌧ s and ⌧ t will

be omitted from the notation DW
p
p(µ, ⌫) if not specifically required.

3.2 Role of the di↵usion parameters on DW

Denote Ds = exp(�⌧ sLs) 2 Rm⇥m, Dt = exp(�⌧ tLt) 2 Rn⇥n the di↵usion
matrices, which depend on the (symmetric) Laplacians Ls

2 Rm⇥m, Lt
2 Rn⇥n

and the di↵usion parameters 0 ⌧ s, ⌧ t < 1. Given 1 i m, 1 j n
let xi, yj 2 Rr be the features on nodes i on G

s and j on G
t, i.e. respectively

the i-th row of X 2 Rm⇥r and the j-th row of Y 2 Rn⇥r, and similarly for
x̃i, ỹj 2 Rr built from X̃ = Ds

X and Ỹ = Dt
Y. Observe that M̃(⌧ s, ⌧ t) and

DW
p
p(µ, ⌫ | ⌧ s, ⌧ t) depend on the di↵usion parameters ⌧ s, ⌧ t. When ⌧ s = ⌧ t = 0,

since Ds = Im and Dt = In we have M̃(0, 0) = M hence

DW
p
p(µ, ⌫ | 0, 0) = W

p
p(µ, ⌫), (5)

i.e., DW generalizes the Wasserstein distance W.

• Theoretically, it has good properties:
• it is a distance

• we have bounds for small and large

• it’s efficient to be computed, more than Fused GW

τ

Graph Di↵usion Wasserstein Distances 9

Fig. 3: Numerical illustration of Proposition 2, with distance DW22(µ, ⌫ | ⌧s, ⌧ t) defined in

Eq. (4). E DW
2
2(µ, ⌫ | ⌧s, ⌧ t) is empirically estimated from 2500 independent realisations

of source and target graphs drawn from the same stochastic block model, with p11 =

0.32, p22 = 0.32, p12 = p21 = 0.02 and n = m = 100. The feature vectors X 2 Rm

and Y 2 Rn are arbitrarily chosen and remain fixed across all realisations, to restrict

randomness only to the structures. Empirical median (solid line) and quartiles 1 and 3

(strip) of DW22(µ, ⌫ | ⌧s=⌧, ⌧ t=⌧) are plotted against ⌧ and compared to the Wasserstein

distance W
2
2(µ, ⌫) = DW

2
2(µ, ⌫ | 0, 0) (upper bound) and to the asymptotic regime given

in Eq. (6), when ⌧ ! +1 (lower plateau).

Remark 2. The case where the Laplacians and/or the features are deterministic
is covered by considering probability distributions that are Diracs.

Proof. For brevity we omit the dependency on µ, ⌫.

EDW22 = E inf
�2⇧(a,b)

hM̃2, �i inf
�

EhM̃2, �i = inf
�
hEM̃2, �i inf

�
hM2, �i = W

2
2. ut

Moreover, by [18, Remark 2.19] we have W
2
2(µ, ⌫) � k

1
m

Pm
i=1 xi �

1
n

Pn
j=1 yjk

2
2.

If X and Y are such that in fact W22(µ, ⌫) > k
1
m

Pm
i=1 xi �

1
n

Pn
j=1 yjk

2
2 then for

su�ciently large ⌧ s, ⌧ t we must have DW22(µ, ⌫ | ⌧ s, ⌧ t) < W
2
2(µ, ⌫).

However we can find examples such that DW22(µ, ⌫) > W
2
2(µ, ⌫) and EDW22(µ, ⌫) >

W
2
2(µ, ⌫) for all 0 < ⌧s, ⌧ t < 1. For this, it is su�cient to choose X = Y, so that
W
2
2(µ, ⌫) = 0, and deterministic or random graphs and parameters ⌧ s, ⌧ t such

that exp(�⌧ sLs)X is not equal (even up to permutation) to exp(�⌧ tLt)Y, so
that (almost surely) DW22(µ, ⌫ | ⌧ s, ⌧t) > 0.

Figure 3 illustrates the results of Propositions 1 and 2, where we empirically
estimated E DW

2
2(µ, ⌫ | ⌧ s, ⌧ t), and plotted its evolution against ⌧ = ⌧ s = ⌧ t (ex-

perimental conditions are detailed in the legend of Fig. 3). Trivially, we verify
that DW22(µ, ⌫ | 0, 0) = W

2
2(µ, ⌫). But, more importantly, we observe that E DW

2
2 sys-

tematically stands below W
2
2, confirming thus the prediction of Proposition 2, and

converges towards the theoretical bound given in Eq. (6) of Proposition 1, when
⌧ ! 1. Interestingly also, although we know from the counter-example X = Y

above, that it is not true in general, the trend of E DW
2
2 in Fig. 3 seems to validate

Diagramme du calcul de Di↵usion-Wasserstein

X
s

X
t

X̃
s

X̃
t

M̃ DW
p
p(U

s ,Ut
)

exp(�⌧ sLs)·

exp(�⌧ tLt)·

min
�2⇧(a,b)

n
h�, M̃piF

o

Avantages :

I Un seul terme pour attributs et structure

I ⌧ s et ⌧ t pour régler le compromis entre les deux modalités

I di↵usion lisse les attributs (filtre passe-bas)

19 / 41

19

The Diffusion Wasserstein Distances for Attributed Graphs

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Graph Di↵usion Wasserstein Distances 7

so that exp(�⌧L) is a matrix characterizing the graph at some scale ⌧ . Then,
to compare two graphs of the same size (m nodes), given their Laplacian L1

and L2, the authors of [9] propose to consider || exp(�⌧L1)� exp(�⌧L2)||F and
keep the minimum value of this quantity over all the possible ⌧ ’s. While they
show that it is a distance, and that it captures well structural (dis)similarities
between graphs, its shortcoming is that (i) it can only be used with graphs of
the same size, (ii) it forgets about existing features on these graphs and (iii) it
cannot be directly used in an OT setting.

To introduce our proposed Di↵usion Wasserstein distance, we leverage the
closed-form solution of the heat equation applied now to r features X 2 Rm⇥r

on the graph: exp(�⌧L)X. Each such term describes now the smoothing of all
the features on the graph structure, at a specific characteristic scale ⌧ , as seen in
Fig. 2(b). Because it combines features and structure, this solution will be central
in the following definition of our new distance between graphs with features.

Definition 1. Consider a source graph G
s
, a target graph G

t
represented through

two discrete probability measures µ and ⌫ (cf (2)) with weights vectors a 2 Rm
,

b 2 Rn
and Laplacian matrices Ls

2 Rm⇥m
and Lt

2 Rn⇥n
. Let X 2 Rm⇥r

,

Y 2 Rn⇥r
represent the sample sets associated to the features on their vertices.

Given parameters 0 ⌧ s, ⌧ t < 1, consider the di↵used sample sets X̃, Ỹ
represented by the matrices X̃ = exp(�⌧ sLs)X 2 Rm⇥r

, Ỹ = exp(�⌧ tLt)Y 2

Rn⇥r
and define M̃(⌧ s, ⌧ t) := M(X̃, Ỹ) 2 Rm⇥n

, a cost matrix between features

that takes into account the structure of the graphs through di↵usion operators.

We define the Di↵usion Wasserstein distance (DW) between µ and ⌫ as:

DW
p
p(µ, ⌫ | ⌧ s, ⌧ t) = min

�2⇧(a,b)
h�, M̃p

i. (4)

Here again M̃p
is the entrywise p-th power of M̃ . The underlying distance is

implicit in M(·, ·). For the sake of concision, the dependency on ⌧ s and ⌧ t will

be omitted from the notation DW
p
p(µ, ⌫) if not specifically required.

3.2 Role of the di↵usion parameters on DW

Denote Ds = exp(�⌧ sLs) 2 Rm⇥m, Dt = exp(�⌧ tLt) 2 Rn⇥n the di↵usion
matrices, which depend on the (symmetric) Laplacians Ls

2 Rm⇥m, Lt
2 Rn⇥n

and the di↵usion parameters 0 ⌧ s, ⌧ t < 1. Given 1 i m, 1 j n
let xi, yj 2 Rr be the features on nodes i on G

s and j on G
t, i.e. respectively

the i-th row of X 2 Rm⇥r and the j-th row of Y 2 Rn⇥r, and similarly for
x̃i, ỹj 2 Rr built from X̃ = Ds

X and Ỹ = Dt
Y. Observe that M̃(⌧ s, ⌧ t) and

DW
p
p(µ, ⌫ | ⌧ s, ⌧ t) depend on the di↵usion parameters ⌧ s, ⌧ t. When ⌧ s = ⌧ t = 0,

since Ds = Im and Dt = In we have M̃(0, 0) = M hence

DW
p
p(µ, ⌫ | 0, 0) = W

p
p(µ, ⌫), (5)

i.e., DW generalizes the Wasserstein distance W.

• Experimentally, it works well: the task for comparison is Domain Adaptation
• by itself a cheap way for DA on Attr. Graphs

• can be combined with Fused GW, for an even better

DifFused GW distance, which has best perf. !

Diagramme du calcul de Di↵usion-Wasserstein

X
s

X
t

X̃
s

X̃
t

M̃ DW
p
p(U

s ,Ut
)

exp(�⌧ sLs)·

exp(�⌧ tLt)·

min
�2⇧(a,b)

n
h�, M̃piF

o

Avantages :

I Un seul terme pour attributs et structure

I ⌧ s et ⌧ t pour régler le compromis entre les deux modalités

I di↵usion lisse les attributs (filtre passe-bas)

19 / 41

1.4. Domain Adaptation

(a) Distributions before alignment. (b) Distributions after alignment.

Figure 1.9: Example of a toy DA problem. Two point distributions are given:
a source in red circles and a target in blue crosses. Both are similar up to a
displacement, indicated with a black arrow. A DA problem consists in finding
this displacement, looking only at the two distributions.

This theorem states that, provided the training sample is large enough (n
large), the true risk can be bounded arbitrarily close to the empirical risk with
arbitrarily large probability. For a more complete introduction, we refer the
reader to [61].

1.4.2 Definition of Domain Adaptation
A Domain Adaptation (DA) scenario arises in machine learning when we ob-
serve a change of distribution (a.k.a. domain shift) between the training data
(the source distribution) and the samples used at test time with the deployed
model (the target distribution). To cite a few examples, DA can occur in image
processing, when changing the lighting or camera lens while acquiring images,
in demography with social mobility of people or in fraud detection, with fraud-
sters trying to adapt over time to better mimic genuine behaviours. Most of
the time, training a new model from the target distribution is not desirable for
several reasons: (i) the algorithmic complexity required for optimizing from
scratch the parameters of a new model; (ii) the lack of target training exam-
ples; (iii) the lack (or absence) of supervision (i.e. no labelled target data
available), etc. In such a setting, the domain adaptation theory [63, 64] sug-
gests to reduce the divergence between the source and the target distributions
while learning an e�cient model from the labelled source data.

A visual illustration of a DA problem is given on Figure 1.9. It features two
similar point clouds. The red one represents the source data; they have to be
re-aligned with the target data. Because the goal is to align the distributions,
there is no one-to-one correspondence between source and target points to be
found; instead, here, a rotation and a translation are used to align them.

One way to solve DA problems is to use Optimal Transport [16, 42] (OT),
as presented earlier in Section 1.3. As illustrated in Figure 1.9, OT provides
a natural geometry for comparing and aligning two distributions in the space
of probability measures. In the discrete case, when dealing with point clouds,

21

4.2. Hyper-parameter · selection of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

61

20

The Diffusion Wasserstein Distances for Attributed Graphs

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Chapter 4. Algorithmic implementation of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

58

Graph Di↵usion Wasserstein Distances 7

so that exp(�⌧L) is a matrix characterizing the graph at some scale ⌧ . Then,
to compare two graphs of the same size (m nodes), given their Laplacian L1

and L2, the authors of [9] propose to consider || exp(�⌧L1)� exp(�⌧L2)||F and
keep the minimum value of this quantity over all the possible ⌧ ’s. While they
show that it is a distance, and that it captures well structural (dis)similarities
between graphs, its shortcoming is that (i) it can only be used with graphs of
the same size, (ii) it forgets about existing features on these graphs and (iii) it
cannot be directly used in an OT setting.

To introduce our proposed Di↵usion Wasserstein distance, we leverage the
closed-form solution of the heat equation applied now to r features X 2 Rm⇥r

on the graph: exp(�⌧L)X. Each such term describes now the smoothing of all
the features on the graph structure, at a specific characteristic scale ⌧ , as seen in
Fig. 2(b). Because it combines features and structure, this solution will be central
in the following definition of our new distance between graphs with features.

Definition 1. Consider a source graph G
s
, a target graph G

t
represented through

two discrete probability measures µ and ⌫ (cf (2)) with weights vectors a 2 Rm
,

b 2 Rn
and Laplacian matrices Ls

2 Rm⇥m
and Lt

2 Rn⇥n
. Let X 2 Rm⇥r

,

Y 2 Rn⇥r
represent the sample sets associated to the features on their vertices.

Given parameters 0 ⌧ s, ⌧ t < 1, consider the di↵used sample sets X̃, Ỹ
represented by the matrices X̃ = exp(�⌧ sLs)X 2 Rm⇥r

, Ỹ = exp(�⌧ tLt)Y 2

Rn⇥r
and define M̃(⌧ s, ⌧ t) := M(X̃, Ỹ) 2 Rm⇥n

, a cost matrix between features

that takes into account the structure of the graphs through di↵usion operators.

We define the Di↵usion Wasserstein distance (DW) between µ and ⌫ as:

DW
p
p(µ, ⌫ | ⌧ s, ⌧ t) = min

�2⇧(a,b)
h�, M̃p

i. (4)

Here again M̃p
is the entrywise p-th power of M̃ . The underlying distance is

implicit in M(·, ·). For the sake of concision, the dependency on ⌧ s and ⌧ t will

be omitted from the notation DW
p
p(µ, ⌫) if not specifically required.

3.2 Role of the di↵usion parameters on DW

Denote Ds = exp(�⌧ sLs) 2 Rm⇥m, Dt = exp(�⌧ tLt) 2 Rn⇥n the di↵usion
matrices, which depend on the (symmetric) Laplacians Ls

2 Rm⇥m, Lt
2 Rn⇥n

and the di↵usion parameters 0 ⌧ s, ⌧ t < 1. Given 1 i m, 1 j n
let xi, yj 2 Rr be the features on nodes i on G

s and j on G
t, i.e. respectively

the i-th row of X 2 Rm⇥r and the j-th row of Y 2 Rn⇥r, and similarly for
x̃i, ỹj 2 Rr built from X̃ = Ds

X and Ỹ = Dt
Y. Observe that M̃(⌧ s, ⌧ t) and

DW
p
p(µ, ⌫ | ⌧ s, ⌧ t) depend on the di↵usion parameters ⌧ s, ⌧ t. When ⌧ s = ⌧ t = 0,

since Ds = Im and Dt = In we have M̃(0, 0) = M hence

DW
p
p(µ, ⌫ | 0, 0) = W

p
p(µ, ⌫), (5)

i.e., DW generalizes the Wasserstein distance W.

• Experimentally, it works well: the task for comparison is Domain
Adaptation

Diagramme du calcul de Di↵usion-Wasserstein

X
s

X
t

X̃
s

X̃
t

M̃ DW
p
p(U

s ,Ut
)

exp(�⌧ sLs)·

exp(�⌧ tLt)·

min
�2⇧(a,b)

n
h�, M̃piF

o

Avantages :

I Un seul terme pour attributs et structure

I ⌧ s et ⌧ t pour régler le compromis entre les deux modalités

I di↵usion lisse les attributs (filtre passe-bas)

19 / 41

4.2. Hyper-parameter · selection of DW

(a) Source (left) and target (right) community graphs

(b) L1(·) and DA accuracy as a function of · .

(c) L2(·) and DA accuracy as a function of · .

Figure 4.6: Correlation between L1(·) and L2(·) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(·) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(·) corresponds to the maximum accuracy reachable in
a DA task.

61

12 A. Barbe, M. Sebban, P. Gonçalves, P. Borgnat and R. Gribonval

(a) (b)

[⌘t]dB 6 3 0 -3 -6 -9 -12

↵ (FGW) 0.4 0.6 0.6 0.6 0.7 0.7 0.6
↵ (DFGW) 0.4 0.6 0.6 0.7 0.7 0.6 0.7

f 1 2 3 4 6

↵ (FGW) 0.63 0.63 0.45 0.39 0.54
↵ (DFGW) 0.64 0.56 0.66 0.62 0.46

(c) (d)

Fig. 4: Comparison of OT methods in a domain adaptation task between graphs. We

consider attributed graphs whose structures follow a contextual stochastic block model

and attributes a mixture Gaussian model. Y -axes of plots (a)–(b) represent the clas-

sification accuracies. Hyper-parameters and mean performance are determined from

two distinct sets of 50 i.i.d. realisations each. (a) Structures of Gs and Gt are identical

(p11 = p22 = 0.4, p12 = p21 = 0.05, n = m = 250). SNR of the source features is fixed

([⌘s]dB = 20 log10(⌘
s)=6 dB) and �t of features Yj ⇠ l(j)+�tN (0, 1) varies according

to [⌘t]dB along the X-axis. (b) Features SNR [⌘s]dB=[⌘t]dB=6dB. The target graph

follows a SBM with symmetric connectivity matrix pt12=ps12=0.05, pt11=ps11=0.4 and

pt22 = ps22/f with ps22 =0.4 and f variable on the X-axis. Tables beneath the plots give

the tuned hyper-parameters values for each case. (c) Performance when uncertainty

bears on the features and on the structures simultaneously ([⌘t]dB=0dB, f=3).

(d) Computing times wrt the size of the graphs n=m ([⌘s]dB=[⌘t]dB=0dB, f=1).

from [Barbe et al.,
ECML-PKDD 2020] 21

• On board =

• Various definitions of filters in graphs

• Implementation of graph filters

• Shift operators and frequencies

(1) Filters on graphs - sequel

22

Introduction GSP Examples GSP on Digraph Learning on graphs Numerical explorations Ccl

Wavelets for graph signals
• Wavelet = a local function, acting as filter around a chosen scale,

defined scaling and dilating
A wavelet:

– Translated:

– Scaled
• on Graphs ?

A WAVELET: TRANSLATING: SCALING:

p. 15

Introduction GSP Examples GSP on Digraph Learning on graphs Numerical explorations Ccl

Example 2: Recovery of signals on graphs

• Denoising of a signal with Wavelet regularization, W being the direct
wavelet transform and c the wavelet coefficients of the graph signal:

arg min
c

||W>c � y||
2
2 + �||c||1

• Solution with IST algorithm with a step ⌧ < 2/||W
>

||
2:

c
(k) = S⌧

⇣
c

(k�1) + ⌧W (y � W
>

c
(k�1))

⌘

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Simple Motivating Examples
! Tikhonov regularization for denoising:

! Wavelet denoising:

5

argminf

�
||f � y||22 + �fT Lf

�

Original Noisy Denoised

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

argmina

�
||f � W �a||22 + �||a||1,µ

�

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Simple Motivating Examples
! Tikhonov regularization for denoising:

! Wavelet denoising:

5

argminf

�
||f � y||22 + �fT Lf

�

Original Noisy Denoised

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

argmina

�
||f � W �a||22 + �||a||1,µ

�

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Denoised

p. 17

(2) Filters on graphs => multiresolution

23

Introduction GSP Examples GSP on Digraph Learning on graphs Numerical explorations Ccl

Classical wavelets by analogy������! Graph wavelets
[Hammond et al., ACHA 2011]

The wavelet at scale s centered around a is given by:

 s,u(t) =
1
s

✓
t � u

s

◆
=

Z 1

�1
�̂u(!) ̂(s!) expi!t

d!

Classical (continuous) world Graph world

Real domain t node a

Fourier domain ! eigenvalues �i

Filter kernel ̂(!) h(�i) , Ĥ

Filter bank ̂(s!) h(s�i) , Ĥs

Fourier modes exp�i!t eigenvectors �i

Fourier transf. of x x̂(!) =
R 1

�1 x(t) exp�i!t
dt x̂ = �>

x

In the graph world by analogy: s,a = � Ĥs �̂a = � Ĥs �> �a

p. 16

(2) Filters on graphs => multiresolution

24

Introduction GSP Examples GSP on Digraph Learning on graphs Numerical explorations Ccl

Generalized translations
[Shuman, Ricaud, Vandergheynst, 2014]

• Classical translation (continuous world)

(T⌧ g) (t) = g(t � ⌧) =

Z

R
ĝ(⇠)e�i2⇡⌧⇠

e
�i2⇡t⇠

d⇠

• Graph translations by fundamental analogy:

(Tnf) (a) =
N�1X

i=0

f̂ (i)�⇤
i (n)�i(a)

• Example on the Minnesota road networks

(a) (b) (c)

Figure 7: The translated signals (a) T200f , (b) T1000f , and (c) T2000f , where f , the signal shown in Figure 1(c), is a normalized

heat kernel satisfying f̂(�`) = Ce�5�� . The component of the translated signal at the center vertex is highlighted in magenta.

4.3. Properties of the Generalized Translation Operator
Some expected properties of the generalized translation operator follow immediately from the generalized

convolution properties of Proposition 1.

Corollary 1: For any f, g � RN and i, j � {1, 2, . . . , N},
1. Ti(f � g) = (Tif) � g = f � (Tig).

2. TiTjf = TjTif .

3.
�N

n=1(Tif)(n) =
�

Nf̂(0) =
�N

n=1 f(n).

However, the niceties end there, and we should also point out some properties that are true for the
classical translation operator, but not for the generalized translation operator for signals on graphs. First,
unlike the classical case, the set of translation operators {Ti}i�{1,2,...,N} do not form a mathematical group;
i.e., TiTj �= Ti+j . In the very special case of shift-invariant graphs [24, p. 158], which are graphs for which
the DFT basis vectors (9) are graph Laplacian eigenvectors (the unweighted ring graph shown in Figure 5(c)
is one such graph), we have

TiTj = T��
(i�1)+(j�1)

�
mod N

�
+1

, �i, j � {1, 2, . . . , N}. (26)

However, (26) is not true in general for arbitrary graphs. Moreover, while the idea of successive translations
TiTj carries a clear meaning in the classical case, it is not a particularly meaningful concept in the graph
setting due to our definition of generalized translation as a kernelized operator.

Second, unlike the classical translation operator, the generalized translation operator is not an isometric
operator; i.e., �Tif�2 �= �f�2 for all indices i and signals f . Rather, we have

Lemma 1: For any f � RN ,

|f̂(0)| � �Tif�2 �
�

N�i�f�2 �
�

Nµ�f�2. (27)

Proof.

�Tif�2
2 =

N�

n=1

�
�

N
N�1�

�=0

f̂(��)�
�
� (i)��(n)

�2

= N
N�1�

�=0

N�1�

��=0

f̂(��)f̂(���)��
� (i)�

�
��(i)

N�

n=1

��(n)���(n)

= N
N�1�

�=0

|f̂(��)|2 |��
� (i)|

2 (28)

� N�2
i �f�2

2. (29)

10

p. 14

(2) Filters on graphs => multiresolution

25

Introduction GSP Examples GSP on Digraph Learning on graphs Numerical explorations Ccl

Example 2: Recovery of signals on graphs

• Denoising of a signal with Wavelet regularization, W being the direct
wavelet transform and c the wavelet coefficients of the graph signal:

arg min
c

||W>c � y||
2
2 + �||c||1

• Solution with IST algorithm with a step ⌧ < 2/||W
>

||
2:

c
(k) = S⌧

⇣
c

(k�1) + ⌧W (y � W
>

c
(k�1))

⌘

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Simple Motivating Examples
! Tikhonov regularization for denoising:

! Wavelet denoising:

5

argminf

�
||f � y||22 + �fT Lf

�

Original Noisy Denoised

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

argmina

�
||f � W �a||22 + �||a||1,µ

�

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Simple Motivating Examples
! Tikhonov regularization for denoising:

! Wavelet denoising:

5

argminf

�
||f � y||22 + �fT Lf

�

Original Noisy Denoised

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

argmina

�
||f � W �a||22 + �||a||1,µ

�

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Denoised

p. 17

Introduction GSP Examples GSP on Digraph Learning on graphs Numerical explorations Ccl

Example 2: Recovery of signals on graphs

• Denoising of a signal with Wavelet regularization, W being the direct
wavelet transform and c the wavelet coefficients of the graph signal:

arg min
c

||W>c � y||
2
2 + �||c||1

• Solution with IST algorithm with a step ⌧ < 2/||W
>

||
2:

c
(k) = S⌧

⇣
c

(k�1) + ⌧W (y � W
>

c
(k�1))

⌘

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Simple Motivating Examples
! Tikhonov regularization for denoising:

! Wavelet denoising:

5

argminf

�
||f � y||22 + �fT Lf

�

Original Noisy Denoised

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

argmina

�
||f � W �a||22 + �||a||1,µ

�

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Simple Motivating Examples
! Tikhonov regularization for denoising:

! Wavelet denoising:

5

argminf

�
||f � y||22 + �fT Lf

�

Original Noisy Denoised

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

argmina

�
||f � W �a||22 + �||a||1,µ

�

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Denoised

p. 17

(2) Filters on graphs => multiresolution

26

GraphWave (2018)

(2) Filters on graphs => multiresolution
Learning Structural Node Embeddings via Di�usion Wavelets

Claire Donnat, Marinka Zitnik, David Hallac, Jure Leskovec
Stanford University

{cdonnat,marinka,hallac,jure}@stanford.edu

ABSTRACT
Nodes residing in di�erent parts of a graph can have similar struc-
tural roles within their local network topology. The identi�cation
of such roles provides key insight into the organization of networks
and can be used for a variety of machine learning tasks. How-
ever, learning structural representations of nodes is a challenging
problem, and it has typically involved manually specifying and
tailoring topological features for each node. In this paper, we de-
velop G����W���, a method that represents each node’s network
neighborhood via a low-dimensional embedding by leveraging heat
wavelet di�usion patterns. Instead of training on hand-selected
features, G����W��� learns these embeddings in an unsupervised
way. We mathematically prove that nodes with similar network
neighborhoods will have similar G����W��� embeddings even
though these nodes may reside in very di�erent parts of the net-
work. G����W��� runtime scales linearly with the number of
edges and experiments in a variety of di�erent settings demon-
strate G����W���’s real-world potential for capturing structural
roles in networks. All in all, G����W��� outperforms existing
state-of-the-art baselines in every experiment, by as much as 137%.

CCS CONCEPTS
• Networks→ Topology analysis and generation; • Comput-
ing methodologies → Kernel methods; Learning latent rep-
resentations; Spectralmethods;Cluster analysis;Motif discovery;
• Information systems→ Clustering; Nearest-neighbor search;
ACM Reference Format:
Claire Donnat, Marinka Zitnik, David Hallac, Jure Leskovec. 2018. Learning
Structural Node Embeddings via Di�usion Wavelets. In KDD ’18: The 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, August 19–23, 2018, London, United Kingdom. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3219819.3220025

1 INTRODUCTION
Structural role discovery in graphs focuses on identifying nodes
which have topologically similar network neighborhoods while
residing in potentially distant areas of the network (Figure 1). Intu-
itively, nodes with similar structural roles perform similar functions
in the network, such as managers in the social network of a com-
pany or enzymes in the molecular network of a cell. This alternative
de�nition of node similarity is very di�erent than more traditional

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3220025

Figure 1: Nodes a and b have similar structural roles even
though they are distant in the graph.While the raw spectral
graph wavelets of a and b might be very di�erent, we treat
them as probability distributions and prove that the distri-
butions of wavelet coe�cients of structurally similar nodes
are indeed similar.

notions [9, 12–14, 20, 24, 26, 35], which assume some measure of
“smoothness” over the graph and thus consider nodes residing in
close network proximity to be similar. Such structural role informa-
tion about the nodes can be used for a variety of tasks, including as
input to machine learning problems, or even to identify key nodes
in a system (principal “in�uencers” in a social network, critical hubs
in contagion graphs, etc.).

When structural roles of nodes are de�ned over a discrete space,
they correspond to di�erent topologies of local network neighbor-
hoods (e.g., node on a chain, center of a star, a bridge between two
clusters). However, such discrete roles must be pre-de�ned, requir-
ing domain expertise and manual inspection of the graph structure.
A more powerful and robust method for identifying structural sim-
ilarity involves learning a continuous vector-valued structural em-
bedding �a of each node a in an unsupervised way. This motivates
a natural de�nition of structural similarity in terms of closeness
of topological embeddings: For any � > 0, nodes a and b are de-
�ned to be �-structurally similar with respect to a given distance if
dist (�a , �b) � . Thus, a robust approach must introduce both an
appropriate embedding and an adequate distance metric.

While several methods have been proposed for learning struc-
tural embeddings of nodes in graphs, existing approaches are ex-
tremely sensitive to small perturbations in the topology and lack
mathematical understanding of the properties of the learned em-
beddings. Furthermore, they often require manually hand-labeling
topological features [16], rely on non-scalable heuristics [27], and/or
return a single similarity score instead of a multidimensional struc-
tural embedding [18, 19].
Present work. Here we address the problem of structure learning
on graphs by developing G����W���. Building upon techniques
from graph signal processing [5, 15, 30], our approach learns a
multidimensional structural embedding for each node based on the
di�usion of a spectral graph wavelet centered at the node. Intu-
itively, each node propagates a unit of energy over the graph and
characterizes its neighboring topology based on the response of the

ar
X

iv
:1

71
0.

10
32

1v
4

 [c
s.S

I]
 2

0
Ju

n
20

18

Learning Structural Node Embeddings via Di�usion Wavelets
Claire Donnat, Marinka Zitnik, David Hallac, Jure Leskovec

Stanford University
{cdonnat,marinka,hallac,jure}@stanford.edu

ABSTRACT
Nodes residing in di�erent parts of a graph can have similar struc-
tural roles within their local network topology. The identi�cation
of such roles provides key insight into the organization of networks
and can be used for a variety of machine learning tasks. How-
ever, learning structural representations of nodes is a challenging
problem, and it has typically involved manually specifying and
tailoring topological features for each node. In this paper, we de-
velop G����W���, a method that represents each node’s network
neighborhood via a low-dimensional embedding by leveraging heat
wavelet di�usion patterns. Instead of training on hand-selected
features, G����W��� learns these embeddings in an unsupervised
way. We mathematically prove that nodes with similar network
neighborhoods will have similar G����W��� embeddings even
though these nodes may reside in very di�erent parts of the net-
work. G����W��� runtime scales linearly with the number of
edges and experiments in a variety of di�erent settings demon-
strate G����W���’s real-world potential for capturing structural
roles in networks. All in all, G����W��� outperforms existing
state-of-the-art baselines in every experiment, by as much as 137%.

CCS CONCEPTS
• Networks→ Topology analysis and generation; • Comput-
ing methodologies → Kernel methods; Learning latent rep-
resentations; Spectralmethods;Cluster analysis;Motif discovery;
• Information systems→ Clustering; Nearest-neighbor search;
ACM Reference Format:
Claire Donnat, Marinka Zitnik, David Hallac, Jure Leskovec. 2018. Learning
Structural Node Embeddings via Di�usion Wavelets. In KDD ’18: The 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, August 19–23, 2018, London, United Kingdom. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3219819.3220025

1 INTRODUCTION
Structural role discovery in graphs focuses on identifying nodes
which have topologically similar network neighborhoods while
residing in potentially distant areas of the network (Figure 1). Intu-
itively, nodes with similar structural roles perform similar functions
in the network, such as managers in the social network of a com-
pany or enzymes in the molecular network of a cell. This alternative
de�nition of node similarity is very di�erent than more traditional

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3220025

Figure 1: Nodes a and b have similar structural roles even
though they are distant in the graph.While the raw spectral
graph wavelets of a and b might be very di�erent, we treat
them as probability distributions and prove that the distri-
butions of wavelet coe�cients of structurally similar nodes
are indeed similar.

notions [9, 12–14, 20, 24, 26, 35], which assume some measure of
“smoothness” over the graph and thus consider nodes residing in
close network proximity to be similar. Such structural role informa-
tion about the nodes can be used for a variety of tasks, including as
input to machine learning problems, or even to identify key nodes
in a system (principal “in�uencers” in a social network, critical hubs
in contagion graphs, etc.).

When structural roles of nodes are de�ned over a discrete space,
they correspond to di�erent topologies of local network neighbor-
hoods (e.g., node on a chain, center of a star, a bridge between two
clusters). However, such discrete roles must be pre-de�ned, requir-
ing domain expertise and manual inspection of the graph structure.
A more powerful and robust method for identifying structural sim-
ilarity involves learning a continuous vector-valued structural em-
bedding �a of each node a in an unsupervised way. This motivates
a natural de�nition of structural similarity in terms of closeness
of topological embeddings: For any � > 0, nodes a and b are de-
�ned to be �-structurally similar with respect to a given distance if
dist (�a , �b) � . Thus, a robust approach must introduce both an
appropriate embedding and an adequate distance metric.

While several methods have been proposed for learning struc-
tural embeddings of nodes in graphs, existing approaches are ex-
tremely sensitive to small perturbations in the topology and lack
mathematical understanding of the properties of the learned em-
beddings. Furthermore, they often require manually hand-labeling
topological features [16], rely on non-scalable heuristics [27], and/or
return a single similarity score instead of a multidimensional struc-
tural embedding [18, 19].
Present work. Here we address the problem of structure learning
on graphs by developing G����W���. Building upon techniques
from graph signal processing [5, 15, 30], our approach learns a
multidimensional structural embedding for each node based on the
di�usion of a spectral graph wavelet centered at the node. Intu-
itively, each node propagates a unit of energy over the graph and
characterizes its neighboring topology based on the response of the

ar
X

iv
:1

71
0.

10
32

1v
4

 [c
s.S

I]
 2

0
Ju

n
20

18

KDD ’18, August 19–23, 2018, London, United Kingdom Claire Donnat, Marinka Zitnik, David Hallac, Jure Leskovec

network to this probe.We formally prove that the coe�cients of this
wavelet directly relate to graph topological properties. Hence, these
coe�cients contain all the necessary information to recover struc-
turally similar nodes, without requiring the explicit hand-labeling
of features. However, the wavelets are, by design, localized on the
graph. Therefore to compare wavelets for nodes that are far away
from each other, typical graph signal processing methods (using
metrics like correlation between wavelets or `2 distance) cannot
be used without specifying an exact one-to-one mapping between
nodes for every pairwise comparison, a computationally intractable
task. For this reason, these wavelets have never before been used
for learning structural embeddings.

To overcome this challenge, we propose a novel way of treating
the wavelets as probability distributions over the graph. This way,
the structural information is contained in how the di�usion spreads
over the network rather than where it spreads. In order to provide
vector-valued embeddings, we embed these wavelet distributions
using the empirical characteristic function [23]. The advantage of
empirical characteristic functions is that they capture all the mo-
ments (including higher-order moments) of a given distribution.
This allows G����W��� to be robust to small perturbations in the
local edge structure, as we prove mathematically. The computa-
tional complexity of G����W��� is linear in the number of edges,
thus allowing it to scale to large (sparse) networks. Finally, we
compare G����W��� to several state-of-the-art baselines on both
real and synthetic datasets, obtaining improvements of up to 137%
and demonstrating how our approach is a useful tool for structural
embeddings in graphs.
Summary of contributions. The main contributions of our paper
are as follows:
• We propose a novel use of spectral graph wavelets by treating
them as probability distributions and characterizing the distribu-
tions using empirical characteristic functions.
• We leverage these insights to develop a scalable method (G�����
W���) for learning node embeddings based on structural similar-
ity in graphs, outperforming existing state-of-the-art baselines.
• We prove mathematically that G����W��� accurately recovers
structurally similar and structurally equivalent nodes.

Further related work. Prior work on discovering nodes with sim-
ilar structural roles has typically relied on explicit featurization
of nodes. These methods generate an exhaustive listing of each
node’s local topological properties (e.g., node degree, number of
triangles it participates in, number of k-cliques, its PageRank score)
before computing node similarities based on such heuristic repre-
sentations. A notable example of such approaches is RolX [11, 16],
a matrix-factorization based method which aims to recover a soft-
clustering of nodes into a predetermined number of K distinct
roles using recursive feature extraction [17]. Similarly, struc2vec
[27] uses a heuristic to construct a multilayered graph based on
topological metrics and simulates random walks on the graph to
capture structural information. In contrast, our approach does not
rely on heuristics (we mathematically prove its e�cacy) and does
not require explicit manual feature engineering or hand-tuning of
parameters.

Recent neural representation learningmethods (structure2vec [6],
neural �ngerprints [8], graph convolutional networks (GCNs) [13,

20], message passing networks [10], etc.) are a related line of re-
search. However, these graph embedding methods do not apply in
our setting, since they solve a (supervised) graph classi�cation task
and/or embed entire graphs while we embed individual nodes.

Another line of related work are graph di�usion kernels [5]
which have been utilized for various graph modeling purposes
[3, 22, 29, 34]. However, to the best of our knowledge, our paper is
the �rst to apply graph di�usion kernels for determining structural
roles in graphs. Kernels have been shown to e�ciently capture
geometrical properties and have been successfully used for shape
detection in the image processing community [1, 25, 33]. However,
in contrast to shape-matching problems, G����W��� considers
these kernels as probability distributions over real-world graphs.
This is because the graphs that we consider are highly irregular (as
opposed to the Euclidean and manifold graphs). Therefore, tradi-
tional wavelet methods, which typically analyze node di�usions
across speci�c nodes that occur in regular and predictable patterns,
do not apply. Instead, G����W��� characterizes the shape of the
di�usion, rather than the speci�c nodes where the di�usion occurs.
This key insight allows us to uncover structural embeddings and
to discover structurally similar nodes.

2 LEARNING STRUCTURAL EMBEDDINGS
Given an undirected graph G = (V, E) with N nodesV = {a1, . . . ,
aN }, edges E, an adjacency matrix A (binary or weighted), and a
degree matrix Dii =

P
j Ai j , we consider the problem of learning,

for every node ai , a structural embedding representing ai ’s position
in a continuous multidimensional space of structural roles.

We frame this as an unsupervised learning problem based on
spectral graph wavelets [15] and develop an approach calledG�����
W��� that provides mathematical guarantees on the optimality of
learned structural embeddings.

2.1 Spectral graph wavelets
In this section, we provide background on the spectral graphwavelet-
based model [15, 30] that we will use in the rest of the paper.

Let U be the eigenvector decomposition of the unnormalized
graph Laplacian L = D � A = U�UT and let �1 < �2 · · · �N
(� = Diag(�1, . . . , �N)) denote the eigenvalues of L.

Let �s be a �lter kernel with scaling parameter s . In this paper,
we use the heat kernel �s (�) = e

��s , but our results apply to any
scaling wavelet [31]. For now, we assume that s is given; we develop
a method for selecting an appropriate value of s in Section 4.

Graph signal processing [15, 30] de�nes the spectral graphwavelet
associated with �s as the signal resulting from the modulation in
the spectral domain of a Dirac signal centered around node a. The
spectral graph wavelet �a is given by an N -dimensional vector:

�a = U Diag(�s (�1), . . . ,�s (�N))UT
�a , (1)

where �a = (a) is the one-hot vector for nodea. For notational sim-
plicity, we drop the explicit dependency of spectral graph wavelet
�a on s . Them-th wavelet coe�cient of this column vector is thus
given by �ma =

PN
l=1 �s (�l)UmlUal .

In spectral graph wavelets, the kernel �s modulates the eigen-
spectrum such that the resulting signal is typically localized on the
graph and in the spectral domain [30]. Spectral graph wavelets are

• Use wavelets to have a multi-scale view of the neighbourhood of
each node

• Then embed each node with the wavelet coefficients
Learning Structural Node Embeddings via Heat Di�usion Wavelets KDD ’18, August 19–23, 2018, London, United Kingdom

based on an analogy between temporal frequencies of a signal and
the Laplacian’s eigenvalues. Eigenvectors associated with smaller
eigenvalues carry slow varying signal, encouraging nodes that are
neighbors to share similar values. In contrast, eigenvectors asso-
ciated with larger eigenvalues carry faster-varying signal across
edges. The low-pass �lter kernel �s can thus be seen as a mod-
ulation operator that discounts higher eigenvalues and enforces
smoothness in the signal variation on the graph.

2.2 G����W��� algorithm
We �rst describe G����W��� (Algorithm 1); then, we analyze it
in the next section. For every node a, G����W��� returns a 2d-
dimensional vector �a representing its structural embedding, where
nodes with structurally similar local network neighborhoods will
have similar embeddings.

We �rst apply spectral graph wavelets to obtain a di�usion pat-
tern for every node (Line 3), which we gather in a matrix �. Here,
� is a N ⇥N matrix, where a-th column vector is the spectral graph
wavelet for a heat kernel centered at node a. In contrast to prior
work that studies wavelet coe�cients as a function of the scaling
parameter s , we study them as a function of the network (i.e., how
the coe�cients vary across the local network neighborhood around
the node a). In particular, coe�cients in each wavelet are identi-
�ed with the nodes and �ma represents the amount of energy that
node a has received from nodem. As we will later show nodes a
and b with similar network neighborhoods have similar spectral
wavelet coe�cients � (assuming that we know how to solve the
“isomorphism” problem and �nd the explicit one-to-one mapping of
the nodes from a’s neighborhood to the nodes of the b’s neighbor-
hood). To resolve the node mapping problem G����W��� treats
the wavelet coe�cients as a probability distribution and character-
izes the distribution via empirical characteristic functions. This is a
key insight that makes it possible for G����W��� to learn nodes’
structural embeddings via spectral graph wavelets.

More precisely, we embed spectral graph wavelet coe�cient
distributions into 2d-dimensional space (Line 4-7) by calculating
the characteristic function for each node’s coe�cients �a and sam-
ple it at d evenly spaced points. The characteristic function of a
probability distribution X is de�ned as: �X (t) = E[eitX], t 2 R.
The function �X (t) fully characterizes the distribution of X be-
cause it captures information about all the moments of probability
distribution X [23]. For a given node a and scale s , the empirical
characteristic function of �a is de�ned as:

�a (t) =
1
N

NX

m=1
e
it�ma (2)

Finally, structural embedding �a of node a is obtained by sam-
pling the 2-dimensional parametric function (Eq. (2)) at d evenly
spaced points t1, . . . td and concatenating the values:

�a =
f

Re(�a (ti)), Im(�a (ti))
g

t1, · · ·td
(3)

Note that we sample the empirical characteristic function �a (t)
at d points, which creates a structural embedding of size 2d , so the
dimensionality of the embedding is independent of the graph size.
Distance between structural embeddings.The output ofG�����
W��� is a structural embedding �a for each node a in the graph.

Algorithm 1 Learning structural embeddings in G����W���.

1: Input: Graph G = (V, E), scale s , evenly spaced sampling
points {t1, t2, . . . , td }

2: Output: Structural embedding �a 2 R2d for every node a 2 V
3: Compute � = U�s (�)UT (Eq. (1))
4: for t 2 {t1, t2, . . . , td } do
5: Compute � (t) = column-wise mean(eit�) 2 RN
6: for a 2 V do
7: Append Re(�a (t)) and Im(�a (t)) to �a

We can explore distances between these embeddings through the
use of the `2 distance on �a . The structural distance between nodes
a and b is then de�ned as: dist (a,b) = k�a � �b k2. By de�nition of
the characteristic function, this amounts to comparing moments of
di�erent orders de�ned on wavelet coe�cient distributions.
Scaling parameter. The scaling parameter s determines the radius
of network neighborhood around each node a ([15, 34]). A small
value of s determines node embeddings based on similarity of nodes’
immediate neighborhoods. In contrast, a larger value of s allows
the di�usion process to spread farther in the network, resulting in
embeddings based on neighborhoods with greater radii.

G����W��� can also integrate information across di�erent radii
of neighborhoods by jointly considering many di�erent values of
s . This is achieved by concatenating � representations � (sj)a , each
associated with a scale sj , where sj 2 [smin, smax]. We provide a the-
oretically justi�edmethod for �nding an appropriate range smin and
smax in Section 4. In this multiscale version ofG����W���, the �nal
aggregated structural embedding for node a is a vector �a 2 R2d �
with the following form: �a = [Re(� (sj)

a (ti)), Im(�
(sj)
a (ti)]ti ,sj .

Computational complexity.Weuse Chebyshev polynomials [32]
to compute Line 3 in Algorithm 1. As in [7], each power of the
Laplacian has a computational cost of O (|E |), yielding an overall
complexity ofO (K |E |),whereK denotes the order Chebyshev poly-
nomial approximation. The overall complexity of G����W��� is
linear in the number of edges, which allows G����W��� to scale
to large sparse networks.

3 ANALYSIS OF GRAPHWAVE
In this section, we provide theoretical motivation for our spectral
graph wavelet-based model. First we analytically show that spectral
graph wavelet coe�cients characterize the topological structure
of local network neighborhoods (Section 3.1). Then we show that
structurally equivalent/similar nodes have near-identical/similar
embeddings (Sections 3.2 and 3.3), thereby providing a mathemati-
cal guarantee on the optimality of G����W���.

3.1 Network structure via di�usion wavelets
We start by establishing the relationship between the spectral graph
wavelet of a given node a and the topological properties of local
network neighborhood centered at a. In particular, we prove that a
wavelet coe�cient�ma provides ameasure of network connectivity
between nodes a andm.

We use the fact that the spectrum of the graph Laplacian is
discrete and contained in the compact set [0, �N]. It then follows

Learning Structural Node Embeddings via Heat Di�usion Wavelets KDD ’18, August 19–23, 2018, London, United Kingdom

A B C D
RolX struc2vec GraphWave

Figure 2: Barbell graph. The graph has 8 distinct classes of structurally equivalent nodes as indicated by color (A). 2D PCA
projection of structural embeddings as learned by RolX (B), struc2vec (C) and G����W��� (D). Projections in (B)-(D) contain
the same number of points as there are nodes in the graph (A). Identical embeddings have identical projections, resulting in
overlapping points in (B)-(D).

A B C

Real

Im
ag
in
ar
y

GraphWave

Figure 3: A cycle graph with attached “house” shapes (A). 2D PCA projection of G����W���’s embeddings. Embeddings of
structurally equivalent nodes overlap, and G����W��� perfectly recovers the 6 di�erent structural roles (B). Characteristic
function for the distribution of the wavelet coe�cients (C). Color of a node/curve indicates structural role. (Best seen in color.)

Table 1: Structural role discovery results for di�erent synthetic graphs. (Best seen in color.) Results averaged over 25 syn-
thetically generated graphs. Dashed lines denote perturbed versions of the basic shapes (obtained by randomly adding and
removing edges), node colors indicate structural roles. Two best methods are shown in bold.

Shapes placed along a cycle graph Method Homogeneity Completeness Silhouette Accuracy F1-score
DeepWalk 0.002 0.002 0.29 0.132 0.107
node2vec 0.005 0.005 0.330 0.077 0.064

House RolX 1.000 1.000 1.000 1.000 1.000
struc2vec 0.995 0.995 0.451 0.992 0.991
G����W��� 1.000 1.000 1.000 1.000 1.000
DeepWalk 0.059 0.063 0.247 0.097 0.081
node2vec 0.030 0.032 0.276 0.058 0.046

House RolX 0.570 0.588 0.346 0.823 0.818
perturbed struc2vec 0.206 0.235 0.180 0.461 0.441

G����W��� 0.547 0.566 0.374 0.866 0.866
DeepWalk 0.262 0.233 0.354 0.463 0.428
node2vec 0.244 0.216 0.400 0.460 0.429

Varied RolX 0.841 0.862 0.736 0.836 0.836
struc2vec 0.629 0.578 0.240 0.571 0.555
G����W��� 0.828 0.852 0.816 0.839 0.837
DeepWalk 0.298 0.267 0.327 0.414 0.387
node2vec 0.303 0.265 0.360 0.411 0.386

Varied RolX 0.638 0.627 0.418 0.718 0.714
perturbed struc2vec 0.457 0.433 0.289 0.490 0.470

G����W��� 0.697 0.680 0.516 0.731 0.724

Learning Structural Node Embeddings via Heat Di�usion Wavelets KDD ’18, August 19–23, 2018, London, United Kingdom

A B C D
RolX struc2vec GraphWave

Figure 2: Barbell graph. The graph has 8 distinct classes of structurally equivalent nodes as indicated by color (A). 2D PCA
projection of structural embeddings as learned by RolX (B), struc2vec (C) and G����W��� (D). Projections in (B)-(D) contain
the same number of points as there are nodes in the graph (A). Identical embeddings have identical projections, resulting in
overlapping points in (B)-(D).

A B C

Real

Im
ag
in
ar
y

GraphWave

Figure 3: A cycle graph with attached “house” shapes (A). 2D PCA projection of G����W���’s embeddings. Embeddings of
structurally equivalent nodes overlap, and G����W��� perfectly recovers the 6 di�erent structural roles (B). Characteristic
function for the distribution of the wavelet coe�cients (C). Color of a node/curve indicates structural role. (Best seen in color.)

Table 1: Structural role discovery results for di�erent synthetic graphs. (Best seen in color.) Results averaged over 25 syn-
thetically generated graphs. Dashed lines denote perturbed versions of the basic shapes (obtained by randomly adding and
removing edges), node colors indicate structural roles. Two best methods are shown in bold.

Shapes placed along a cycle graph Method Homogeneity Completeness Silhouette Accuracy F1-score
DeepWalk 0.002 0.002 0.29 0.132 0.107
node2vec 0.005 0.005 0.330 0.077 0.064

House RolX 1.000 1.000 1.000 1.000 1.000
struc2vec 0.995 0.995 0.451 0.992 0.991
G����W��� 1.000 1.000 1.000 1.000 1.000
DeepWalk 0.059 0.063 0.247 0.097 0.081
node2vec 0.030 0.032 0.276 0.058 0.046

House RolX 0.570 0.588 0.346 0.823 0.818
perturbed struc2vec 0.206 0.235 0.180 0.461 0.441

G����W��� 0.547 0.566 0.374 0.866 0.866
DeepWalk 0.262 0.233 0.354 0.463 0.428
node2vec 0.244 0.216 0.400 0.460 0.429

Varied RolX 0.841 0.862 0.736 0.836 0.836
struc2vec 0.629 0.578 0.240 0.571 0.555
G����W��� 0.828 0.852 0.816 0.839 0.837
DeepWalk 0.298 0.267 0.327 0.414 0.387
node2vec 0.303 0.265 0.360 0.411 0.386

Varied RolX 0.638 0.627 0.418 0.718 0.714
perturbed struc2vec 0.457 0.433 0.289 0.490 0.470

G����W��� 0.697 0.680 0.516 0.731 0.724

Learning Structural Node Embeddings via Heat Di�usion Wavelets KDD ’18, August 19–23, 2018, London, United Kingdom

A B C D
RolX struc2vec GraphWave

Figure 2: Barbell graph. The graph has 8 distinct classes of structurally equivalent nodes as indicated by color (A). 2D PCA
projection of structural embeddings as learned by RolX (B), struc2vec (C) and G����W��� (D). Projections in (B)-(D) contain
the same number of points as there are nodes in the graph (A). Identical embeddings have identical projections, resulting in
overlapping points in (B)-(D).

A B C

Real

Im
ag
in
ar
y

GraphWave

Figure 3: A cycle graph with attached “house” shapes (A). 2D PCA projection of G����W���’s embeddings. Embeddings of
structurally equivalent nodes overlap, and G����W��� perfectly recovers the 6 di�erent structural roles (B). Characteristic
function for the distribution of the wavelet coe�cients (C). Color of a node/curve indicates structural role. (Best seen in color.)

Table 1: Structural role discovery results for di�erent synthetic graphs. (Best seen in color.) Results averaged over 25 syn-
thetically generated graphs. Dashed lines denote perturbed versions of the basic shapes (obtained by randomly adding and
removing edges), node colors indicate structural roles. Two best methods are shown in bold.

Shapes placed along a cycle graph Method Homogeneity Completeness Silhouette Accuracy F1-score
DeepWalk 0.002 0.002 0.29 0.132 0.107
node2vec 0.005 0.005 0.330 0.077 0.064

House RolX 1.000 1.000 1.000 1.000 1.000
struc2vec 0.995 0.995 0.451 0.992 0.991
G����W��� 1.000 1.000 1.000 1.000 1.000
DeepWalk 0.059 0.063 0.247 0.097 0.081
node2vec 0.030 0.032 0.276 0.058 0.046

House RolX 0.570 0.588 0.346 0.823 0.818
perturbed struc2vec 0.206 0.235 0.180 0.461 0.441

G����W��� 0.547 0.566 0.374 0.866 0.866
DeepWalk 0.262 0.233 0.354 0.463 0.428
node2vec 0.244 0.216 0.400 0.460 0.429

Varied RolX 0.841 0.862 0.736 0.836 0.836
struc2vec 0.629 0.578 0.240 0.571 0.555
G����W��� 0.828 0.852 0.816 0.839 0.837
DeepWalk 0.298 0.267 0.327 0.414 0.387
node2vec 0.303 0.265 0.360 0.411 0.386

Varied RolX 0.638 0.627 0.418 0.718 0.714
perturbed struc2vec 0.457 0.433 0.289 0.490 0.470

G����W��� 0.697 0.680 0.516 0.731 0.724

Learning Structural Node Embeddings via Heat Di�usion Wavelets KDD ’18, August 19–23, 2018, London, United Kingdom

A B C D
RolX struc2vec GraphWave

Figure 2: Barbell graph. The graph has 8 distinct classes of structurally equivalent nodes as indicated by color (A). 2D PCA
projection of structural embeddings as learned by RolX (B), struc2vec (C) and G����W��� (D). Projections in (B)-(D) contain
the same number of points as there are nodes in the graph (A). Identical embeddings have identical projections, resulting in
overlapping points in (B)-(D).

A B C

Real

Im
ag
in
ar
y

GraphWave

Figure 3: A cycle graph with attached “house” shapes (A). 2D PCA projection of G����W���’s embeddings. Embeddings of
structurally equivalent nodes overlap, and G����W��� perfectly recovers the 6 di�erent structural roles (B). Characteristic
function for the distribution of the wavelet coe�cients (C). Color of a node/curve indicates structural role. (Best seen in color.)

Table 1: Structural role discovery results for di�erent synthetic graphs. (Best seen in color.) Results averaged over 25 syn-
thetically generated graphs. Dashed lines denote perturbed versions of the basic shapes (obtained by randomly adding and
removing edges), node colors indicate structural roles. Two best methods are shown in bold.

Shapes placed along a cycle graph Method Homogeneity Completeness Silhouette Accuracy F1-score
DeepWalk 0.002 0.002 0.29 0.132 0.107
node2vec 0.005 0.005 0.330 0.077 0.064

House RolX 1.000 1.000 1.000 1.000 1.000
struc2vec 0.995 0.995 0.451 0.992 0.991
G����W��� 1.000 1.000 1.000 1.000 1.000
DeepWalk 0.059 0.063 0.247 0.097 0.081
node2vec 0.030 0.032 0.276 0.058 0.046

House RolX 0.570 0.588 0.346 0.823 0.818
perturbed struc2vec 0.206 0.235 0.180 0.461 0.441

G����W��� 0.547 0.566 0.374 0.866 0.866
DeepWalk 0.262 0.233 0.354 0.463 0.428
node2vec 0.244 0.216 0.400 0.460 0.429

Varied RolX 0.841 0.862 0.736 0.836 0.836
struc2vec 0.629 0.578 0.240 0.571 0.555
G����W��� 0.828 0.852 0.816 0.839 0.837
DeepWalk 0.298 0.267 0.327 0.414 0.387
node2vec 0.303 0.265 0.360 0.411 0.386

Varied RolX 0.638 0.627 0.418 0.718 0.714
perturbed struc2vec 0.457 0.433 0.289 0.490 0.470

G����W��� 0.697 0.680 0.516 0.731 0.724

• Finally: cluster or classify

27

Find multiscale communities in complex: with wavelets on graphs
Introduction Graph Signal Processing Dataset of paper textures Graph spectral clustering Analysis of paper dataset

Example 2: Graph wavelets for multiscale ego-network

 s=1,a

 s=35,a

 s=25,a

 s=50,a

• A means to find communities in networks ? Yes
• Some examples of social networks:

Zachary Karatee Club; Sociopatterns data (ISI Turin, CPT Marseille)

Mesure et analyse d’un réseau social Menaut Rémi

grand nombre d’évènements espacés dans le temps. En considérant l’instantanéités des courtes fenêtre
temporelle, nous pouvons construire pour une fenêtre temporelle une structure discrète (N, L) qui liste
les nœuds et les liens du réseaux pour une fenêtre temporelle donnée. Nous pouvons aussi utiliser
une représentation algébrique en considérant la matrice d’adjascence du réseau. Dans la suite, nous
utiliserons surtout cette représentation.

L’obtention de la matrice d’adjascence à partir des données bruts se fait en plusieurs étape que
nous détaillons ici. Grâce à de précédentes études, nous savons qu’il faut un temps d’interaction entre
deux badges de 20 s pour que ce contact soit enregistré avec une probabilité de plus de 99% [2]. Nous
discrétisons donc le temps en fenêtres temporelles de 20 s. Ensuite pour chaque fenêtre temporelle t,
nous construisons la matrice d’adjacence At du réseau. Il s’agit d’une matrice carrée de la taille du
nombre de participants. Ses coefficients At

ij valent 1 si les individus i et j ont eu un contact pendant
les 20 s de la fenêtre temporelle t ou 0 sinon. De plus, puisque nous ne différencions pas les cas où i
voit j aux cas où j voit i, la matrice At est symétrique.

Dans toute la suite et dans un souci d’allègement du discours, nous appellerons une fenêtre tempo-
relle un instant.

2 Premières analyses

2.1 Analyse du graphe agrégé

Une première méthode de visualisation du réseau consiste à construire son graphe agrégé. Pour cela,
il faut considérer la matrice d’adjacence agrégée du réseau : Aag =

P
t At. Le graphe obtenu est alors

statique : il ne dépend plus du temps. Le coefficient Aag
ij est appelé le poids de la liaison ij. Il correspond

au nombre d’instants pendant lesquels i et j étaient en contact. Le graphe peut alors être construit en
symbolisant chaque individu par un nœud puis en traçant un lien (d’épaisseur proportionnel au poids)
entre les nœuds i et j s’ils ont eu un contact.

Les graphes agrégés traçés sur la Figure 1 représentent les graphes agrégés des deux semaines de
mesures au laboratoire. Ils ont été tracés à l’aide du logiciel Gephi. La couleur d’un nœud donne son
appartenance à une équipe du laboratoire. Le placement des points a été fait à partir de l’algorithme
Force Atlas. Nous pouvons aussi constater un regroupement des nœuds d’une même équipe ce qui sera
étudié plus précisément dans la partie 4.

(a) Semaine 1 (b) Semaine 2

Figure 1 – Graphes agrégés des deux semaines de mesure. Chaque nœud représente un individu et
l’épaisseur d’un lien est proportionnelle à son poids. La couleur d’un nœud code l’équipe du laboratoire
dont il fait partit : Bleu : équipe 1, Rouge : équipe 2, Vert : équipe 3, Jaune : équipe 4, Orange : autre.

De nombreuses quantités peuvent être définies à partir de ce graphe agrégé [11]. Nous nous concen-

3

p. 12

(2) Filters on graphs => multiresolution

28

Find multiscale communities in complex : with wavelets on graphsIntroduction Graph Signal Processing Dataset of paper textures Graph spectral clustering Analysis of paper dataset

Filterbanks-based spectral graph clustering

NODE
A:

NODE
B:

AT SMALL SCALE: AT LARGE SCALE:

• Similarity: Ds(a, b) = 1 � f>s,af s,b

||f s,a||2 ||f s,b||2 .

• Classification using hierarchical agglomerative clustering
with average-linkage

• (Not detailed): Add stochasticity in the measurement

fs,a = r>
Hs�

�1�a

where r 2 RN⇥⌘ is i.i.d., centered, normal
- N. Tremblay and P. Borgnat, Graph Wavelets for Multiscale Community Mining, IEEE TSP, 62: 20, p. 5227, 2014

- N. Tremblay, G. Puy, P. Borgnat, R. Gribonval, P. Vandergheynst, ICASSP 2016p. 21

(2) Filters on graphs => multiresolution

29

Find communities in complex : with wavelets on graphsGraph Signal Processing Some examples of GSP GSP on directed graphs Other Examples

Multiscale community detection on networks
[Tremblay, Borgnat 2014]

p. 31

(2) Filters on graphs => multiresolution

30

Introduction Link-OD matrices and estimation Study of BSS Vélo’v NMF tracking Conclusion

Typical problems for graph signal processing
• Often, the graph is not a regular (yet it could be)

has been conducted into the Bluetooth-based data collection, for improving the estimation of these
matrices. From the Bluetooth-based travel time analysis, Barceló, Montero et al., amongst others,
presented a methodology for estimating Origin-Destination Matrices, along corridors (Barceló,
Montero et al. 2010) (freeway with 11 entries and 12 exits) and in urban networks (Barceló, Montero
et al. 2012), by using a limited number of detectors(48). Analogous work was conducted by Blogg,
Semler et al. (2010), who presented two cases studies in the Brisbane metropolitan area: one with
two OD pairs and one with 29 detectors. Yucel, Tuydes-Yaman et al. (2012) presented a case study
in Ankara for an open system composed of 10 intersections and 4 major roads, equipped with 4
Bluetooth devices. Carpenter, Fowler et al. (2012), discussed a new opportunity offered by Bluetooth
sensors concerning the route specific Origin-Destination matrices estimation. Their work was based
on a single case study in Jacksonville with 14 detection devices spread along one corridor. Most of
these works are based on the data collected by a limited number of Bluetooth sensors, scattered
throughout the network. Therefore, the Origin Destination issues have only been considered over a
limited geographical area, or it was studied by aggregating several data sources (e.g. traffic counts).
The availability of more than 260 Bluetooth scanners, within the Brisbane urban area, may create new
opportunities, as far as concerns the retrieval of Origin Destination matrices. This paper aims to
present these new challenges and the difficulties that come with them.

First, this dense network of sensors can directly be used for the ‘zoning’ of the studied area. Each
sensor is considered as a centroid and a geographical zone is then associated with it (for example
based on Voronoi partitions). Through this description of the network, it becomes easy to assign the
origin and destination of trips for individual drivers, from the first and last detections observed in the
Bluetooth data collected. These first and last detections, however, might not correspond to the actual
origin and destination, as the trips might continue outside the Bluetooth covered area. Nevertheless,
the missing information about the complete trip is not relevant to our work, as our aim is the analysis
of the OD patterns within the urban context.

If the sensors are deployed at the most crucial intersections, graphs can be used to accurately
describe the road network covered by the Bluetooth sensors (c.f. Figure 1). Such graphs will have
sensor as vertexes and links indicating the road links between sensors.

Figure 1: Brisbane's road networks with Bluetooth sensors (blue circles) and the infered networks
(blue links).

• How to answer typical signal/image processing questions?

Denoising? Compression + Coarsening ? Estimation ?

1 23

3

1 2

4
28

14

18

p. 6

An Estimation problem [Michau, 2017]

the Link Dependent Origin-Destination Matrix

Introduction Link-OD matrices and estimation Study of BSS Vélo’v NMF tracking Conclusion

Estimation of LODM as an inverse problem

• ODM estimation: an inverse problem (+modelling)

matrices – two entries tables that quantify zone-to-zone tra�c demand. The

estimation of such a matrix requires data for calibrating the estimation proce-

dures. Traditionally, surveys have been used to sample the matrices directly.

However, surveys are expensive, time consuming and biased, and their valid-15

ity limited in time [2]. Consequently, methods based on data collected directly

on roads have also been developed. Using such data, however, causes the OD

matrix estimation problem to become a two-level problem: first, the estimation

of the OD matrix and, second, its assignment to the network. The assignment

consists in computing tra�c flows on the road network that are consistent with20

the OD matrix and, thereby, enabling a comparison with collected data.

Tra�c counts are widely used as a data source for OD matrix estimation.

Since the seventies, many cities have installed magnetic loops in road pavements

(e.g., at tra�c lights) that can detect the passage of massive metallic objects

along the road. Statistical models then help to convert the recorded electro-25

magnetic spikes into numbers of vehicles [3].

More formally, the generic problem of OD estimation can be described as

follows: Let us first denote by G = (V, L) the graph representing a road network,

where the set of NV vertices V consists of the road intersections (possible origin

or destination) and the set of NL directed edges L is the set of direct paths30

between intersections in V . The corresponding OD matrix is T of size NV �NV

and magnetic loops, on links l 2 L, produce NL measures represented by the

vector q̃.

Thus, the OD matrix estimation problem amounts to solving the following

inverse problem:

(�T , �q) 2 Argmin
T , q

�
�1D1(T̃ , T) + �2D2(q̃, q)

�
(1)

s.t. q = F (T) (2)

where D1, D2 are two distance functions, and �1, �2 are two weights representing

the relative belief in a prior knowledge of the OD matrix, T̃ and the observed35

tra�c counts q̃, respectively. The assignment function, F , relates OD flows to

3

• LODM estimation engineered as an inverse problem

Second, the assumption that every intersection is monitored by Bluetooth270

detectors might not be true. This depends, in particular, on the level of de-

tail chosen for the network representation. It leads us to define the LOD ma-

trix, similarly to the Bluetooth LOD matrix, as a matrix in S � S � L. From

another perspective, this could correspond to the addition of virtual links of

weight (length 0) from each Bluetooth scanner to every intersection within its275

detection range. This implies treating the BMS as virtual nodes in V . Thus,

we will denote G = (V, L), the graph representing the road network extended

with those virtual links, and with Bluetooth detectors. In particular, we have

S � V . Bluetooth detectors now become the origin and destination points

considered in this study, but this could easily be adapted to any other col-280

lection of origin/destination patterns (e.g., centroids or zones). This choice of

origin/destination points is justified in [46], which defines detector-to-detector

travel information as transcient information, and demonstrates its usefulness.

The proposed method consists in solving a problem whose formulation is sim-

ilar to that of Problem (1), adapted to the LOD matrix case. More specifically,285

the aim is to solve Eq.(7)

�Q 2 Argmin
Q

�
�TCfTC(Q) + �P fP (Q) + �CfC(Q) + �KfK(Q) + �TV fTV (Q)

�

(7)

where f· are convex functions, modelling properties the estimates should satisfy,

and which are detailed below. It is interesting for the reader to note that fP and

fTC can be interpreted as an adaptation of the distance functions D1 and D2,

in Problem (1), to the present case. The remaining functions help to constrain290

the set of solutions toward more consistency. �· are positive weights, applied to

the objectives, to model their relative importance within the global objective.

4.2. Objective Function for the Real Case Study

4.2.1. Notations and Definitions

We have already defined the graph, representing the road network, as G =295

(V, L), where V represents the NV nodes, and L the NL node connections.

13

• Prior information available:
• B trajectories that give sampled LOD counts
• q counts on roads (without OD information)

p. 12

Introduction Link-OD matrices and estimation Study of BSS Vélo’v NMF tracking Conclusion

The Brisbane case study – results

• Comparison of traffic counts on roads:

NP = 1190 (pairs of Bluetooth detectors with paths shorter than 300m).

For the 6 a.m. to 9 a.m. time interval, tra�c has the following characteristics:415

• The Bluetooth LOD matrix is composed of 39 100 trajectories.

• The cumulated number of tra�c counts is 3 252 172.

• ⌘, the Bluetooth OD penetration rate, computed as per Equation (18), is

0.21.

• The total number of vehicles is unknown.420

Figure 3a illustrates the tra�c count values for roads in �L during the morning

peak hours, and Figure 3b presents, for one OD (Brisbane CBD to Moorooka),

the road tra�c as recovered from the Bluetooth data.

0

989

1979

2968

3958

4947

5936

6926

7915

8905

9894

V
ol

u
m

es

(a)

0

3

6

8

11

14

17

19

22

V
ol

u
m

es

(b)

Figure 3: (a) Tra�c counts derived from induction loop detectors after transfer to the simpli-

fied network. Only 36% of the links have non-zero values. (b) Bluetooth LOD flows for one

specific OD pair (Brisbane CBD (upper �) to Moorooka (lower �). Colour and width of the

roads are proportional to the volume of vehicles.

21

0

2102

4204

6306

8408

10511

12613

14715

16817

18919

21021

V
ol

u
m

es

Figure 5: Brisbane Tra�c Counts on the simplified network for the area of study.

25

Measured (on 36%) Estimated here; more smooth!

p. 20

Introduction Link-OD matrices and estimation Study of BSS Vélo’v NMF tracking Conclusion

The Brisbane case study – results

• Comparison of traffic counts on roads:

NP = 1190 (pairs of Bluetooth detectors with paths shorter than 300m).

For the 6 a.m. to 9 a.m. time interval, tra�c has the following characteristics:415

• The Bluetooth LOD matrix is composed of 39 100 trajectories.

• The cumulated number of tra�c counts is 3 252 172.

• ⌘, the Bluetooth OD penetration rate, computed as per Equation (18), is

0.21.

• The total number of vehicles is unknown.420

Figure 3a illustrates the tra�c count values for roads in �L during the morning

peak hours, and Figure 3b presents, for one OD (Brisbane CBD to Moorooka),

the road tra�c as recovered from the Bluetooth data.

0

989

1979

2968

3958

4947

5936

6926

7915

8905

9894

V
ol

u
m

es

(a)

0

3

6

8

11

14

17

19

22

V
ol

u
m

es

(b)

Figure 3: (a) Tra�c counts derived from induction loop detectors after transfer to the simpli-

fied network. Only 36% of the links have non-zero values. (b) Bluetooth LOD flows for one

specific OD pair (Brisbane CBD (upper �) to Moorooka (lower �). Colour and width of the

roads are proportional to the volume of vehicles.

21

0

2102

4204

6306

8408

10511

12613

14715

16817

18919

21021

V
ol

u
m

es

Figure 5: Brisbane Tra�c Counts on the simplified network for the area of study.

25

Measured (on 36%) Estimated here; more smooth!

p. 20

Introduction Link-OD matrices and estimation Study of BSS Vélo’v NMF tracking Conclusion

Engineering of the objective terms - 2
• Kirchhoff’s Law fK

X

l

E l
kQl

ij � �ikTij| {z }
origin

(source)

=
X

l

I l
kQl

ij � �jkTij| {z }
destination

(sink)

Hence, a term relaxing the constraint is:

fK (Q) =
X

ijk

⇣ X

l

Al
ijkQl

ij

⌘2

• Assumption of small Total Variation:

fTV (Q) =
X

i⇠Ni0

X

j,l

!ii 0 |Ql
ij � Ql

i 0j | +
X

j⇠Nj0

X

i,l

!jj 0 |Ql
ij � Ql

ij 0 |

where Ni 0 is the neighbourhood of i 0 and !ii 0 � 0 are
weights (e.g., taken as exp(-distance/d0))

p. 14

— A break just for fun: more complex inverse problems on graphs—

31

Create graphs which describe data
from classical methods,

 or statistical models,
 or considerations from GSP

32

Create a graph to represent the data

Objective: capture similarities between data points

• This is a standard step in classification / clustering!

• Hence, several manners to code these similarities in a graph:

Formulation

44

Find a mapping from the N high-dim data points to N low-dim points

x1, . . . , xN 7! y1, . . . , yN

xi 2 RL yi 2 RP

Assumption: we have a graph of similarities among original data points

Similarities are often constructed by either :

selecting k-nearest neighbours of each point with distance d(xi, xj)

selecting all points in a neighbourhood d(xi, xj) 6 ✏

OR

THEN
weighting these edges ex: W(i, j) = e�d(xi,xj)

2/t

33

Create a graph to represent the data

Objective: capture similarities between data points

(2) how and why convert data points into graph-based data ?

Often, data come as data points i with features X_{ij}, i.e. measurement •
for variable j on data point i

and they can be represented in the feature space (x_1,x_2)

If the groups are well separated in space, finding them is possible
•

Central to this notion: one needs to find a notion of similarity •
(conversely: of dissimilarity) between data points.

	 For that: use a suitable distance function.

(2) how and why convert data points into graph-based data ?

Often, data come as data points i with features X_{ij}, i.e. measurement •
for variable j on data point i

and they can be represented in the feature space (x_1,x_2)

If the groups are well separated in space, finding them is possible
•

Central to this notion: one needs to find a notion of similarity •
(conversely: of dissimilarity) between data points.

	 For that: use a suitable distance function.

34

Create a graph to represent the data
Objective: keep strong similarities (only) between data points (2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

(2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

(2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

35

Create a graph to represent the data
Objective: keep strong similarities (only) between data points (2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

(2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

(2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

Formulation

44

Find a mapping from the N high-dim data points to N low-dim points

x1, . . . , xN 7! y1, . . . , yN

xi 2 RL yi 2 RP

Assumption: we have a graph of similarities among original data points

Similarities are often constructed by either :

selecting k-nearest neighbours of each point with distance d(xi, xj)

selecting all points in a neighbourhood d(xi, xj) 6 ✏

OR

THEN
weighting these edges ex: W(i, j) = e�d(xi,xj)

2/t

(2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

36

Create a graph to represent the data
Objective: keep strong similarities (only) between data points (2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

(2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

(2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

Formulation

44

Find a mapping from the N high-dim data points to N low-dim points

x1, . . . , xN 7! y1, . . . , yN

xi 2 RL yi 2 RP

Assumption: we have a graph of similarities among original data points

Similarities are often constructed by either :

selecting k-nearest neighbours of each point with distance d(xi, xj)

selecting all points in a neighbourhood d(xi, xj) 6 ✏

OR

THEN
weighting these edges ex: W(i, j) = e�d(xi,xj)

2/t

(2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

37

Create a graph to represent the data
Objective: keep strong similarities (only?) between data points (2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

(2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

(2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

(2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

(2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

(2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

(2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

38

Create a graph to represent the data
Examples

Example of such constructions (from [Ref1])

The analysis, modeling and vizualisation of high dimensional and/or structured data

Structured = with graphs •
	 -> Graphs are (almost) everywhere

	 Physical networks (Roads, Communications, Sensors, ...)	

	 Information networks (Internet, WWW, Social Systems, ...)

	 Biological networks (with Genes; with Proteins; Metabolic; Ecology; Food webs; ...)

	 Neuroscience (neurons in brains; functional or anatomical connectivities, ...)

	 ...

If not :	

Similarity networks / graphs from distances between data points
•

	 	 and/or Clustering of data points (possibly with graphs)

Clustering = •

	 Objective: given some data, how to find groups (or communities) to separate elements

	 Principle: data elements are put together if they are close on to another and/or well connected

	 known as clustering (for data points) or community/module detection (for complex graphs)

Two ingredients :

(1) how to cluster elements (points with coordinates in an Euclidean space ; nodes in graphs)
•
(2) find a good representation: how and why convert data points into graph-based data
•

References:

[Ref1] A Tutorial on Spectral Clustering, Ulrike von Luxburg, 2006
•
[Ref2] Approximating Spectral Clustering via Sampling: a Review. Nicolas Tremblay and Andreas •
Loukas, 2019

[Ref3] Bishop, Pattern Recognition and Machine Learning, 2006 (chapter 9)
•
[Ref4] The elements of statistical learning (2nd edition). T. Hastie, R. Tibshirani, J. Friedman. 2009 •
(chapter 14.3)

First sentence of [Ref1]:

"Clustering is one of the most widely used techniques for exploratory data analysis, with applications
ranging from statistics, computer science, biology to social sciences or psychology."

39

Create a graph to represent the data

Interlude: you know other methods!

(2) how and why convert data points into graph-based data ?

2-a) model the local neighbourhood relationships between the data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.

Several possibilities:

 Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

Example:

A interest of the 3 previous solutions: sparse graphs !

	 	 for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.

MST Cats

ÜÈÏ freins
3 NNgraph

ÏÏÉÈAwthoutliersNote if symmetrized
VergsparseifkNNmatuneighbours

40

=> Just what we described

Create a graph to represent the data
Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points

A possible solution: Hierarchical clustering

with two broad strategies: Agglomerative (a "bottom-up" approach) vs. Divisive (a "top-down" approach)

More details on Agglomerative clustering

41

Create a graph to represent the data
Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points

A possible solution: Hierarchical clustering

with two broad strategies: Agglomerative (a "bottom-up" approach) vs. Divisive (a "top-down" approach)

More details on Agglomerative clustering

2-b) Create a graph that clusters (or classifies) data points

A possible solution: Hierarchical clustering

with two broad strategies: Agglomerative (a "bottom-up" approach) vs. Divisive (a "top-down" approach)

More details on Agglomerative clustering

42

Create a graph to represent the data
Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points

A possible solution: Hierarchical clustering

with two broad strategies: Agglomerative (a "bottom-up" approach) vs. Divisive (a "top-down" approach)

More details on Agglomerative clustering

An issue involved in Agglomerative clustering

An issue involved in Agglomerative clustering

43

Create a graph to represent the data
Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points

A possible solution: Hierarchical clustering

with two broad strategies: Agglomerative (a "bottom-up" approach) vs. Divisive (a "top-down" approach)

More details on Agglomerative clustering

An issue involved in Agglomerative clustering

An issue involved in Agglomerative clustering

44

Create a graph to represent the data
Interlude: you know other methods!

• 2-c) Learn a graph that captures things from the dataThe many sides of graph learning (1)

The general setting:
•
	 from observations....		 	 	 ...find a graph....	 								 ...that models well the data

	 here: some model is useful

	 	 e.g.: Gaussian model

Some specific settings or applications:
•
	 Network tomography	 	 	 	 Smoothness on graph										 Observation of diffused signals	

	 	 	 	 	 [Segarra et al., 2016; Pasdeloup et al., 2016]

1

• Gaussian Graphical Models

• Bayesian Networks

• Methods with optimization and
GSP inside!

45

Create a graph to represent the data
The general view

(some slides thanks to Bouchard, Breloy, Mian, Hippert-Ferrer)

Intro Setup GSP GNN Conclusion

All in one drawing

w18

w38

w89w19
w15

w59

w16

w56

w49w23

w24

w25
w29

w26

w47

w67

w37

w57

x1
x8

x3

x9

x5x6

x4

x2

x7

x1

x2

x3

x4

x5

x6

x7

x8

x9

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= X

9

Intro Setup GSP GNN Conclusion

Examples

Node Edge

Social network Person Relationship
Embedded systems Sensor Communication channel
Finance Company Ownership
Molecular graph Atom Chemical bond
Language Word Semantic link
Public transport Station Active line
Internet Pages Link
Citation Paper Citations
Neuroscience EEG sensor Brain connectivity

...
...

...
10

46

Create a graph to represent the data
The general view of Graph learning

(some slides thanks to Bouchard, Breloy, Mian, Hippert-Ferrer)

Intro Setup GSP GNN Conclusion

Graph learning

When the graph topology is unknown but each node generates data
Learn the underlying graph from samples x = [x1, x2, . . . , xp]⊤

x1 x2 xn...

n samples

p
va
ria
bl
es

w18

w38

w89w19
w15

w59

w16

w56

w49w23

w24

w25
w29

w26

w47

w67

w37

w57

x1
x8

x3

x9

x5x6

x4

x2

x7

13

47

Create a graph to represent the data
Graph learning: with graphical model

Intro GLasso Laplacian learning Robust GL Structured GL Concl.

A statistical view for graph learning

An edge encodes the “relationship” between two nodes

We can consider a statistical definition of relationship [Dem72; Lau96]

“Connection in the graph = conditional dependence”

The conditional dependence ¬(x1 ⊥⊥ x2) holds if

P(x1|x2, x3, · · · , xp︸ ︷︷ ︸
x⊥

) ̸= P(x1|x⊥)

“x2 adds information to x⊥ in order to predict x1” 9

On Undirected Gaussian Graphical Models [A. Costard's thesis, 2014]

On Undirected Gaussian Graphical Models [A. Costard's thesis, 2014]

48

Create a graph to represent the data
Graph learning: with graphical model

On Undirected Gaussian Graphical Models [A. Costard's thesis, 2014]

On Undirected Gaussian Graphical Models [A. Costard's thesis, 2014]

49

Create a graph to represent the data
Graph learning: with graphical model

Intro GLasso Laplacian learning Robust GL Structured GL Concl.

Conditional independence and precision matrix

Theorem
Let

E[xx⊤] = Σ = Θ −1

Covariance Precision

Then
xq ⊥⊥ xℓ

no edge wqℓ on the graph
⇔ Θqℓ = 0

null qℓth-element in the precision

Holds for
• Gaussian model
• Most Elliptical distributions
• Semiparametric Gaussian copula aka “nonparanormal”

10

Some properties of undirected Gaussian Graphical Models

Hyp: the data follows a multivariate Gaussian distribution

Can we control some independence between variables though the correlation matrix ?

Yes, through 	 	 that is called the precision matrix

Key property of GGM: the precision matrix is 0 iif the partial correlation coefficient is 0

Why? [from Marine Roux's thesis, 2018] [see also Ref4, Ref5]

Lemma 2.1:

(note: we have used here the Schur's complement to compute the inverse)

Now, let's define the graph:

50

Create a graph to represent the data
Graph learning: with graphical model

Graphical models: two possible questions

Given observations of (i.i.d.) samples of the multivariate signal X

1) Estimate the edge weights, i.e. the non-zero entries of the precision matrix

	 => is the usual estimator of correlation consistant ?

	 => maximum likelihood estimation of

2) Learn the graph G from the samples

	 => threshold the precision matrix ?

	 => covariance selection of Dempster, 1972

	 => multiple test for covariance selection

	 	 [Drton, Perlman, 2004]

	 => penalised maximum likelihood estimation with a sparsity term for K

	 => probabilistic approaches for p(G|X)

	 (=> change the perspective: use data smoothness and Graph Signal Processing)

Intro GLasso Laplacian learning Robust GL Structured GL Concl.

Learning Gaussian graphical models (GGM)

A Gaussian graphical model implies a sparse precision matrix Θ = Σ−1

Graphical Lasso (GLasso)⇔ regularized MLE of Θ

minimize
Θ∈S++

p

Tr{SΘ}− log det(Θ) + λ∥Θ∥1,off , S =
1
nXX⊤

Gaussian log-likelihood sparse penalty

−→ Graph drawn fromΘ’s support

13

Intro GLasso Laplacian learning Robust GL Structured GL Concl.

Learning Gaussian graphical models (GGM)

A Gaussian graphical model implies a sparse precision matrix Θ = Σ−1

Graphical Lasso (GLasso)⇔ regularized MLE of Θ

minimize
Θ∈S++

p

Tr{SΘ}− log det(Θ) + λ∥Θ∥1,off , S =
1
nXX⊤

Gaussian log-likelihood sparse penalty

−→ Graph drawn fromΘ’s support

13

51

Create a graph to represent the data
Graph learning: with graphical model

Intro GLasso Laplacian learning Robust GL Structured GL Concl.

GLasso algorithm (i) [FHT08; MH12; WFS11] (here with correction from [MH12])

Solution Θ such that: −Θ−1 + S + λΓ = 0,
where Γ is a matrix of element-wise signs of Θ, i.e.,

Γij = sign(Θij) if Θij ̸= 0, Γij ∈ [−1, 1] if Θij = 0

Positivity yields: Wii = Sii + λ, where W = Θ−1

GLasso based on block-coordinate method:

(
Θ11 Θ12

Θ21 Θ22

) (
Γ11 Γ12

Γ21 Γ22

)
R(p−1)×(p−1) R(p−1)×1

R

(
W11 W12

W21 W22

)
=

⎛

⎜⎝
Θ−1

11 +
Θ−1

11 Θ12Θ21Θ
−1
11

Θ22−Θ21Θ
−1
11 Θ12

− Θ−1
11 Θ12

Θ22−Θ21Θ
−1
11 Θ12

− Θ21Θ
−1
11

Θ22−Θ21Θ
−1
11 Θ12

1
Θ22−Θ21Θ

−1
11 Θ12

⎞

⎟⎠

14

52

Create a graph to represent the data
Graph learning: with graphical model

Intro GLasso Laplacian learning Robust GL Structured GL Concl.

GLasso algorithm (ii)

For the considered block: Θ−1
11 Θ12W22 + S12 + λΓ12 = 0

Equivalent to: minimize
α∈Rp−1

1
2α

⊤Θ−1
11 α+α⊤S12 + λ∥α∥1

Then: Θ12 = α/W22 Θ22 = 1
W22

+Θ21Θ
−1
11 Θ12

From there:

• Θ−1
11 = W11 −W12W21/W22

• Update W through the block identity

15

Intro GLasso Laplacian learning Robust GL Structured GL Concl.

GLasso algorithm (iii)

Algorithm

1. Initialize W = diag(S) + λIp

2. While not convergence, cycle around the columns:
a. Rearrange rows/columns so that target one is last

b. Compute Θ−1
11 = W11 −W12W21/W22

c. Solve minimize
α∈Rp−1

1
2α

⊤Θ−1
11 α+α⊤S12 + λ∥α∥1

d. Update Θ12 = α/W22 and Θ22 = 1
W22

+Θ21Θ
−1
11 Θ12

e. Update Θ and W from block identity, ensuring ΘW = Ip

3. Output precision Θ and covariance W

16

53

Create a graph to represent the data
Graph learning: with graphical model

2) Estimation of the Graph structure: the Graphical lasso

Some references:

A popular approach: the Graphical lasso (Friedman et al. 2007 et 2008) [Ref3]

Taking the gradient equation from J:

	 	

It will modifies the previous (constrained) eq. into:

EXERCICE (if you follow ML as well):

	 finish to write the algorithm,

	 or understand the one from [Ref3] :

EXAMPLE [Costard, 2014]: we generate 600 observations according to the GMM

Then, we use graphical lasso, with varying penalisation parameter

2) Estimation of the Graph structure: the Graphical lasso

Some references:

A popular approach: the Graphical lasso (Friedman et al. 2007 et 2008) [Ref3]

Taking the gradient equation from J:

	 	

It will modifies the previous (constrained) eq. into:

EXERCICE (if you follow ML as well):

	 finish to write the algorithm,

	 or understand the one from [Ref3] :

EXAMPLE [Costard, 2014]: we generate 600 observations according to the GMM

Then, we use graphical lasso, with varying penalisation parameter

2) Estimation of the Graph structure: the Graphical lasso

Some references:

A popular approach: the Graphical lasso (Friedman et al. 2007 et 2008) [Ref3]

Taking the gradient equation from J:

	 	

It will modifies the previous (constrained) eq. into:

EXERCICE (if you follow ML as well):

	 finish to write the algorithm,

	 or understand the one from [Ref3] :

EXAMPLE [Costard, 2014]: we generate 600 observations according to the GMM

Then, we use graphical lasso, with varying penalisation parameter

Next question is: How to choose ? (See Costard PhD thesis, and ask Titouan V. for more recent answer)λ

54

Create a graph to represent the data
Graph learning: with GSP

Introduction Question & Data Method Results Discussion References

Related work in graph learning

"Static network inference" = a well studied topic: see eg.

I The great Tutorial T-AM4 - Graph learning in SP & ML, this past Monday!
I Graphical model inference Friedman et al. (2007)
I Connecting the dots: infer networks from GSP as in Segarra et al. (2017); Pasdeloup

et al. (2018); Mateos et al. (2019)
I Learning of Laplacian or Adjacency matrices from a constraint of smoothness of the

data, operator constraints, structural constraints, spectral constraints, as in (Kalofolias,
2016; Dong et al., 2016; Thanou et al., 2017; Egilmez et al., 2017; Dong et al., 2019),...
(+ Apologies to all the missing references)

In images, from (Kalofolias, 2016):
1st smooth signal

-20

-10

0

10

2nd smooth signal

-20

-10

0

10

20

3rd smooth signal

-10

0

10

20

30

4th smooth signal

10

20

30

40

into 4 graphs:

11/31

Introduction Question & Data Method Results Discussion References

Related work in graph learning

"Static network inference" = a well studied topic: see eg.

I The great Tutorial T-AM4 - Graph learning in SP & ML, this past Monday!
I Graphical model inference Friedman et al. (2007)
I Connecting the dots: infer networks from GSP as in Segarra et al. (2017); Pasdeloup

et al. (2018); Mateos et al. (2019)
I Learning of Laplacian or Adjacency matrices from a constraint of smoothness of the

data, operator constraints, structural constraints, spectral constraints, as in (Kalofolias,
2016; Dong et al., 2016; Thanou et al., 2017; Egilmez et al., 2017; Dong et al., 2019),...
(+ Apologies to all the missing references)

In images, from (Kalofolias, 2016):
1st smooth signal

-20

-10

0

10

2nd smooth signal

-20

-10

0

10

20

3rd smooth signal

-10

0

10

20

30

4th smooth signal

10

20

30

40

into 4 graphs:

11/31

55

Create a graph to represent the data
Graph learning: with GSP

Intro GLasso Laplacian learning Robust GL Structured GL Concl.

Learning Laplacian from graph signal smoothness

Smoothness of a graph signal measured by graph signal variation

GSV(x) =
∑

q,ℓ
Aq,ℓ(xq − xℓ)2 = x⊤Lx

Total GSV for a data matrix X
n∑

i=1
x⊤

i Lxi = Tr(X⊤LX) ∝ Tr(LS) with S = XX⊤/n

Could we learn the graph that yields the “smoothest” observation X ?

minimize
L∈L

Tr(X⊤LX) ⇒ trivial solution L = 0

→ Solution 1: design of fitting-penalties to get meaningful solutions
→ Solution 2: Link the problem to gaussian graphical models

19

56

Create a graph to represent the data
Graph learning: with GSP

Intro GLasso Laplacian learning Robust GL Structured GL Concl.

Overview

A generic problem formulation

minimize
L∈L

Tr(X⊤LX) + f+(L) + fsp(L)

avoid L = 0

promotes sparsitySmothness

• Some works equivalently formalized the problem wrt A

• Some works considered constraints instead of penalty f+
• The construction and motivation for each terms evolved between 2016-2023

• Next slides present a “historic” overview of the developments

20

Intro GLasso Laplacian learning Robust GL Structured GL Concl.

Learning Graph from smooth signals (ii) [Kal16]

Promoting smoothness = graph sparsity

Z ∈ Rp×p : ∥xi − xj∥2
2, Tr(X⊤LX) =

1
2Tr(AZ) = 1

2 ∥A⊙ Z∥1

weighted ℓ-1 norm

Tr(X⊤LX) + λ∥A∥1 =
1
2∥A⊙ (2λ11⊤ + Z)∥1

→ Adding another sparsity term not necessarily useful

22

From Kalofolias 2016:

57

Create a graph to represent the data
Graph learning: with GSP

From Kalofolias 2016:

Intro GLasso Laplacian learning Robust GL Structured GL Concl.

Learning Graph from smooth signals (iii)

minimize
A∈A

f(A) + ∥A⊙ Z∥1

Example 1 – Gaussian kernel graph

f(A) = σ2
∑

ij
Aij(log(Aij)− 1)

Solution:
Aij = exp

(
−∥xi − xj∥2

2
σ2

)

23

Intro GLasso Laplacian learning Robust GL Structured GL Concl.

Learning Graph from smooth signals (iii)

minimize
A∈A

f(A) + ∥A⊙ Z∥1

Example 1 – Gaussian kernel graph

f(A) = σ2
∑

ij
Aij(log(Aij)− 1)

Solution:
Aij = exp

(
−∥xi − xj∥2

2
σ2

)

23

Intro GLasso Laplacian learning Robust GL Structured GL Concl.

Learning Graph from smooth signals (iv)

minimize
A∈A

f(A) + ∥A⊙ Z∥1

Example 2 f(A) = α∥A1∥2
2 + α∥A∥2

2 (= α∥L∥2
2),

promotes graph density by penalizing big weights while allowing small ones

subject to ∥A∥1 = s [Don+16]

Example 3 f(A) = β
2 ∥A∥2

2 −α1⊤ log(A1) , α > 0,β ≥ 0

promotes graph density

force degrees to be positive, do not prevent edges to be zero

[Kal16]

Solve these optimization problems→ primal dual techniques from [KP15]

2458

Create a graph to represent the data
Graph learning: with GSP

From Kalofolias 2016:

Introduction Question & Data Method Results Discussion References

Smoothness-based methods for static graph learning (2)

I will follow Kalofolias (2016):

one optimization problem to infer a graph G on which X smooth is formulated as:
(P-stat)

min
W2W

f (W) = min
W2W

kW �Zk1 �a1> log(W1)+bkW k2F . (2)

I 1st term = data fidelity = controls the smoothness on G

I 2nd terms = regularizations =
I control of average degree node, parameter a
I control the density of the graph, parameter b

1st smooth signal

-20

-10

0

10

2nd smooth signal

-20

-10

0

10

20

3rd smooth signal

-10

0

10

20

30

4th smooth signal

10

20

30

40

into 1 graph:

Graph with edges learned from above 4 signals

14/31

Introduction Question & Data Method Results Discussion References

Smoothness-based methods for static graph learning (2)

I will follow Kalofolias (2016):

one optimization problem to infer a graph G on which X smooth is formulated as:
(P-stat)

min
W2W

f (W) = min
W2W

kW �Zk1 �a1> log(W1)+bkW k2F . (2)

I 1st term = data fidelity = controls the smoothness on G

I 2nd terms = regularizations =
I control of average degree node, parameter a
I control the density of the graph, parameter b

1st smooth signal

-20

-10

0

10

2nd smooth signal

-20

-10

0

10

20

3rd smooth signal

-10

0

10

20

30

4th smooth signal

10

20

30

40

into 1 graph:

Graph with edges learned from above 4 signals

14/31

Introduction Question & Data Method Results Discussion References

Smoothness-based methods for static graph learning (2)

I will follow Kalofolias (2016):

one optimization problem to infer a graph G on which X smooth is formulated as:
(P-stat)

min
W2W

f (W) = min
W2W

kW �Zk1 �a1> log(W1)+bkW k2F . (2)

I 1st term = data fidelity = controls the smoothness on G

I 2nd terms = regularizations =
I control of average degree node, parameter a
I control the density of the graph, parameter b

1st smooth signal

-20

-10

0

10

2nd smooth signal

-20

-10

0

10

20

3rd smooth signal

-10

0

10

20

30

4th smooth signal

10

20

30

40

into 1 graph:

Graph with edges learned from above 4 signals

14/31

Introduction Question & Data Method Results Discussion References

Smoothness-based methods for static graph learning (1)

Our problem: inter-dependence when small difference in risk premia
So, according to Kalofolias (2016); Dong et al. (2016), signals of interest rates are smooth on
the graphs of inter-dependence

Setting:
I G = (V ,E): graph where V is a set of N nodes and E is a set of edges.

Nodes are countries ; edges code for dependencies.

I W 2 W : adjacency matrix where Wij is the weight of the edge between vi and vj .

I W = {W 2 RN⇥N
+ s.t. W =W>,diag(W) = 0}: admissible set.

Key quantity:
Given Zij = kxi �xjk2, the total global variations on the graph of X 2 RN⇥m

(having m components per node, e.g. 12 for a monthly signal spanning a year)
are:

1
2 Â

(i ,j)2V⇥V

Wijkxi �xjk2 = kW �Zk1. (1)

13/31

Introduction Question & Data Method Results Discussion References

Smoothness-based methods for static graph learning (1)

Our problem: inter-dependence when small difference in risk premia
So, according to Kalofolias (2016); Dong et al. (2016), signals of interest rates are smooth on
the graphs of inter-dependence

Setting:
I G = (V ,E): graph where V is a set of N nodes and E is a set of edges.

Nodes are countries ; edges code for dependencies.

I W 2 W : adjacency matrix where Wij is the weight of the edge between vi and vj .

I W = {W 2 RN⇥N
+ s.t. W =W>,diag(W) = 0}: admissible set.

Key quantity:
Given Zij = kxi �xjk2, the total global variations on the graph of X 2 RN⇥m

(having m components per node, e.g. 12 for a monthly signal spanning a year)
are:

1
2 Â

(i ,j)2V⇥V

Wijkxi �xjk2 = kW �Zk1. (1)

13/31

59

Create a graph to represent the data
Graph learning: with GSP — development 1: Gaussian Markov Random FieldsIntro GLasso Laplacian learning Robust GL Structured GL Concl.

Learning Graph from Gaussian Markov random fields (i) [EPO17]

minimize
L∈L

Tr(L S)− log det(L) + ∥L⊙ H ∥1

sample covariance matrix symmetric regularization matrix

Generalized graph: Lg = {L : L ≽ 0, ∀i ̸= j, Lij ≤ 0}

Diagonally dominant graph: Ld = {L : L ≽ 0, ∀i ̸= j, Lij ≤ 0, L1 ≥ 0 }

∀i, |Lii| ≥
∑

j ̸=i |Lij|

Combinatorial graph: Lc = {L : L ≽ 0, ∀i ̸= j, Lij ≤ 0, L1 = 0 }
rank(L) = p − 1

25

Combine loss from graphical lasso and behaviour of the Laplacian of a graph:
From Elgimez, Pavel, Ortega, 2017

Intro GLasso Laplacian learning Robust GL Structured GL Concl.

Learning Graph from Gaussian Markov random fields (ii) [EPO17]

ℓ-1 norm penalty: Since ∀i ̸= j, Lij ≤ 0, Lii > 0, one can choose H such that

∥L⊙H∥1 = Tr(LH)

Simple to optimize

In particular:

α∥L∥1 = Tr(LH), H = α(2Ip − 11⊤) α∥L∥1,off = Tr(LH), H = α(Ip − 11⊤)

Thus:
minimize

L∈L
Tr(LK)− log det(L), K = S + H

26

Intro GLasso Laplacian learning Robust GL Structured GL Concl.

Learning Graph from Gaussian Markov random fields (ii) [EPO17]

ℓ-1 norm penalty: Since ∀i ̸= j, Lij ≤ 0, Lii > 0, one can choose H such that

∥L⊙H∥1 = Tr(LH)

Simple to optimize

In particular:

α∥L∥1 = Tr(LH), H = α(2Ip − 11⊤) α∥L∥1,off = Tr(LH), H = α(Ip − 11⊤)

Thus:
minimize

L∈L
Tr(LK)− log det(L), K = S + H

26

60

Create a graph to represent the data
Intro GLasso Laplacian learning Robust GL Structured GL Concl.

Beyond GLasso/LC-GMRF: a general graph learning framework

minimize
Θ

f(Θ) + λh(Θ)

subject to Θ ∈ SΘ and Θ† = Σ ∈ SΣ

Fit graph to data Promote graph sparsity

Structure in precision Structure in covariance

1. Design model f and penalty h
• Elliptical distributions [Cardoso22]

• Gaussian copulas [Liu09]

• Robust fitting [Phi24]

• Nonconvex penalties [Cardoso20]

2. Leverage structures onΘ

• Laplacian constrained [Eğilmez17]

• Spectral structure [Kumar22]

• Factor models [Hippert-ferrer23]

• Total positivity [Lauritzen19]

• Θ† = Correlation [Wed, 28 at eusipco 24!]
47

Graph learning: with GSP — development 2: Robust or Structured GL
From Hippert-Ferrer, ECML 2023

Intro GLasso Laplacian learning Robust GL Structured GL Concl.

Applications on some data sets

Methods
GLasso
4 options of EGFM: {Gaussian, t-dist.} × {Full rank, Factor model}
Laplacian learning: NGL (Gauss.), SGL (Gauss., K-comp.), StGL (t-dist., K-comp.)

Datasets
Animals: p = 33 animals, n = 102 categorical questions [Lake&Tenenbaum2010]

GNSS Piton de la Fournaise: p = 22 stations, n = 1106 dates [Smittarello2019]

Concepts: p = 1000 concepts, n = 218 semantic features (5pt scale) [Lake&Tenenbaum2010]

Code
https://github.com/ahippert/graphfactormodel

58

61

Create a graph to represent the data
Graph learning: with GSP — development 2: Robust or Structured GL

From Hippert-Ferrer, ECML 2023Intro GLasso Laplacian learning Robust GL Structured GL Concl.

GLasso NGL SGL StGL

GGM GGFM EGM EGFM 59
62

Create a graph to represent the data
Graph learning: with GSP — development 3: time-series

Introduction Question & Data Method Results Discussion References

Related work in dynamic graph learning

45IEEE SIGNAL PROCESSING MAGAZINE | May 2019 |

the data, we would like to build or infer the relationship
between these variables that take the form of a graph .G
As a result, each column of the data matrix X becomes a
graph signal defined on the node set of the estimated graph,
and the observations can be represented as (),X F G=
where F represents a certain generative process or func-
tion on the graph.

The graph-learning problem is an important one because
1) a graph may capture the actual geometry of structured
data, which is essential to efficient processing, analysis, and
visualization; 2) learning the relationship between data enti-
ties benefits numerous application domains, such as under-
standing functional connectivity between brain regions or
behavioral influence between a group of people; and 3) the
inferred graph can help to predict future data evolution.

Generally speaking, inferring graph topologies from ob -
servations is an ill-posed problem, and there are many ways
of associating a topology with the observed data samples.
Some of the most straightforward methods include computing
the sample correlation or using a similar-
ity function, e.g., a Gaussian radius basis
function kernel to quantify the similarity
between data samples. These methods are
based purely on observations without any
explicit prior on or model of the data, hence
they may be sensitive to noise and have dif-
ficulty in tuning the hyperparameters. A
meaningful data model or accurate prior
may, however, guide the graph-inference
process and lead to a graph topology that
better reveals the intrinsic relationship among
the data entities. Therefore, a main challenge with this prob-
lem is to define such a model for the generative process or
function ,F so that it captures the relationship between the
observed data X and the learned graph topology, .G Typi-
cally, such models often correspond to specific criteria to
describe or estimate structures between the data samples, e.g.,
models that put a smoothness assumption on the data, or that
represent an information diffusion process on the graph.

Historically, there have been two
general approaches for learning graphs
from data: one based on statistical
models and one based on physically
motivated models. From the statisti-
cal perspective, ()F G is modeled as a
function that draws realizations from a
probability distribution over the vari-
ables, which is determined by the struc-
ture of .G One prominent example is
found in probabilistic graphical models
[5], where the graph structure encodes
the conditional independence relation-
ship among random variables that are
represented by the vertices. Therefore,
learning the graph structure is equiva-
lent to learning a factorization of a joint

probability distribution of these random variables. Typical
application domains include inferring interactions between genes
using gene expression profiles, and the relationship between
politicians given their voting behaviors [6].

For physically motivated models, ()F G is defined based
on the assumption of an underlying physical phenomenon
or process on the graph. One popular process is network
 diffusion or cascades [7]–[10], where ()F G dictates the
diffusion behavior on ,G which leads to the observations

,X possibly at different time steps. In this case, the problem
is equivalent to learning a graph structure on which the gen-
erative process of the observed signals may be explained.
Practical applications include understanding information
flowing over a network of online media sources [7] or observ-
ing epidemics spreading over a network of human interac-
tions [11], given the state of exposure or infection at certain
time steps.

The fast-growing field of GSP [3], [12] offers a new per-
spective on the problem of graph learning. In this setting, the

columns of the observation matrix X are
explicitly considered as signals that are
defined on the vertex set of a weighted
graph, .G The learning problem can then
be cast as one of learning a graph ,G such
that ()F G permits certain properties or
characteristics of the observations X to be
explicit, e.g., smoothness with respect to
G or sparsity in a basis related to .G This
signal representation perspective is partic-
ularly interesting because it puts a strong
and explicit emphasis on the relationship

between the signal representation and the graph topology,
where ()F G often comes with an interpretation of frequency-
domain analysis or filtering operation of signals on the graph.
For example, it is common to adopt the eigenvectors of the
graph Laplacian matrix associated with G as a surrogate for
the Fourier basis for signals supported on G [3], [13]; we go
deeper into the details of this view in the “Graph Learning: A
Signal Representation Perspective” section.

(a) (b)

FIGURE 1. Inferring functional connectivity between different regions of the brain. (a) BOLD time series
data recorded in different regions of the brain and (b) a functional connectivity graph where the vertices
represent the brain regions and the edges (with thicker lines indicating heavier weights) represent the
strength of functional connections between these regions. (This figure was adapted from [4, Fig. 1].)

Historically, there
have been two general
approaches for learning
graphs from data: one
based on statistical
models and one based
on physically motivated
models.

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on March 26,2020 at 10:22:06 UTC from IEEE Xplore. Restrictions apply.

Richiardi et al. (2013)

Many works studying multivariate time series through the lens of dynamic graphs:
I Kalofolias et al. (2017); Hallac et al. (2017); Giannakis et al. (2018); Yamada et al.

(2019, 2020); Natali et al. (2021)
I Inter-dependencies of the series captured by fitting a dynamic graph
I a problem of "Dynamic network inference":

- for GGM: time-Varying Graphical lasso Hallac et al. (2017); Jung et al. (2015);
Giannakis et al. (2018)
- for smoothness-based criterium (Kalofolias et al., 2017; Yamada et al., 2019, 2020;
Natali et al., 2021).

Our contributions: study of long-term financial series of world bond markets.
I Leverages the version of Yamada et al. (2019)
I Exposes a descriptive structure as a dynamic network.
I Adapts the method to real-world features of bond returns:

missing samples, nonstationarities, global heterogeneities across countries and times
I Extracts specific dynamic networks’ features, e.g. # of edges and clusters, their sizes,

centralities, to describe long-term evolutionary patterns.

12/31

Introduction Question & Data Method Results Discussion References

Related work in dynamic graph learning

45IEEE SIGNAL PROCESSING MAGAZINE | May 2019 |

the data, we would like to build or infer the relationship
between these variables that take the form of a graph .G
As a result, each column of the data matrix X becomes a
graph signal defined on the node set of the estimated graph,
and the observations can be represented as (),X F G=
where F represents a certain generative process or func-
tion on the graph.

The graph-learning problem is an important one because
1) a graph may capture the actual geometry of structured
data, which is essential to efficient processing, analysis, and
visualization; 2) learning the relationship between data enti-
ties benefits numerous application domains, such as under-
standing functional connectivity between brain regions or
behavioral influence between a group of people; and 3) the
inferred graph can help to predict future data evolution.

Generally speaking, inferring graph topologies from ob -
servations is an ill-posed problem, and there are many ways
of associating a topology with the observed data samples.
Some of the most straightforward methods include computing
the sample correlation or using a similar-
ity function, e.g., a Gaussian radius basis
function kernel to quantify the similarity
between data samples. These methods are
based purely on observations without any
explicit prior on or model of the data, hence
they may be sensitive to noise and have dif-
ficulty in tuning the hyperparameters. A
meaningful data model or accurate prior
may, however, guide the graph-inference
process and lead to a graph topology that
better reveals the intrinsic relationship among
the data entities. Therefore, a main challenge with this prob-
lem is to define such a model for the generative process or
function ,F so that it captures the relationship between the
observed data X and the learned graph topology, .G Typi-
cally, such models often correspond to specific criteria to
describe or estimate structures between the data samples, e.g.,
models that put a smoothness assumption on the data, or that
represent an information diffusion process on the graph.

Historically, there have been two
general approaches for learning graphs
from data: one based on statistical
models and one based on physically
motivated models. From the statisti-
cal perspective, ()F G is modeled as a
function that draws realizations from a
probability distribution over the vari-
ables, which is determined by the struc-
ture of .G One prominent example is
found in probabilistic graphical models
[5], where the graph structure encodes
the conditional independence relation-
ship among random variables that are
represented by the vertices. Therefore,
learning the graph structure is equiva-
lent to learning a factorization of a joint

probability distribution of these random variables. Typical
application domains include inferring interactions between genes
using gene expression profiles, and the relationship between
politicians given their voting behaviors [6].

For physically motivated models, ()F G is defined based
on the assumption of an underlying physical phenomenon
or process on the graph. One popular process is network
 diffusion or cascades [7]–[10], where ()F G dictates the
diffusion behavior on ,G which leads to the observations

,X possibly at different time steps. In this case, the problem
is equivalent to learning a graph structure on which the gen-
erative process of the observed signals may be explained.
Practical applications include understanding information
flowing over a network of online media sources [7] or observ-
ing epidemics spreading over a network of human interac-
tions [11], given the state of exposure or infection at certain
time steps.

The fast-growing field of GSP [3], [12] offers a new per-
spective on the problem of graph learning. In this setting, the

columns of the observation matrix X are
explicitly considered as signals that are
defined on the vertex set of a weighted
graph, .G The learning problem can then
be cast as one of learning a graph ,G such
that ()F G permits certain properties or
characteristics of the observations X to be
explicit, e.g., smoothness with respect to
G or sparsity in a basis related to .G This
signal representation perspective is partic-
ularly interesting because it puts a strong
and explicit emphasis on the relationship

between the signal representation and the graph topology,
where ()F G often comes with an interpretation of frequency-
domain analysis or filtering operation of signals on the graph.
For example, it is common to adopt the eigenvectors of the
graph Laplacian matrix associated with G as a surrogate for
the Fourier basis for signals supported on G [3], [13]; we go
deeper into the details of this view in the “Graph Learning: A
Signal Representation Perspective” section.

(a) (b)

FIGURE 1. Inferring functional connectivity between different regions of the brain. (a) BOLD time series
data recorded in different regions of the brain and (b) a functional connectivity graph where the vertices
represent the brain regions and the edges (with thicker lines indicating heavier weights) represent the
strength of functional connections between these regions. (This figure was adapted from [4, Fig. 1].)

Historically, there
have been two general
approaches for learning
graphs from data: one
based on statistical
models and one based
on physically motivated
models.

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on March 26,2020 at 10:22:06 UTC from IEEE Xplore. Restrictions apply.

Richiardi et al. (2013)

Many works studying multivariate time series through the lens of dynamic graphs:
I Kalofolias et al. (2017); Hallac et al. (2017); Giannakis et al. (2018); Yamada et al.

(2019, 2020); Natali et al. (2021)
I Inter-dependencies of the series captured by fitting a dynamic graph
I a problem of "Dynamic network inference":

- for GGM: time-Varying Graphical lasso Hallac et al. (2017); Jung et al. (2015);
Giannakis et al. (2018)
- for smoothness-based criterium (Kalofolias et al., 2017; Yamada et al., 2019, 2020;
Natali et al., 2021).

Our contributions: study of long-term financial series of world bond markets.
I Leverages the version of Yamada et al. (2019)
I Exposes a descriptive structure as a dynamic network.
I Adapts the method to real-world features of bond returns:

missing samples, nonstationarities, global heterogeneities across countries and times
I Extracts specific dynamic networks’ features, e.g. # of edges and clusters, their sizes,

centralities, to describe long-term evolutionary patterns.

12/31

Introduction Intro to GSP iEEG FC, PLV, pPLV Time-Graph decomposition HOsSVD Validation Ccl

Decomposition of Functional Connectivity vs. time

p. 19

Model of 4 signals with temporal
synchrony

Corresponding functional connectivity
in function of time samples

Dynamical graph at t = 300 Dynamical graph at t = 2200

Recordings of iEEG for
Epileptic treatment

Introduction Intro to GSP iEEG FC, PLV, pPLV Time-Graph decomposition HOsSVD Validation Ccl

A current motivation: studies of iEEG
Example of recording:
a multivariate signal...

...that is converted to a dy-
namic graph,
with measures of “coher-
ence” or functional connec-
tivities, on sliding windows

p. 11

[G. Frusque, 2020]

63

Create a graph to represent the data
Graph learning: with GSP — development 3: time-series

Introduction Question & Data Method Results Discussion References

Dynamic graph learning with sparse edge edition (1)

I Kalofolias et al. (2017): a time-varying setting with smooth variations of the inferred
graphs, thanks to a Tikhonov regularization term

T

Â
k=2

kWk �Wk�1k2F

I Yamada et al. (2019, 2020) temporal sparsity prior with `1 norm better suited to sharp
changes
(see Hallac et al. (2017); Jung et al. (2015) for graph-lasso)

I Yamada et al. (2020): group lasso term (global changes at sparse time points) vs. fused
lasso term (local change at sparse time points), more adapted for financial time series:

Optimization problem for Dynamic graph learning:
(P-dyn)

min
Wk2W

T

Â
k=1

fk (Wk)+h
T

Â
k=2

kWk �Wk�1k1, (4)

with fk (Wk) as in (P-stat) with parameters ak and bk

Solution of the optimization problem:
I Primal dual optimization algorithm as in Yamada et al. (2019, 2020) using the

primal-dual splitting framework of Condat (2013).

16/31

Introduction Question & Data Method Results Discussion References

Dynamic graph learning with sparse edge edition (1)

I Kalofolias et al. (2017): a time-varying setting with smooth variations of the inferred
graphs, thanks to a Tikhonov regularization term

T

Â
k=2

kWk �Wk�1k2F

I Yamada et al. (2019, 2020) temporal sparsity prior with `1 norm better suited to sharp
changes
(see Hallac et al. (2017); Jung et al. (2015) for graph-lasso)

I Yamada et al. (2020): group lasso term (global changes at sparse time points) vs. fused
lasso term (local change at sparse time points), more adapted for financial time series:

Optimization problem for Dynamic graph learning:
(P-dyn)

min
Wk2W

T

Â
k=1

fk (Wk)+h
T

Â
k=2

kWk �Wk�1k1, (4)

with fk (Wk) as in (P-stat) with parameters ak and bk

Solution of the optimization problem:
I Primal dual optimization algorithm as in Yamada et al. (2019, 2020) using the

primal-dual splitting framework of Condat (2013).

16/31

The general idea: add a “smoothness” term in time, or “sparsity”

Network Inference via the Time-Varying Graphical Lasso
David Hallac, Youngsuk Park, Stephen Boyd, Jure Leskovec

Stanford University
{hallac,youngsuk,boyd,jure}@stanford.edu

ABSTRACT
Many important problems can be modeled as a system of inter-
connected entities, where each entity is recording time-dependent
observations or measurements. In order to spot trends, detect anom-
alies, and interpret the temporal dynamics of such data, it is essen-
tial to understand the relationships between the di�erent entities
and how these relationships evolve over time. In this paper, we
introduce the time-varying graphical lasso (TVGL), a method of
inferring time-varying networks from raw time series data. We cast
the problem in terms of estimating a sparse time-varying inverse
covariance matrix, which reveals a dynamic network of interdepen-
dencies between the entities. Since dynamic network inference is
a computationally expensive task, we derive a scalable message-
passing algorithm based on the Alternating Direction Method of
Multipliers (ADMM) to solve this problem in an e�cient way. We
also discuss several extensions, including a streaming algorithm to
update the model and incorporate new observations in real time.
Finally, we evaluate our TVGL algorithm on both real and syn-
thetic datasets, obtaining interpretable results and outperforming
state-of-the-art baselines in terms of both accuracy and scalability.

1 INTRODUCTION
Applications in many settings, ranging from neurological connec-
tivity patterns [21] to �nancial markets [23] and social network
analysis [1, 22], contain massive sequences of multivariate times-
tamped observations. Such data can often be modeled as a network
of interacting entities, where each entity is a node associated with
a time series of data points. In these dependency networks, also
known as Markov random �elds (MRFs) [16, 26, 33], an edge repre-
sents a partial correlation, or a direct e�ect (holding all other nodes
constant) between two entities. An important problem that arises
in many applications is using observational data to infer these rela-
tionships (i.e., edges) and their evolution over time. In particular,
it is necessary to understand how the structure of these complex
systems changes over a period of interest (Figure 1). For example,
in �nancial markets, companies can be represented as nodes, and
each acts like a “sensor” recording a time series of its stock price.
By understanding the relationships within the network and their
evolution over time, one can detect anomalies, spot trends, classify

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4887-4/17/08. . . $15.00
https://doi.org/10.1145/3097983.3098037

Figure 1: Three sensors with associated time series readings.
Based on such data, we infer a time-varying network that
reveals 1) the dependencies between the di�erent sensors,
and 2) when and how these dependencies change over time.

events, forecast future behavior, and solve many other problems at
the intersection of time series analysis and network science.

To learn these networks, one can model the relationships be-
tween the entities through an underlying inverse covariance matrix
that changes over time. Doing so allows for inference of a dynamic
undirected network, with nodes representing the di�erent enti-
ties and edges de�ning the coupling between them. More precisely,
given a multivariate sequence of readings, one can estimate the true
inverse covariance matrix ��1(t) (which changes over time), assum-
ing a Gaussian distribution. The focus is speci�cally on the inverse
covariance because of its increased interpretability: if ��1i j (t) = 0
then, given the values of all the other entities (i.e., nodes), i and j

are conditionally independent at time t [17]. Therefore, the inferred
network has an edge between i and j at time t if ��1i j (t) , 0, de-
noting a structural dependency between these two entities at that
moment in time. In the static case, where ��1 is constant, this infer-
ence is known as the graphical lasso problem [7, 35]. While many
e�cient algorithms exist for solving the graphical lasso [2, 14], such
methods do not generalize to the time-varying case.

Inferring dynamic networks is challenging mainly because it is
di�cult to simultaneously estimate both the network itself and the
change in its structure over time. This is in part due to the fact
that networks can exhibit many di�erent types of changes. The
range of possibilities includes a sudden shift of the entire network
structure, a single node rewiring all of its connections, or even
just one or two edges changing in the whole network. Therefore,
any method must be general enough to discover many types of
evolutionary patterns, while also being powerful enough to learn
this temporal structure over very long time series. As such, solving
for time-varying networks is computationally expensive, especially
compared to time-invariant inference [6, 19]. There are more pa-
rameters, additional coupling, and more complicated dynamics.

ar
X

iv
:1

70
3.

01
95

8v
2

 [c
s.L

G
]

10
 Ju

n
20

17

From Hallac et al., 2017

64

Create a graph to represent the data
Graph learning: with GSP — development 3: time-series

Introduction Question & Data Method Results Discussion References

Dynamic graph learning with sparse edge edition (1)

I Kalofolias et al. (2017): a time-varying setting with smooth variations of the inferred
graphs, thanks to a Tikhonov regularization term

T

Â
k=2

kWk �Wk�1k2F

I Yamada et al. (2019, 2020) temporal sparsity prior with `1 norm better suited to sharp
changes
(see Hallac et al. (2017); Jung et al. (2015) for graph-lasso)

I Yamada et al. (2020): group lasso term (global changes at sparse time points) vs. fused
lasso term (local change at sparse time points), more adapted for financial time series:

Optimization problem for Dynamic graph learning:
(P-dyn)

min
Wk2W

T

Â
k=1

fk (Wk)+h
T

Â
k=2

kWk �Wk�1k1, (4)

with fk (Wk) as in (P-stat) with parameters ak and bk

Solution of the optimization problem:
I Primal dual optimization algorithm as in Yamada et al. (2019, 2020) using the

primal-dual splitting framework of Condat (2013).

16/31

9

50 100 150 200 250 300

Time slot

5

10

15

20

25

30

35

40

45

50

In
d
e
x

o
f
g
ra

p
h
 e

d
g
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Ground truth

50 100 150 200 250 300

Time slot

5

10

15

20

25

30

35

40

45

50

In
d
e
x

o
f
g
ra

p
h
 e

d
g
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) SGL-GLasso

50 100 150 200 250 300

Time slot

5

10

15

20

25

30

35

40

45

50

In
d
e
x

o
f
g
ra

p
h
 e

d
g
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) SGL-Smooth

50 100 150 200 250 300

Time slot

5

10

15

20

25

30

35

40

45

50

In
d
e
x

o
f
g
ra

p
h
 e

d
g
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) TGL-GLTV

Fig. 5. The visualization of the temporal variations in the time-varying graph learned from the dataset based on the graph that produces large fluctuations at
few time slots.

can be observed that TGL-GLTV can detect large fluctuations
of the graph in time slots where the connectivity state changes,
while SGL-GLasso and SGL-Smooth have several unclear
jumps. As a result, TGL-GLTV is the graph learning method
suitable for change detection, and the group Lasso of temporal
variation is effective in graph learning.

Fig. 4 visualizes the temporal variation of a part of edge
weights on the learned graphs from the datasets of TV-RW
and TV-ER graphs with K = 10. The vertical and horizontal
axis of these figures represent the edge and time slot indices
of the learned graph, and the color represents the intensity of
the edge weights. To make an easy view, they visualize the
first 50 edge indices. As can be seen in Fig. 4, SGL-GLasso
and SGL-Smooth cannot capture the original graph structure,
and they output the graphs ignoring its temporal relations.
TGL-Tikhonov is slightly superior to the static graph learning
methods. However, it yields many undesirable edges and the
edge weights are relatively small. In contrast, TGL-FLasso
estimated the original structure better than the other methods
and outputs the graph considering its temporal relationships.

Fig. 5 also demonstrates the temporal variation for the
datasets of the LF-ER graph with K = 10. It can be observed
that SGL-GLasso and SGL-Smooth cannot capture the large
fluctuations in the graph. In contrast, TGL-GLTV detects large
edge changes in the original time-varying graph.

C. Effect of Temporal Resolution

To verify the robustness of the proposed method against the
temporal graph transition, i.e., temporal resolution, we evaluate
the performance for the dataset of the TV-RW graph with
different sampling periods ⌧ = 0.1, 0.5, 1.0, 1.5, 2.0. Table
III shows the performance comparisons with the dataset of
TV-RW graph with K = 10 according to ⌧ . TGL-FLasso
outperforms other methods when the sampling period ⌧ is
small. On the other hand, TGL-FLasso and TGL-Tikhonov
have comparable performance for the average relative error
with ⌧ = 1.0, and TGL-FLasso gets worse performance than
TGL-Tikhonov when ⌧ gets large. This is because many edge
weights of graphs may vary over time when the sampling
period is long, i.e., it does not satisfy (P1).

D. Computation Time

We compare the computation time of the proposed methods
with some related works. All methods are implemented in

TABLE III
THE PERFORMANCE OF LEARNING TIME-VARYING GRAPH FOR DIFFERENT

SAMPLING PERIODS.

Average F-measure
Sampling period 0.1 0.5 1.0 1.5 2.0

SGL-GLasso 0.613 0.574 0.574 0.580 0.575
SGL-Smooth 0.639 0.562 0.562 0.563 0.534

TGL-Tikhonov 0.681 0.606 0.613 0.611 0.596
TGL-FLasso 0.718 0.636 0.656 0.664 0.627

Average Relative Error
Sampling period 0.1 0.5 1.0 1.5 2.0

SGL-GLasso 0.602 0.690 0.699 0.697 0.696
SGL-Smooth 0.612 0.683 0.692 0.685 0.731

TGL-Tikhonov 0.529 0.606 0.607 0.605 0.633

TGL-FLasso 0.431 0.574 0.609 0.656 0.701

Fig. 6. The comparison of computation time for the different number of N .

MATLAB R2018b and run on a 2.3-GHz Intel Xeon W
processor with 128-GB RAM. The experiments are tested
on the TV-ER graph dataset for different number of nodes
N = {10, 50, 100, 250, 500}. The tolerance value ✏ in each
methods is set to 1.0⇥ 10�3.

Fig. 6 shows the computation time of each method, demon-
strating that the proposed methods (TGL-FLasso and TGL-
GLTV) converge faster than SGL-GLasso. Because SGL-
GLasso needs to solve nonnegative quadratic programs as
the subproblem in each iteration, it requires very signif-
icant computation time. The computational complexity of

From Yamada et al., 2020

65

Create a graph to represent the data
Graph learning: with GSP — development 3: time-series

From Yamada et al., 2020

10

TABLE IV
DENOISING RESULTS

dog handstand skirt wheel

noisy 12.12 13.97 13.73 15.45
k-NN 12.35 14.29 14.01 15.76

SGL-Smooth 13.13 15.37 15.03 16.74
TGL-Tikhonov 13.34 15.69 15.34 17.06
TGL-FLasso 20.05 21.32 21.58 22.97

one iteration in SGL-GLasso is O(N2 + Tp(N)) complexity
where O(Tp(N)) is the worst-case complexity of solving the
subproblem, and Tp(N) = ⌦(N3). On the other hand, the
complexity the iteration in TGL-FLasso and TGL-GLTV is
O(N2) complexity as described in Section IV.

TGL-FLasso and TGL-GLTV required longer computation
time than SGL-Smooth and TGL-Tikhonov, where they esti-
mate a graph using the almost same algorithm; that is, they
have the same computational complexity O(N2). However,
TGL-FLasso and TGL-GLTV introduce dual variables to solve
the optimization problem with temporal variation regulariza-
tion, i.e., they have more variables to update than SGL-
Smooth and TGL-Tikhonov. Although TGL-Tikhonov also has
temporal variation regularization, it can be computed without
introducing dual variable because its temporal variation regu-
larization can be differentiable.

VI. REAL DATA APPLICATIONS

A. Denoising of Dynamic Point Clouds

Our proposed method is applied to dynamic point cloud data
denoising. Dynamic point cloud data contains 3D coordinates
of dynamically evolving points. When point cloud data are
acquired, the measurement error leads to the displacements
of the geometric coordinates of the point clouds. Here, we
consider graph-based denoising approaches. The performance
of noise removal depends on the underlying graph. In this
experiment, denoising is performed by using graph heat kernel
filtering [45]. The time-varying graph used in the denoising is
estimated from noisy point cloud data.

We use the dynamic point cloud dataset in [46], which
contains five dynamic point clouds: dance, dog, handstand,

skirt, and wheel. As this dataset is clean data, with position
ranges from �260 to 1932, we added Gaussian noise with
� = 90, which is a significantly higher noise level. The time-
varying graph is learned from the dataset downsampled to 357
points and evolving over 240 time slots. In this experiment,
we use fixed parameters for each method, which is determined
by a grid search with dance data, and evaluate the denoising
performance with the other four data.

Table IV summarizes the dynamic point cloud denois-
ing qualities. Time-varying graph learning methods, TGL-
Tikhonov and TGL-FLasso, show better results than SGL-
Smooth and k-nearest neighbor. This indicates that the k-
nearest neighbor cannot construct the meaningful graph from
noisy data. Additionally, TGL-FLasso outperformed TGL-
Tikhonov up to 6 dB.

Fig. 7 shows the visualization of denoising results of the
wheel at a certain time. Similar to the numerical performance,

(a) Ground truth (b) Noisy

(c) k-nearest neighbor (d) SGL-Smooth

(e) TGL-Tikhonov (f) TGL-FLasso

Fig. 7. The visualization of denoising result of wheel at a certain time.

the k-nearest neighbor cannot capture the structure of the
human body. SGL-Smooth and TGL-Tikhonov yield slightly
better outputs than that by the k-nearest neighbor; however, the
arms and legs are still problematic. On the other hand, TGL-
FLasso can successfully capture the structure of the human
body than the other methods.

Fig. 8 visualizes a graph at a certain time in the time-
varying graph estimated from the noisy wheel data in the
dynamic point cloud dataset. In this figure, the nodes in the
graphs are plotted in the correct position for visualization. As
shown in Fig. 8, k-nearest neighbor yields a sparse graph but
nodes are connected without a temporal relationship. SGL-

An example on dynamic point cloud

10

TABLE IV
DENOISING RESULTS

dog handstand skirt wheel

noisy 12.12 13.97 13.73 15.45
k-NN 12.35 14.29 14.01 15.76

SGL-Smooth 13.13 15.37 15.03 16.74
TGL-Tikhonov 13.34 15.69 15.34 17.06
TGL-FLasso 20.05 21.32 21.58 22.97

one iteration in SGL-GLasso is O(N2 + Tp(N)) complexity
where O(Tp(N)) is the worst-case complexity of solving the
subproblem, and Tp(N) = ⌦(N3). On the other hand, the
complexity the iteration in TGL-FLasso and TGL-GLTV is
O(N2) complexity as described in Section IV.

TGL-FLasso and TGL-GLTV required longer computation
time than SGL-Smooth and TGL-Tikhonov, where they esti-
mate a graph using the almost same algorithm; that is, they
have the same computational complexity O(N2). However,
TGL-FLasso and TGL-GLTV introduce dual variables to solve
the optimization problem with temporal variation regulariza-
tion, i.e., they have more variables to update than SGL-
Smooth and TGL-Tikhonov. Although TGL-Tikhonov also has
temporal variation regularization, it can be computed without
introducing dual variable because its temporal variation regu-
larization can be differentiable.

VI. REAL DATA APPLICATIONS

A. Denoising of Dynamic Point Clouds

Our proposed method is applied to dynamic point cloud data
denoising. Dynamic point cloud data contains 3D coordinates
of dynamically evolving points. When point cloud data are
acquired, the measurement error leads to the displacements
of the geometric coordinates of the point clouds. Here, we
consider graph-based denoising approaches. The performance
of noise removal depends on the underlying graph. In this
experiment, denoising is performed by using graph heat kernel
filtering [45]. The time-varying graph used in the denoising is
estimated from noisy point cloud data.

We use the dynamic point cloud dataset in [46], which
contains five dynamic point clouds: dance, dog, handstand,

skirt, and wheel. As this dataset is clean data, with position
ranges from �260 to 1932, we added Gaussian noise with
� = 90, which is a significantly higher noise level. The time-
varying graph is learned from the dataset downsampled to 357
points and evolving over 240 time slots. In this experiment,
we use fixed parameters for each method, which is determined
by a grid search with dance data, and evaluate the denoising
performance with the other four data.

Table IV summarizes the dynamic point cloud denois-
ing qualities. Time-varying graph learning methods, TGL-
Tikhonov and TGL-FLasso, show better results than SGL-
Smooth and k-nearest neighbor. This indicates that the k-
nearest neighbor cannot construct the meaningful graph from
noisy data. Additionally, TGL-FLasso outperformed TGL-
Tikhonov up to 6 dB.

Fig. 7 shows the visualization of denoising results of the
wheel at a certain time. Similar to the numerical performance,

(a) Ground truth (b) Noisy

(c) k-nearest neighbor (d) SGL-Smooth

(e) TGL-Tikhonov (f) TGL-FLasso

Fig. 7. The visualization of denoising result of wheel at a certain time.

the k-nearest neighbor cannot capture the structure of the
human body. SGL-Smooth and TGL-Tikhonov yield slightly
better outputs than that by the k-nearest neighbor; however, the
arms and legs are still problematic. On the other hand, TGL-
FLasso can successfully capture the structure of the human
body than the other methods.

Fig. 8 visualizes a graph at a certain time in the time-
varying graph estimated from the noisy wheel data in the
dynamic point cloud dataset. In this figure, the nodes in the
graphs are plotted in the correct position for visualization. As
shown in Fig. 8, k-nearest neighbor yields a sparse graph but
nodes are connected without a temporal relationship. SGL-

10

TABLE IV
DENOISING RESULTS

dog handstand skirt wheel

noisy 12.12 13.97 13.73 15.45
k-NN 12.35 14.29 14.01 15.76

SGL-Smooth 13.13 15.37 15.03 16.74
TGL-Tikhonov 13.34 15.69 15.34 17.06
TGL-FLasso 20.05 21.32 21.58 22.97

one iteration in SGL-GLasso is O(N2 + Tp(N)) complexity
where O(Tp(N)) is the worst-case complexity of solving the
subproblem, and Tp(N) = ⌦(N3). On the other hand, the
complexity the iteration in TGL-FLasso and TGL-GLTV is
O(N2) complexity as described in Section IV.

TGL-FLasso and TGL-GLTV required longer computation
time than SGL-Smooth and TGL-Tikhonov, where they esti-
mate a graph using the almost same algorithm; that is, they
have the same computational complexity O(N2). However,
TGL-FLasso and TGL-GLTV introduce dual variables to solve
the optimization problem with temporal variation regulariza-
tion, i.e., they have more variables to update than SGL-
Smooth and TGL-Tikhonov. Although TGL-Tikhonov also has
temporal variation regularization, it can be computed without
introducing dual variable because its temporal variation regu-
larization can be differentiable.

VI. REAL DATA APPLICATIONS

A. Denoising of Dynamic Point Clouds

Our proposed method is applied to dynamic point cloud data
denoising. Dynamic point cloud data contains 3D coordinates
of dynamically evolving points. When point cloud data are
acquired, the measurement error leads to the displacements
of the geometric coordinates of the point clouds. Here, we
consider graph-based denoising approaches. The performance
of noise removal depends on the underlying graph. In this
experiment, denoising is performed by using graph heat kernel
filtering [45]. The time-varying graph used in the denoising is
estimated from noisy point cloud data.

We use the dynamic point cloud dataset in [46], which
contains five dynamic point clouds: dance, dog, handstand,

skirt, and wheel. As this dataset is clean data, with position
ranges from �260 to 1932, we added Gaussian noise with
� = 90, which is a significantly higher noise level. The time-
varying graph is learned from the dataset downsampled to 357
points and evolving over 240 time slots. In this experiment,
we use fixed parameters for each method, which is determined
by a grid search with dance data, and evaluate the denoising
performance with the other four data.

Table IV summarizes the dynamic point cloud denois-
ing qualities. Time-varying graph learning methods, TGL-
Tikhonov and TGL-FLasso, show better results than SGL-
Smooth and k-nearest neighbor. This indicates that the k-
nearest neighbor cannot construct the meaningful graph from
noisy data. Additionally, TGL-FLasso outperformed TGL-
Tikhonov up to 6 dB.

Fig. 7 shows the visualization of denoising results of the
wheel at a certain time. Similar to the numerical performance,

(a) Ground truth (b) Noisy

(c) k-nearest neighbor (d) SGL-Smooth

(e) TGL-Tikhonov (f) TGL-FLasso

Fig. 7. The visualization of denoising result of wheel at a certain time.

the k-nearest neighbor cannot capture the structure of the
human body. SGL-Smooth and TGL-Tikhonov yield slightly
better outputs than that by the k-nearest neighbor; however, the
arms and legs are still problematic. On the other hand, TGL-
FLasso can successfully capture the structure of the human
body than the other methods.

Fig. 8 visualizes a graph at a certain time in the time-
varying graph estimated from the noisy wheel data in the
dynamic point cloud dataset. In this figure, the nodes in the
graphs are plotted in the correct position for visualization. As
shown in Fig. 8, k-nearest neighbor yields a sparse graph but
nodes are connected without a temporal relationship. SGL-

10

TABLE IV
DENOISING RESULTS

dog handstand skirt wheel

noisy 12.12 13.97 13.73 15.45
k-NN 12.35 14.29 14.01 15.76

SGL-Smooth 13.13 15.37 15.03 16.74
TGL-Tikhonov 13.34 15.69 15.34 17.06
TGL-FLasso 20.05 21.32 21.58 22.97

one iteration in SGL-GLasso is O(N2 + Tp(N)) complexity
where O(Tp(N)) is the worst-case complexity of solving the
subproblem, and Tp(N) = ⌦(N3). On the other hand, the
complexity the iteration in TGL-FLasso and TGL-GLTV is
O(N2) complexity as described in Section IV.

TGL-FLasso and TGL-GLTV required longer computation
time than SGL-Smooth and TGL-Tikhonov, where they esti-
mate a graph using the almost same algorithm; that is, they
have the same computational complexity O(N2). However,
TGL-FLasso and TGL-GLTV introduce dual variables to solve
the optimization problem with temporal variation regulariza-
tion, i.e., they have more variables to update than SGL-
Smooth and TGL-Tikhonov. Although TGL-Tikhonov also has
temporal variation regularization, it can be computed without
introducing dual variable because its temporal variation regu-
larization can be differentiable.

VI. REAL DATA APPLICATIONS

A. Denoising of Dynamic Point Clouds

Our proposed method is applied to dynamic point cloud data
denoising. Dynamic point cloud data contains 3D coordinates
of dynamically evolving points. When point cloud data are
acquired, the measurement error leads to the displacements
of the geometric coordinates of the point clouds. Here, we
consider graph-based denoising approaches. The performance
of noise removal depends on the underlying graph. In this
experiment, denoising is performed by using graph heat kernel
filtering [45]. The time-varying graph used in the denoising is
estimated from noisy point cloud data.

We use the dynamic point cloud dataset in [46], which
contains five dynamic point clouds: dance, dog, handstand,

skirt, and wheel. As this dataset is clean data, with position
ranges from �260 to 1932, we added Gaussian noise with
� = 90, which is a significantly higher noise level. The time-
varying graph is learned from the dataset downsampled to 357
points and evolving over 240 time slots. In this experiment,
we use fixed parameters for each method, which is determined
by a grid search with dance data, and evaluate the denoising
performance with the other four data.

Table IV summarizes the dynamic point cloud denois-
ing qualities. Time-varying graph learning methods, TGL-
Tikhonov and TGL-FLasso, show better results than SGL-
Smooth and k-nearest neighbor. This indicates that the k-
nearest neighbor cannot construct the meaningful graph from
noisy data. Additionally, TGL-FLasso outperformed TGL-
Tikhonov up to 6 dB.

Fig. 7 shows the visualization of denoising results of the
wheel at a certain time. Similar to the numerical performance,

(a) Ground truth (b) Noisy

(c) k-nearest neighbor (d) SGL-Smooth

(e) TGL-Tikhonov (f) TGL-FLasso

Fig. 7. The visualization of denoising result of wheel at a certain time.

the k-nearest neighbor cannot capture the structure of the
human body. SGL-Smooth and TGL-Tikhonov yield slightly
better outputs than that by the k-nearest neighbor; however, the
arms and legs are still problematic. On the other hand, TGL-
FLasso can successfully capture the structure of the human
body than the other methods.

Fig. 8 visualizes a graph at a certain time in the time-
varying graph estimated from the noisy wheel data in the
dynamic point cloud dataset. In this figure, the nodes in the
graphs are plotted in the correct position for visualization. As
shown in Fig. 8, k-nearest neighbor yields a sparse graph but
nodes are connected without a temporal relationship. SGL-

66

End of the story (?)
Some topics we did not cover (even in G SP+ML):

Sampling on graphs (of nodes ? of edges ? sampling theorem)

Stochastic processes on graph and spectral estimation

Design of filters, wavelets, filter banks,… vertex-frequency,…

Graph simplification: coarsening, pooling, sparsification

Applications to images, point clouds,…

Higher-orders: Hypergraphs, Simplicial Complexes, Hodge Laplacian

and topics I don’t even know about…

Advertisement: we hire M2 and PhD!
67

