
 
More advanced topics in GSP: 
 

Topic 1: More about filters
•


We defined graph filters as operators that are diagonal in the spectral (Fourier) domain, 

so that it weights linearly independently modes of different frequencies on graphs. 















Now, one can think about (linear) filters in the original space of nodes, the graph:
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A third definition of graph filters would be to put the emphasis on the idea that a filter is a function 
of the Laplacian. Hence, it should commute in the node domain with L.
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As a consequence, it would be easy to consider mostly filters that are written explicitely as 
operators commuting, in the node domain, with L. This would be the set of polynomial filters:







Property: polynomial filters are included in

	 if all the eigenvalues are simple, then the two sets are equal.  








Topic 2: Implementation of graph filters
•


We can now think about several ways (at least) to implement filters:




Direct application in the spectral domain:
•
First, diagonalise the Laplacian matrix ; algorithm in O(N^3), memory in O(N^2) for the matrix  

Then apply directly the formula:



This is costly! 

We lose the advantage of having often sparse graphs G, and so sparse matrices L or A.




Polynomial approximation of graph filters:
•
Using Def 4, we know that a filter can be expressed using a polynomial expression on L

(and if a non polynomial function is required (see previous examples: diffusion, Tikhonov denoising; 
or an ideal low- or high- pass filter), then a polynomial approximation can be computed)







This expression bypasses the diagonalisation, and a straightforward computation of this formula will 
require O(p|E|) operations only, because L is non zero only on the edges of G. 
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Distributed implementations of graph filters: •

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Better approximation bases: •
Depending of the function h to be approximated, a better basis can be more adapted. 

Example: Chebyshev polynomials are often used [see Shuman et al., 2011] 


































































 
Topic 3: Shift operators to define GSP •

Other authors prefer to define GSP not from harmonic analysis and the Laplacian, but from the 
definition of a graph shift operator R, usually taken to be 0 between 2 non-adjacent nodes, and 
something non zero if 2 nodes are connected. 

Example: R could be A, or L, or the normalized Laplacian, or....

	 	 The sparsity pattern of R captures the topology of G. 
 
Then, one can define almost the same theory from this operator:


the eigendecomposition if R gives the Fourier transform on the graph
•









Filters are defined as functions which commute with the Shift operator:
•




Like in classical Digital Signal Processing (H is then a linear shift invariant system). 
 

Consequence (as seen above): filters are polynomials of R and are diagonal in the Fourier domain.  •
 

Advantages: it works naturally for directed graphs, using A (adjacency matrix),
•
And the shift operator A as a natural interpretation: it sends the value to the neighbors and they are 
then summed (possibly averaged is A is normalized properly) 
 

Drawback: the notion of frequency is only defined a posteriori, computing some variation •
function 

 
 
 
 
More information: [Sandryhaila and Moura, 2013 and 2014] 
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Topic 4: Random Graph Processes 
 
Up to here, we have considered deterministic models of signals on graphs. 

Like in classical Signal processing, we also want to consider random processes on graphs. 
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from [Perraudin, 2016]






































































Now in the case of GSP:

all these results hold in the same way 
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Some Illustrations:  [Girault et al., EUSIPCO 2015]

On synthetic data






On real data












[Perraudin et al., 2016] Example for inpainting of data

studying number 3 with 20-neighbours graph
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Second example of inpainting [Perraudin et al., 2016] (also [Girault, ENSL, 2015])












































































































Topic 5: Sampling of graphs 
 
























In a nutshell, to compare with classical signals: [Tanaka et al., Sampling signals on graphs, 2020]

	 

Principle:




	 






























Example of sampling, bandlimited or not:























































 Random sampling:















































	 

Comparisons:


































