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Graph Laplacian: An Analogy for a Graph FT

A fundamental analogy

On any graph, the eigenvectors y; of the Laplacian matrix L will be
considered as the Fourier modes, and its eigenvalues )\; the associated
(squared) frequencies.

Hence, a Graph Fourier Transform is defined as:

X=x"x

where x = (xo|x1]|- - [xn—1).

® Two ingredients:

®* Fourier modes = Eigenvectors x; (with increasing oscillations)

®* Frequencies = The measures of variations of an eigenvector is linked to its
eigenvalue:
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Graph Laplacian: An Analogy for a Graph FT

[Tremblay, Goncgalves, PB, 2017]
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Figure 1: Two graph signals and their GFTs. Plots a) and b) represent respectively, a low-frequency and
a high-frequency graph signal on the binary Karate club graph |21]. Plots ¢) and d) are their corresponding

GFTs computed for three reference operators: L, L,, and Lqg (equivalent to the GF'T defined via the adjacency
matriz).



Use GSP to process data
which are on graphs,
or which are the graphs!



(1) Filters on graphs

Example 1: Recovery of signals on graphs

e Denoising of a graph signal, when observing y = xo + ¢, formulated as
an inverse problem:

X, = argmin||x — y||5 +vx ' Lx
X

because remember that : x ' Lx = )~ Aj(xi — x))°
e=(i,j))€E
o Graph-Fourier coefficients: X = x ' x
n 1 N .
e Solution: X, (/) = —y(i) (1st-order “low pass” filter
) =375 ¢ p )
] D ) ;
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[P. Vandergheynst, EPFL, 2013]



(1) Filters on graphs

Filtering

Definition of graph filtering

We define a linear filter ‘H by its function h in the Fourier domain.
It is discrete and defined on the eigenvalues A, — h(\;).

h(\g) X(0) h(Ag) O 0o .. 0
_— h(2q) X(1) A 0 h(M) O ... 0
H(x) = < h(A;)f((Z) ) = H Xx with H = ( 0 o1 A(Xp) ... 0 )
)

AW _ 1) X(N—1 0 0 0 ... hON_1)

In the node-space, the filtered signal #(x) can be written:
H(x)=xHx" x
In term of calculus of operator on a graph, this reads
H(x) = h(L) - x

e Alternative definition: operator H that commutes with the reference
operator, here the Laplacian (yet could be some “shift”, e.g. A)

o Parametric formulation: h(L) = S5 hL*
(leads to ARMA filters; to distributed implementations)



(1) Filters on graphs

Example [Tremblay, Goncalves, PB, 2017]

noisy X denoised x4

Xqg = Uh(A)U'x
node space
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Figure 3: Illustration of graph filters: a denoising toy experiment. The input signal X is a noisy
version (additive Gaussian noise) of the low-frequency graph signal displayed in Fig. We show here the
filtering operation in the graph Fourier domain associated to R = Ly,.



Diffusion on graphs

Functional calculus on graph
Objective: define the effect of function on graph data
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Example: define a diffusive process on a graph
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Diffusion on graphs (2) — Illustration

478 B. Ricaud et al. / C. R. Physique 20 (2019) 474-488
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Fig. 1. lllustration of the heat diffusion over a 2-d manifold (top), and over a graph with communities (bottom), at different time t. In both graphs, the heat
spreads from node to node, following the edges. Top: the initial hot spot is a node located on the ear of the bunny. The Bunny graph is a discretization of
a 2-d surface, with nodes connected to their nearest neighbours in 3 d. Bottom: The diffusion starts inside a community and quickly spreads within it.

[Ricaud et al., 2019]



Diffusion on graphs (3) — Use to define a distance between graphs

* from [Hammond, Gur, Johnson, GlobalSIP 2013] “GRAPH DIFFUSION
DISTANCE: A DIFFERENCE MEASURE FOR WEIGHTED GRAPHS BASED ON THE

GRAPH LAPLACIAN EXPONENTIAL KERNEL"

They define a Diffusion distance between graphs having the same number of
nodes

§(Ar, Agst) = Z((GXP(—tLl))z’,j — (exp(—tL2))i,;)°

= ||exp(—tL1) — exp(—tL2)||§: (2)

de;id(Ala Az) = max: \/€(A1, Az; t).

Fig. 1. (a) Barbell graph, and single-edge perturbations, for N = 5,
K = 2. (b) Plot of ratio dgaa(G™"?, Gp*) /dgaa(GN2, GE:?) vs
N. (c) Plot of £(t) for Ay = G®2, Ay = G2, red dot indicates
maximum, corresponding to dgqq(A1, A2)2. (d) Values of normal-
ized edge deletion perturbation, on edges of G*'2.
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Graph Diffusion Wasserstein Distances
& Application to Domain Adaptation for Graphs

From Ameélie Barbe PhD thesis (12/2021) ; ECML-PKDD 2020 ;
GRETSI 2019 ; ICTAI 2021 ; GRETSI (2019) ; ICASSP 2022

Joint work with Marc Sebban (LabHC; Saint-Etienne) ; Rémi Gribonval, Paulo Gongalves,
and Titouan Vayer (LIP, Inria, ENS de Lyon) ; Sybille Marcotte (now PhD candidate in Paris)

M DWA(U®, UF)
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A parenthesis in advance — Optimal Transport:
a generic tool to probe
the geometry of probability measures

Optimal Transport: an approach to compute a distance between 2 distributions, while finding the
optimal coupling (or transport plan) between them

Put forward in Data Science/Processing & ML since...

* since ~2000 in image processing (Earth Mover Distance); well before in mathematics (cf. [Villani, 2003]);
in the 70’s for the Mallows distance in statistics,...

* (see my completely ignored ICASSP paper of 2012: “Using Surrogates and Optimal Transport for Synthesis of Stationary Multivariate Series [...]”)
(Title way too long!)

cf. “Computational Optimal Transport” G. Peyré & M. Cuturi, 2019

https:/arxiv.org/abs/1803.00567v4

cf. “A primer on Optimal Transport”, Cuturi & Salomon, NIPS 2017 Tutorial

https:/optimaltransport.github.io/slides/ (and other resources)

cf. Titouan Vader’s Lectures at the end of this course !
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https://arxiv.org/abs/1803.00567v4
https://optimaltransport.github.io/slides/

Optimal Transport: a generic tool to probe
the geometry of probability measures
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from Cuturi & Salomon “A primer on Optimal Transport”, NIPS 2017 Tutorial
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Optimal Transport for distributions

* from “Computational Optimal Transport” (G. Peyré & M.
Cuturi ), 2019

https:/arxiv.org/abs/1803.00567v4

Problem of Monge : « Mémoire sur la
théorie des déblais et des remblais », .
1776 With relaxation of
: i Kantorovich

One solution:
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https://arxiv.org/abs/1803.00567v4

Optimal Transport for distributions

» Optimal Transport: Consider two finite sets X = {X }|X| = qulxl andX and two dlstrlbutlons on these
/4=Za5 and 1/—Zbé,wnha>0b>0and2a_12b_1
X;EX x;EX’ =1 =1

* Given a cost function C . Rq X Rq — R 4, one builds the 2-Wasserstein distance WZ as:

n,n 1
: P
W -(u,v) = 1nt < Z 7; €(X;s XJf)2>
m; €11, =1

where I 1 q.p is the set of joint distributions on X X X'

whose marginals are the distributions [{ = Z 71'( *, Xl/) and U = Z JZ'(XZ-, y )

x;EX’ X;EX
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Optimal Transport for Graphs

* For Graphs: one has to Associate a distribution to a graph
- A first solution: rely on the the Weisfeiler-Lehman test

- cf. [Togninalli et al., “Wasserstein Weisfeiler-Lehman graph kernels“ NeurIPS 2019]

D
@9

* A 2nd solution: Comparison through probabilistic models of graph signals

- ['Graph Optimal Transport”, H. Maretic et al. NeuRIPS 2019]

-for a graph & with Laplacian L, one considers: X ~ U g =N (O, LT)
- then: compute the 2-Wasserstein distance between Gaussian signals

- allows graph alignment, gives a structurally-meaningful graph distance,...

16



Optimal Transport for Graphs-or Attributed Graphs

* A third solution: The Gromov-Wasserstein distance
- Mémoli, Found. Comp. Math. 2011; Peyré, Cuturi, Solomon, ICML 2016
- structures are compared through their pairwise distances X

- cf. also N. Courty, R. Flamary, T. Vayer [PhD 2020]

* One can then combine Attributes and Gromov-Wasserstein characterisation of graphs

“Fused Gromov-Wasserstein distance” [Vayer et al., ICML 2019]

17



Optimal Transport and Graph Signal Processing for Attributed Graphs

* We can leverage (combine) that: Optimal Transport ; Diffusion distance ; and Graph
Signal Processing (i.e., process signals by L)

* We generalize the previous ideas, and we consider:

* two graphs of sizes 71 and 771 and their associated Laplacians: LS and L/
* the features of these source and target graphs: X € RXT ; Y € [R7XT

+ a cost function between features: M (X, Y) — [d(xl-, y])] for any
X € RM™Xr-Y € R™Xr

* the diffused features: X = CXP(—T SLS) - Xand Y = exp(—f tLt) Y

gl

B : o exp(—7°L%)-
AR X® Xs

: 1P
DN GRS S
M DWZ (U, UY)
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The Diffusion Wasserstein Distances for Attributed Graphs

* Then, we define it as:

. DWP(u,v | 7%, 7") = min MP).
m p (v | ) Wen(a,b)w )

\
T

* 013 ’

* Theoretically, it has good properties:

Diffusion-Wasserstein distance DW3
—— Wasserstein distance W3

T —— Lower asymptotic bound of DW3

* itis a distance

Estimation of £DW3(u, v, T
o
=
=

* we have bounds for small and large T

* it’s efficient to be computed, more than Fused GW

‘ N, min {(% M”#}

M DWA(U*, U")




The Diffusion Wasserstein Distances for Attributed Graphs

h o
J : [ ...
o.o..o::. ; :...:’... °
?\ t ~ o0 o o ~. ... [
S . [ ) L Y
| DWE(u,v | 7%,7°) = min (v, MP). O e
| p ) ) ) AR TR 8 b L4 .i +.. 4
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(a) Distributions before alignment.  (b) Distributions after alignment.

* Experimentally, it works well: the task for comparison is Domain Adaptation

* by itself a cheap way for DA on Attr. Graphs

DWE(US, U?)
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The Diffusion Wasserstein Distances for Attributed Graphs

|
|

|

DWE (v | 79,7 = min (v, M),

~

~v€Il(a,b)

* Experimentally, it works well: the task for comparison is Domain

Adaptation

(a) (b)
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from [Barbe et al.,
ECML-PKDD 2020]
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(1) Filters on graphs - sequel

* On board =
* Various definitions of filters in graphs
* Implementation of graph filters

* Shift operators and frequencies

22



(2) Filters on graphs => multiresolution

Example 2: Wavelets for graph signals

e Wavelet = a local function, acting as filter around a chosen scale,
defined scaling and dilating

A wavelet:
1
; A AL
-1 -1
COOOCCOOCOS0ee @80 0 000000000 —_ Trans|ated: C0C000 @80 0OCCOO00000000000000

0.5
0—’\/\/\
0.5
— Sca|ed 00000000000 0000800 0000
e on Graphs ?
A WAVELET:
1 TRANSLATING: SCALING:
0 \/\/ 1 0.5
1 :J—\/\/ _OEW
Pl
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(2) Filters on graphs => multiresolution

: by analo
Classical wavelets —~ %, Graph wavelets
[Hammond et al., ACHA 2011]

The wavelet at scale s centered around a is given by:

Vs,u(t) = 1§¢ (%) = / 5U(W)12(Sw) exp’™! dw

— OO

Classical (continuous) world Graph world
Real domain t node a
Fourier domain W eigenvalues )\,
Filter kernel D(w) h(\) < H
Filter bank Y(sw) h(s\) < Hs
Fourier modes exp~'“! eigenvectors y;
Fourier transf. of x | X(w) = [*_x(t)exp™™" ot X=x"x

In the graph world by analogy: | 1s 2 = x Hséa = x Hs x " 62

24



(2) Filters on graphs => multiresolution

Generalized translations
[Shuman, Ricaud, Vandergheynst, 2014]

e Classical translation (continuous world)

(T.9)(H) = g(t — 7) = / g(e)e e e g

e Graph translations by fundamental analogy:

N—1
(Tf) (@) = 3 KO} (M@

e Example on the Minnesota road networks

i
L/ e -
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(2) Filters on graphs => multiresolution

. Recovery of signals on graphs

e Denoising of a signal with Wavelet regularization, W being the direct
wavelet transform and ¢ the wavelet coefficients of the graph signal:

arg min [[W ¢ — y|[3 + 7llell;
e Solution with IST algorithm with a step 7 < 2/||W " ||*:

c® =8, (c(k_” +rW(y — WTC(k_1)))

y
Kl

n
N

%

N

0.8

0.6

F 04

r 0.2

Denoised



(2) Filters on graphs => multiresolution

GraphWave (2018) Learning Structural Node Embeddings via Diffusion Wavelets

Claire Donnat, Marinka Zitnik, David Hallac, Jure Leskovec
Stanford University
{cdonnat,marinka,hallac,jure}@stanford.edu

KDD °18, August 19-23, 2018, London, United Kingdom

* Use wavelets to have a multi-scale view of the neighbourhood of
ach NOG®  y, _ y biag(g, (). .- g5 (AU b0, (1)

* Then embed each node with the wavelet coefficients

Algorithm 1 Learning structural embeddings in GRAPHWAVE.

1: Input: Graph G = (V, E), scale s, evenly spaced sampling s | GraphWave ® s
points {tq, t2, .. ., tg) 10 |- O -
2. Output: Structural embedding y, € R?? for every node a € V ~s | i
3: Compute ¥ = Ug;, A)UT (Eq. (1)) §0 i .. O -
4: fort € {t1,t9,..., td} do 5L i
5: Compute ¢(t) = column-wise mean(e’!¥) e RN 0 O
6: fora eV do i o .O 1
7: Append Re(¢,(t)) and Im(¢,4(t)) to xa % o s o0 5 10 15 20 2

PCA1

* Finally: cluster or classify [ @ | Graphwave |
ol o i
0.0 O O —
il ]

PCA 1



(2) Filters on graphs => multiresolution

Find multiscale communities in complex: with wavelets on graphs

e A means to find communities in networks ? Yes
e Some examples of social networks:
Zachary Karatee Club; Sociopatterns data (ISI Turin, CPT Marseille)




(2) Filters on graphs => multiresolution

Find multiscale communities in complex : with wavelets on graphs
Filterbanks-based spectral graph clustering

AT SMALL SCALE: AT LARGE SCALE:

Gl T4
v @b ¢d

-
fs,afs,b

o Similarity: Dg(a,b) =1 — TFoalls ozl

o Classification using hierarchical agglomerative clustering
with average-linkage

e (Not detailed): Add stochasticity in the measurement

fsa= "THSX_1 Oa

where r ¢ RVN*7 is i.i.d., centered, normal

- N. Tremblay and P. Borgnat, Graph Wavelets for Multiscale Community Mining, IEEE TSP, 62: 20, p. 5227, 2014

- N. Tremblay, G. Puy, P. Borgnat, R. Gribonval, P. Vandergheynst, ICASSP 2016
29



(2) Filters on graphs => multiresolution

Find communities in complex : with wavelets on graphs

Multiscale community detection on networks
[Tremblay, Borgnat 2014]

4
B
.
.

*
(5
.
.
Y

30



— A break just for fun: more complexinverse problems on graphs—

An Estimation problem [Michau, 2017]
Link Dependent Origin-Destination Matrix

o LODM estimation engineered as an inverse problem

11

= Argmcign {’chch(Q) +9pfP(Q) +vcfc(Q) + i fr(Q) + 'YTVfTV(g)}

e Prior information available:
e B trajectories that give sampled LOD counts
e q counts on roads (without OD information)

The Brisbane case study — results
e Comparison of traffic counts on roads:

9894

e

/ F/{‘ | 17915

& ,%72@‘ 16926

i"ﬂ > 5936
@ R - 1

e Assumption of small Total Variation: F M XKD\ 1947 <
v, [ 20N 14947 2
fTV(g) = Z ZW,’,‘/|Q;I' - QIl’j| + Z Zw///|Q{/ - QI_//’| %{ l{\'/i:% —\ 3958 §

i~y gl jNy i L~

. . . T \'“Ek’ | 2968

where N is the neighbourhood of i/ and w;» > 0 are f /ﬁ/ =
weights (e.g., taken as exp(-distance/dp)) > 1979
</\; EL/\/ 989

\ 0

Measured (on 36%) Estimated here; more smooth!
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Create graphs which describe data
from classical methods,
or statistical models,
or considerations from GSP



Create a graph to represent the data

Objective: capture similarities between data points

* This is a standard step in classification / clustering!

 Hence, several manners to code these similarities in a graph:

selecting k-nearest neighbours of each point with distance d(z;, x;)

OR

selecting all points in a neighbourhood d(x;,z;) < ¢

33



Create a graph to represent the data

Objective: capture similarities between data points

Distance functions

o Given X, and X,, how far are they from one another ?
» Euclidean distance (or its square): >, (Xpy — Xnv)?
e /1 or Manhattan distance: 3, |Xqu — Xnv |

» Mahalanobis distance: \/ S~ (Xnu — Xny)? /05 or more
generally \/(Xy, — X,)TC-1(Xy, — X,)
e From correlations, e.g. 1 — X, - X,

o From kernels: K(X,, Xv), with K a “kernel”
eg. Gaussian one: exp(—(Xy, — X,)?/20?)

a 34



Create a graph to represent the data

Objective: keep strong similarities (only) between data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.
Several possibilities:

# Mininimal Spanning Tree: the tree with smallest
sum of edge lengths connecting all nodes

s ~. =
\ . -\ | o~
C\[ e N O| \ A \' ~ . Cu . / A \q
= ® X Al T : \ §
/\(,\ e 4 .___:(‘}\ o ) -$ ) T_:L_T <
) \ < . ~4 N e~ i Ep
1 \_hi L_/.' e _/‘ % ’~\'_ _,L—/;' ",.
) % - TN e —— S /
~) ) PN i ~ | P A
\ ,J:,:_ g B s ﬁ/ \ h/;:'-ﬁ— |.‘ \ 4;’,‘" ‘-.I' / -%- y) -
(- O CC 9. (W (R CO.
,;/I w). . I\ ; | - Y g
= [5%) N | [ ALY e
‘/ " 'rl\. ‘/ * & - l\ | /'--‘.-I __:"---‘- _.-":,
Ad Adeee® N O | | .y Ty
= ";; n i“ . o I ,
3} ~ al® (1 o ® 5 \ (~D)\— e . 9.
= BB Py P v ’ 10 @ - '-."~_5 YA ~T o
M O ‘\ I " Yesanssss ¢ X 0 O v ( /F\_
o s 22 N B \




Create a graph to represent the data

Objective: keep strong similarities (only) between data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.
Several possibilities:

A The c-neighborhood graph: (2, z;) <e

o
Kot
e:;x, 'd, cw,c@ngwwé %'N,\? g\ﬂ@
< ’ Lol - WS
& \g/ b; ‘ e X @
© ¢\ B
______ » & a
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Create a graph to represent the data

Objective: keep strong similarities (only) between data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.
Several possibilities:

k-nearest neighbor graphs:

.

with distance d(x;, xj)

. ’5—1\/1\7%‘{%
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Create a graph to represent the data
Objective: keep strong similarities (only?) between data points

Great a graph "connecting the dots", i.e. find edges
to connect data points.
Several possibilities:

~ The fully connected graph:

connect all nodes with all other nodes, but with a weight on each

edge, derived from some similarity function, going to 0 if distance goes to infinity

||z —x; 2 )

204

Example: Gaussian similarity function s(z;, z;) = exp(

Un%e}est of the 3 previous solutions: sparse graphs !

for complete graph with similarity kernel: use thresholding to increase sparsity of the graph.
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Create a graph to represent the data

Examples

Data points

— R .
1 - *’?*’E*‘

e 4
X
e *

>
x X ‘fi' Tk ¥
P Aader
o 3 ol
$ e Ol N
_3 a1 e A i
** R

epsilon—-graph, epsilon=0.3

Mutual KNN graph, k=5

’ o
o1 P
ol Sl

A Tutorial on Spectral Clustering, Ulrike von Luxburg,



Create a graph to represent the data

Interlude: you know other methods!

2-a) model the local neighbourhood relationships between the data points

=> Just what we described
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Create a graph to represent the data

Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points
A possible solution: Hierarchical clustering

e Main idea: group together closest points

Fom freature domain: ~_ to Tree clustering
— i a b C d e f )
a )
) “r
bc de
Y»
def
y -
= T bedef
— — I A
£ 2y abcdef

with two broad strategies: Agglomerative (a "bottom-up" approach) vs. Divisive (a "top-down" approach)
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Create a graph to represent the data

Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points
A possible solution: Hierarchical clustering

* Agglomerative clustering:
— First merge very similar instances

— Incrementally build larger clusters out «® o
of smaller clusters . °°, o
« Algorithm: e o« Co.
— Maintain a set of clusters s ©5 *
— Initially, each instance in its own ° . °
cluster . e
— Repeat: e o

* Pick the two closest clusters
 Merge them into a new cluster
« Stop when there’s only one cluster left

; O
* Produces not one clustering, but a / \
family of clusterings represented 2 =N\

by a dendrogram
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Create a graph to represent the data

Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points
A possible solution: Hierarchical clustering

An issue involved in Agglomerative clustering

 How should we define “closest” for clusters
with multiple elements?

* Many options:
— Closest pair
(single-link clustering)

— Farthest pair
(complete-link clustering)

— Average of all pairs

Closest pair Farthest pair
(single-link clustering) (complete-link clustering)

 Different choices create
different clustering behaviors

43
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Create a graph to represent the data

Interlude: you know other methods!

2-b) Create a graph that clusters (or classifies) data points
A possible solution: Hierarchical clustering

An issue involved in Agglomerative clustering

« How should we define “closest” for clusters

with multiple elements? Clustering Behavior

* Many options: Average Farthest Nearest

— Closest pair
(single-link clustering)

— Farthest pair
(complete-link clustering)

— Average of all pairs NG

 Different choices create
different clustering behaviors

44 Mouse tumor data from [Hastie et al.]



Create a graph to represent the data

Interlude: you know other methods!

« 2-c) Learn a graph that captures things from the data

- The general setting:

from observations.... ...find a graph....
Given learn
matrix X graph G
||

A7) Em_mm
]

s
N,
weighted
adjacency

rows: objects matrix W

45

...that models well the data

here: some model is useful
e.g.: Gaussian model

e Gaussian Graphical Models
 Bayesian Networks

 Methods with optimization and
GSP inside!



Create a graph to represent the data

The general view

(some slides thanks to Bouchard, Breloy, Mian, H_ippert—Ferrer)

wg9

w19

000000000

Node Edge
Social network Person Relationship
Embedded systems Sensor Communication channel
Finance Company Ownership
Molecular graph Atom Chemical bond
Language Word Semantic link
Public transport Station Active line
Internet Pages Link
Citation Paper Citations
Neuroscience EEG sensor Brain connectivity
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Create a graph to represent the data

The general view of Graph learning
(some slides thanks to Bouchard, Breloy, Mian, Hippert-Ferrer)

When the graph topology is unknown but each node generates data

Learn the underlying graph from samples x = [z, 9, ...

n samples

pvariables
ke
P4
\V}
e
S
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Create a graph to represent the data

Graph learning: with graphical model

An encodes the “relationship” between two

We can consider a statistical definition of relationship [pem7; Lauos]

“Connection In the graph = conditional dependence”

The —(xp AL x5) holds If

P(z |22, 23, -+, xp) # P(o1]x1)

~"~

X1

‘29 adds Information to x; In order to predict z;”

Independance and conditional independence Different interpretation - example 1 Different interpretation - example 2

T battery petrol

Let us take A, B et C three random variables.

Y
|
O ' ]
Independence Conditional independence > : | | \ /
@
o
A and B are independent A and B are conditionnaly B 1
independent to C Y use my car
< < CIEE = A= battery B = petrol C = use my car
P(A, B) = P(A)P(B) P(A, B|C) = P(A|C)P(B|C) number of spelling mistakes

Notation: A1 B Notation: A 1L B|C A= shoe size B = number of spelling mistakes C = age Al Bbut AY B|C

AJ Bbut AL B|C
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Create a graph to represent the data

Graph learning: with graphical model

Gaussian graphical models

Gaussian graphical model:
(X, G)

X: Gaussian multivariate process

2: covariance matrix of X

G: conditional independence structure of X
K = inv(X): precision matrix

i € V: variable X;

Graphical representation hypothesis

(i,J) & E & X; 1L X;| Xw\(ijy

G=(V,E) 1
V: set of nodes of graph G E: set of edges
— instantaneous interactions — conditional independence
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Create a graph to represent the data

Graph learning: with graphical model

Theorem

Let
Elxx'] = - 0 !

>
CovarianceT Precision

Then

T, AL - Ou=0
no edge wgye on the graph null g¢™"-element in the precision

Holds for

e Most

) aka “nonparanormal”

Key property of GGM: the precision matrix is 0 iif the partial correlation coefficient is 0

Qii =0 = XilX;|X_i; or p(Xi, X;|X_ij) = p(Xi|X_i)p(X;|X-ij)

k¥
K ok k¥
x * 0

« 0 % O
0O 0 =«
0 000 %

i & \ T4

-
eolololoNe

& % * 3% X

-

~
-




Create a graph to represent the data
Graph learning: with graphical model
A implies a O=x""

=> threshold the precision matrix ?

e Explore sparsity of £
s 21_71 = () encodes conditional independence relationships

N e Estimate ¥ = E _:c:cT] from 1, 2,...,Zm LR - N(0,X)
=> covariance selection of Dempster, 1972 V4

=> multiple test for covariance selection
[Drton, Periman, 2004]

=> penalised maximum likelihood estimation with a sparsity term for K

=> probabilistic approaches for p(G|X)

& regularized MLE of ®

1

minimize Tr{SO} —logdet(®) + A||®|1 off , S=—-XX"'
@cS, " n
Gausslan log—likelihoodT Tsparse penalty

— Graph drawn from ®’s support
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Create a graph to represent the data

Graph learning: with graphical model

Solution ® suchthat: —-@© '+S+A\'=0
where I" Is @ matrix of element-wise signs of ©, I.e,,
Fij = Sign(@ij) If @ij # O, Fij - [—1, 1] If @ij =0

yields: Wi = Siu + X\, where W = @~

GLasso based on .
R(p—1)x(p—1) R(p—1)x1
\ 7

N4
@11 @12
@21 @22

&

I'i TI'io
I'a1  T'ao

—1 —1 —1
@—1 _|_ ®11 612621611 . @11 D)
1 —1
Wi Wi . H ©22—0210,, O O22—0210,, O
— —1
W21 W22 921611 1

_ 1 —
B22—0210,, 05 B22—0210,, 05
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Create a graph to represent the data

Graph learning: with graphical model

For the considered block: @7 ©® 5 Way + S12 + AT'1s = 0

Equivalent to: minimize la™®'a+ aSiz + A|al
LTI

Then: @12 = Oé/ WQQ @22 — WLQQ -+ @21@1_11@12

From there:

e O' =W — WiraWy /W, ~ Algor i

e Update W through the block identity | 1. Initialize W = diag(S) + AL,

2. While not convergence, cycle around the columns:
a. Rearrange rows/columns so that target one is last

b. Compute @1_11 = W11 — W12W21/W22

C. Solve minimize %aTG)l_lla +a'Siz + Al
acRr—1

d. Update O = O(/ Wos and @22 = WL22 = @21@1_11@12
e. Update ® and W from block identity, ensuring ®©W =1,

3. Output ® and W
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Create a graph to represent the data

Graph learning: with graphical model

EXAMPLE [Costard, 2014]: we generate 600 observations according to the GMM 1’ (6 __.:3

Then, we use graphical lasso, with varying penalisation parameter

(1)) (1)—6)

(6 ) (1)6) (1)H6)

1)H8, X G
) l \ [(s) (2) \ [(s) (2) \ l (5)

Sy (3) (4) 3) (4)

CHNH35) (2)] \ ’Y”;} ©
(3¥44) (3) 14) (s) (1) (

A 0 0.1:4.0.2 0.3ab4 5.9 a 8.3 8.4 a 85 8.6 a9.3

(1)s) (1)—(s) (1)}—6) (0 )oY (1) () (1) (s)

2) "% XB)] A2y N AN (2) "N U5 63y X “U5)

e
=y

(5) (2) (5)
(3] (4) (8) (1) (3) (4) (3] (4) (3) (4) (3) (4)

A 9.4 3 9.8 9.9 104126 1274132 13.3414.2 1434 20

Next question is: How to choose 4 ? (See Costard PhD thesis, and ask Titouan V. for more recent answer)
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Create a graph to represent the data
Graph learning: with GSP

» Connecting the dots: infer networks from GSP as in Segarra et al. (2017); Pasdeloup
et al. (2018); Mateos et al. (2019)

» Learning of Laplacian or Adjacency matrices from a constraint of smoothness of the
data, operator constraints, structural constraints, spectral constraints, as in (Kalofolias,
2016; Dong et al., 2016; Thanou et al., 2017; Egilmez et al., 2017; Dong et al., 2019),...
(+ Apologies to all the missing references)

In images, from (Kalofolias, 2016):

1st smooth signal
” o o®

) [ J

%% » .?o‘

o ( 1) Y

WV 2

£ "%

s °

3rd smooth signal
" o o®

% .~' o :‘\
° (Y ¢

% o ®

o

¢ :": Y
.. ® g0 ©
o0 %0 9

‘ o0

2nd smooth signal
o®

ce ?’o

@ L0

00 o

[ ]
1 d
p
[ ]

eV 8# °

4th smooth signal

into 4 graphs:
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1graph learned from 1st smooth signal
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0.2

0

1graph learned from 2nd smooth signal
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Create a graph to represent the data
Graph learning: with GSP

of a graph signal measured by
GSV(x) = Z Age(zy — 1)? = x' Lx
q,t

Total GSV for a X

Z X;I_LXZ' = Tr(XTLX) x Tr(LS) with § = XX T /n
i=1

Could we learn the graph that yields the “smoothest” observation X ?

minimize Tr(X'LX) = trivial solution L = 0
c

— Solution 1: design of fitting-penalties to get meaningful solutions
— Solution 2: Link the problem to gaussian graphical models
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Create a graph to represent the data
Graph learning: with GSP

A generic problem formulation

avold L =0
v
mi%ir?ize Tr(X'LX) + fi.(L) + fp(L)
€
TSmothness T promotes sparsity

e Some works equivalently formalized the problem wrt A
e Some works considered constraints instead of penalty f.

e The construction and motivation for each terms evolved between 2016-2023

From Kalofolias 2016:

1 1
ZERP: |l — x5,  Tr(X'LX) = STr(AZ) = ; [A@Z],

Tweighted Z-1 norm

1
Tr(X'LX) + A||A]|, = Sl1A© (2M117 + Z)|;

— Adding another sparsity term not necessarily useful
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Create a graph to represent the data

Graph learning: with GSP

Solution:

migierﬁize f(A) + ||A ©Z]; From Kalofolias 2016:

— Gaussian kernel graph

f(A) = 0% Ay(log(Ay) — 1)

i

o~
A= (=)

o

promotes graph density by penalizing big weights while allowing small ones

\Z

fA) = allAlZ+alAl3 (=olLI3),  subjectto||AlL =s  [Don+]

force degrees to be positive, do not prevent edges to be zero
v

flA) = ZJA|2 —alTlog(Al), a>0,8>0 [Kal16]

T promotes graph density

Solve these — primal dual techniques from [KP15]
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Create a graph to represent the data

Graph learning: with GSP

(P-stat) min f(W)= min [WoZ]:—a al'log(W1)+B||W|Z.

From Kalofolias 2016:

Key quantity: Nx N T 4 .
Given Z; = ||x; — x;||2, the total global variations on the graph of X € RV*m W ={WecR"" st. W=W" diag(W)=0}: admissible set.
(having m components per node, e.g. 12 for a monthly signal spanning a year)

are: .
5 X Wilxi—x|*=[WoZl|s.

2 (ij)eVxV

» 2nd terms = regularizations =

» control of average degree node, parameter «
» control the density of the graph, parameter 3

1st smooth signal ° 2nd smooth signal
.Q ° .. }. ° ... ?. Graph with edges learned from above 4 signals
(") 20
“%, «’  %° § | 0 ¥
... PY .. Y ® 0 ® 9 ol 10
Pk - 1 §
® o 10 ®
® 10
20 -20
3rd smooth signal ° 4th smooth signal
" o 0. % @
® }' o 9 40
% ~ 20 o L0
[
. 00 [ o0
.. s. ([ 10 [ A ~. .. y 30
.'o‘ o’ ° 0 .'o‘ o, o 20
[ 0
e 0 oo S oo Co 10
o0 ... -10 ( Y ,\.
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Create a graph to represent the data

Graph learning: with GSP — development 1: Gaussian Markov Random Fields

Combine loss from graphical lasso and behaviour of the Laplacian of a graph:

From Elgimez, Pavel, Ortega, 2017

mirLlirBize Tr(L'S ) —logdet(L) + |[L® H |1
E |

sample covariance matrix symmetric regularization matrix

Since Vi # j, Lj; <0, Li; > 0, one can choose H such that

|IL ®H||; = Tr(LH)

TSimple to optimize

‘i milﬁirgize Tr(LK) — log det(L), K=S+H
| €

|
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Create a graph to represent the data

Graph learning: with GSP — development 2: Robust or Structured GL

From Hippert-Ferrer, ECML 2023

Fit graph to data Promote graph sparsity
' v
mingnize f(®) + Ah(O)

subject to ® €Se and O = X € Sy

TStructure INn covariance

1. Design model fand penalty ~ 2. Leverage structures on ®
e Elliptical distributions [Cardos022] e Laplacian constrained [ESilmez7]
e Gaussian copulas [Liuog] e Spectral structure [Kumar22]
e Robust fitting [Phi2s] e Factor models [Hippert-ferrer23]
e Nonconvex penalties [Cardoso20] e Total positivity [Lauritzen19]

e OF = Correlation

Code
https://github.com/ahippert/graphfactormodel
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Create a graph to represent the data

Graph learning: with GSP — development 2: Robust or Structured GL

From Hippert-Ferrer, ECML 2023
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Create a graph to represent the data

Graph learning: with GSP — development 3: time-series

Richiardi et al. (2013)

[G. Frusque, 2020]

N

Signals
B~ w

Functional

t=300 t=2200
Sample time

Model of 4 signals with temporal
synchrony

2

t=300

, ynamical graph at t = 300

onne

t=300 t=2200
Sample time

Corresponding functional connectivity
in function of time samples

é

_ / 1=2200
n § 9/

Dynamical graph at t = 2200 63
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Example of recording:
a multivariate signal...
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Create a graph to represent the data

Graph learning: with GSP — development 3: time-series

The general idea: add a “smoothness” term in time, or “sparsity”

IQW From Hallac et al., 2017

Figure 1: Three sensors with associated time series readings.
Based on such data, we infer a time-varying network that
reveals 1) the dependencies between the different sensors,
and 2) when and how these dependencies change over time.

Time

» Kalofolias et al. (2017): a time-varying setting with smooth variations of the inferred
graphs, thanks to a Tikhonov regularization term

.
Y Wi — Wi ||2
k=2

» Yamada et al. (2019, 2020) temporal sparsity prior with /3 norm better suited to sharp
changes

(see Hallac et al. (2017); Jung et al. (2015) for graph-lasso)
» Yamada et al. (2020): group lasso term (global changes at sparse time points) vs. fused

lasso term (local change at sparse time points)
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Create a graph to represent the data

Graph learning: with GSP — development 3: time-series

Optimization problem for Dynamic graph learning:

(P-dyn) )

.
min (W) +m ) [[Wk — Wi1]]1,
Wke%kga kgz

with f,(Wy) as in (P-stat) with parameters o, and By

Solution of the optimization problem:
» Primal dual optimization algorithm as in Yamada et al. (2019, 2020) using the

primal-dual splitting framework of Condat (2013).

From Yamada et al., 2020

Index of graph edge

Index of graph edge

Index of graph edge
—
Index of graph edge

Time slot

(d) TGL-GLTV

Time slot

(¢) SGL-Smooth

Time slot

(b) SGL-GLasso

Time slot

(a) Ground truth

Fig. 5. The visualization of the temporal variations in the time-varying graph learned from the dataset based on the graph that produces large fluctuations at

few time slots.
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Create a graph to represent the data

Graph learning: with GSP — development 3: time-series

From Yamada et al., 2020
An example on dynamic point cloud
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End of the story (?)

Some topics we did not cover (even in G SP+ML):

o Sampling on graphs (of nodes ? of edges ? sampling theorem)
o0 Stochastic processes on graph and spectral estimation

o Design of filters, wavelets, filter banks,... vertex-frequency,...
o Graph simplification: coarsening, pooling, sparsification

o Applications to images, point clouds,...

o Higher-orders: Hypergraphs, Simplicial Complexes, Hodge Laplacian

%

ENS de LYON

o and topics | don’t even know about...

Advertisement: we hire M2 and PhD! === ==—

ENS DE LYON
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