
ENS Lyon
2024/2025 Titouan Vayer

TD no 2 : Graph neural network

- Exercise 1: Nodes classification with GNN on Cora -

The goal of this exercise is to implement a GNN with PyTorch for the problem of nodes classification.
Precisely, we will have a graph G of n nodes and each node i will have a label yi. Also there will be
features xi ∈ Rd at every node. For this, we will use the Cora dataset which consists in n = 2708 scientific
publications classified into seven classes (different categories of article). In addition each publication
(node) is described by a 0/1 word vector xi indicating the presence of absence of the corresponding word
in a dictionary, which has d = 1433 unique words.

Before doing anything make sure that you have the PyTorch Geometric installed (https://pytorch-
geometric.readthedocs.io/en/latest/install/installation.html). We will need to import the
following libraries

import numpy as np
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torch_geometric as pyg
import networkx as nx
import sklearn

To load the dataset and put the graph into networkx we will use the following lines.

from torch_geometric.datasets import Planetoid
dataset = Planetoid(root='./Cora', name='Cora')
Print information
print(dataset)
print('------------')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')
classes = dataset.y
nx_g = pyg.utils.to_networkx(dataset.data, to_undirected=True)
Adj matrix of the graph
A = np.array(nx.adjacency_matrix(nx_g).todense())

(i) Do a quick inspection of the classes: how many element are there in each class ?

(ii) First we will re-implement from scratch a GNN. Given the n× n adjacency matrix A of the graph,
and K layers we will implement a GNN given by

Z(0) ∈ Rn×din

∀k ∈ {1, · · · ,K − 1},Z(k) = σ(G[A]Z(k−1)W(k) + 1nb
(k)>)

where W(1) ∈ Rdin×dinter ,∀k > 1,W(k) ∈ Rdinter×dinter ,b(k) ∈ Rdinter

Z(K) = G[A]Z(K−1)W(K) + 1nb
(K)> where W(K) ∈ Rdinter×dout ,b(K) ∈ Rdout

(1)

In this GNN, Z(0) are the initial features, G is a permutation equivariant function, σ is the ReLU
activation function and (W(k)), (b(k)) are the weight, bias matrices. We also add a constraint: when
K = 1 the GNN is simply the linear layer We will implement this GNN in pure PyTorch. Complete
the following code:

page 1

https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html
https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html

class SimpleGCN(nn.Module):
def __init__(self, d_in, d_inter, d_out, n_layers=1):

super(SimpleGCN, self).__init__()
self.n_layers = n_layers
self.d_in = d_in
self.d_out = d_out
self.d_inter = d_inter
layers = []
if self.n_layers == 1:

layers.append(#to complete)
if n_layers > 1:

layers.append(#to complete)
layers.append(#to complete)
for _ in range(self.n_layers - 1):

layers.append(#to complete)
layers.append(#to complete)

layers.append(#to complete)
self.neural_net = nn.Sequential(#to complete)

def forward(self, X, G):
#Here G stands for the n times n G[A] matrix
#to complete
return

(iii) Implement the function G[A] of your choice (for example normalized Laplacian function). It must
takes as input a n× n tensor and return a n× n tensor and be permutation equivariant.

(iv) We will train the GNN on the Cora dataset. First we do a simple train/test split of the nodes

from sklearn.model_selection import train_test_split
N = len(classes)
index_nodes_train, index_nodes_test = train_test_split(

np.arange(N), test_size=0.33, random_state=33)

To train the model take inspiration from the following code. You must make a choice for: the initial
features Z(0), the dimensions, learning-rate, and loss function. At first take Z(0) defined by the
degree of each node.

n_epochs = #to define
lr = #to define
loss_fn = #to define
gcn = SimpleGCN(d_in=#to define,

d_inter=#to define,
d_out=#to define,
n_layers=#to define)

optimizer = torch.optim.Adam(gcn.parameters(), lr=lr)
for i in range(n_epochs):

pred = gcn(#to define, #to define)
pred_on_train = #to define
loss = loss_fn(input=pred_on_train, target=y_train)
optimizer.zero_grad()
loss.backward()
optimizer.step()

(v) Compute the accuracy on train/test during the epochs. Compare with three baselines: the
DummyClassifier from scikit-learn, a GNN with K = 1 and a very simple linear model with no

page 2

diffusion Z = σ(Z(0)W + 1nb
>). What can you say about the results ? Compare the results by

taking Z(0) to be the features of each node given in the dataset.

(vi) To put everyone on the same page we will use the train/test split directly given by the dataset:

index_nodes_train = np.arange(N)[dataset.train_mask]
index_nodes_test = np.arange(N)[dataset.test_mask]

Change the different parameters so as to have the best performance (on the test of course) !

(vii) What are the problems in our implementation of the GNN ? Compare with the one of
PyTorch Geometric (for example with the GCN torch_geometric.nn.models.GCN)

page 3

