Machine learning for graphs and with graphs

Optimal Transport for Graph Learning

Titouan Vayer & Pierre Borgnat email: titouan.vayer@inria.fr, pierre.borgnat@ens-lyon.fr

October 22, 2024

Table of contents

Generalities about Optimal Transport
OT problem and mathematical tools

Optimal Transport for graphs

The Gromov-Wasserstein distance
Applications

Acknowledgments

Slides adapted from those of Rémi Flamary.

Distributions are everywhere

Distributions are everywhere in machine learning

- ▶ Images, vision, graphics, Time series, text, genes, proteins.
- Many datum and datasets can be seen as distributions.
- ► Important questions:
 - ► How to compare distributions?
 - ► How to use the geometry of distributions?
- Optimal transport provides many tools that can answer those questions.

Illustration from the slides of Gabriel Peyré.

Distributions are everywhere

Distributions are everywhere in machine learning

- ▶ Images, vision, graphics, Time series, text, genes, proteins.
- ▶ Many datum and datasets can be seen as distributions.
- ► Important questions:
 - ► How to compare distributions?
 - ▶ How to use the geometry of distributions?
- ▶ Optimal transport provides many tools that can answer those questions.

Discrete distributions: Empirical vs Histogram

Discrete measure:
$$\mu = \sum_{i=1}^n a_i \delta_{\mathbf{x}_i}, \quad \mathbf{x}_i \in \Omega, \quad \sum_{i=1}^n a_i = 1$$

Lagrangian (point clouds)

- ► Constant weight: $a_i = \frac{1}{n}$
- ▶ Quotient space: $Ω^n$, $Σ_n$

Eulerian (histograms)

- Fixed positions \mathbf{x}_i e.g. grid
- Convex polytope Σ_n (simplex): $\{(a_i)_i > 0; \sum_i a_i = 1\}$

Table of contents

Generalities about Optimal Transport
OT problem and mathematical tools

Optimal Transport for graphs

The Gromov-Wasserstein distance
Applications

Optimal transport

- ▶ Problem introduced by Gaspard Monge in his memoire Monge 1781.
- How to move mass while minimizing a cost (mass + cost)
- ▶ Monge formulation seeks for a mapping between two mass distribution.
- ► Reformulated by Leonid Kantorovich (1912–1986), Economy nobelist in 1975
- ▶ Focus on where the mass goes, allow splitting Kantorovich 1942.
- ► Applications originally for resource allocation problems

Optimal transport between discrete distributions

Kantorovitch formulation : OT Linear Program When $\mu_s = \sum_{i=1}^{n_s} a_i \delta_{\mathbf{x}_i^s}$ and $\mu_t = \sum_{i=1}^{n_t} b_i \delta_{\mathbf{x}_i^t}$

$$W_p^p(\mu_s, \mu_t) = \min_{m{T} \in \Pi(\mu_s, \mu_t)} \quad \left\{ \langle m{T}, m{C} \rangle_F = \sum_{i,j} T_{i,j} c_{i,j}
ight\}$$

where **C** is a cost matrix with $c_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_i^t) = \|\mathbf{x}_i^s - \mathbf{x}_i^t\|^p$ and

$$\Pi(\mu_{s},\mu_{t}) = \left\{ \boldsymbol{\mathcal{T}} \in (\mathbb{R}^{+})^{n_{s} \times n_{t}} | \boldsymbol{\mathcal{T}} \mathbf{1}_{n_{t}} = \mathbf{a}, \boldsymbol{\mathcal{T}}^{T} \mathbf{1}_{n_{s}} = \mathbf{b} \right\}$$

- $(n = n_s = n_t)$ Solving OT with network simplex is $O(n^3 \log(n))$.
- $V_p(\mu_s, \mu_t)$ is called the Wasserstein distance (EMD for p=1).

Optimal transport between discrete distributions

Kantorovitch formulation : OT Linear Program When $\mu_s = \sum_{i=1}^{n_s} a_i \delta_{\mathbf{x}_i^s}$ and $\mu_t = \sum_{i=1}^{n_t} b_i \delta_{\mathbf{x}_i^t}$

$$W_p^p(\mu_s, \mu_t) = \min_{\boldsymbol{T} \in \Pi(\mu_s, \mu_t)} \quad \left\{ \langle \boldsymbol{T}, \boldsymbol{C} \rangle_F = \sum_{i,j} T_{i,j} c_{i,j} \right\}$$

where **C** is a cost matrix with $c_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_i^t) = \|\mathbf{x}_i^s - \mathbf{x}_i^t\|^p$ and

$$\Pi(\mu_{s},\mu_{t}) = \left\{ \boldsymbol{\mathcal{T}} \in (\mathbb{R}^{+})^{n_{s} \times n_{t}} | \boldsymbol{\mathcal{T}} \mathbf{1}_{n_{t}} = \mathbf{a}, \boldsymbol{\mathcal{T}}^{T} \mathbf{1}_{n_{s}} = \mathbf{b} \right\}$$

- $(n = n_s = n_t)$ Solving OT with network simplex is $O(n^3 \log(n))$.
- $V_p(\mu_s, \mu_t)$ is called the Wasserstein distance (EMD for p=1).

Optimal transport between discrete distributions

Kantorovitch formulation : OT Linear Program When $\mu_s = \sum_{i=1}^{n_s} a_i \delta_{\mathbf{x}_i^s}$ and $\mu_t = \sum_{i=1}^{n_t} b_i \delta_{\mathbf{x}_i^t}$

$$W_p^p(\mu_s, \mu_t) = \min_{\boldsymbol{T} \in \Pi(\mu_s, \mu_t)} \quad \left\{ \langle \boldsymbol{T}, \mathbf{C} \rangle_F = \sum_{i,j} T_{i,j} c_{i,j} \right\}$$

where **C** is a cost matrix with $c_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_i^t) = \|\mathbf{x}_i^s - \mathbf{x}_i^t\|^p$ and

$$\Pi(\mu_{s},\mu_{t}) = \left\{ \boldsymbol{\mathcal{T}} \in (\mathbb{R}^{+})^{n_{s} \times n_{t}} | \boldsymbol{\mathcal{T}} \mathbf{1}_{n_{t}} = \mathbf{a}, \boldsymbol{\mathcal{T}}^{T} \mathbf{1}_{n_{s}} = \mathbf{b} \right\}$$

- $(n = n_s = n_t)$ Solving OT with network simplex is $O(n^3 \log(n))$.
- $V_p(\mu_s, \mu_t)$ is called the Wasserstein distance (EMD for p=1).

Boulangeries & Cafés

Wasserstein distance

Wasserstein distance

$$W_p^p(\mu_{\mathbf{s}}, \mu_t) = \min_{\gamma \in \mathcal{P}} \quad \int_{\Omega_{\mathbf{s}} \times \Omega_t} \|\mathbf{x} - \mathbf{y}\|^p \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y} = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} [\|\mathbf{x} - \mathbf{y}\|^p]$$
 (1)

- ▶ Earth Mover's Distance (W_1^1) Rubner, Tomasi, and Guibas 2000.
- Useful between discrete distribution even without overlapping support.
- Smooth approximation can be computed with Sinkhorn Cuturi 2013.
- ▶ Wasserstein barycenter: $\overline{\mu} = \arg\min_{\mu} \sum_{i} w_{i} W_{p}^{p}(\mu, \mu_{i})$

Wasserstein distance

Wasserstein distance

$$W_p^p(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \min_{\gamma \in \mathcal{P}} \quad \int_{\Omega_s \times \Omega_t} \|\mathbf{x} - \mathbf{y}\|^p \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y} = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma}[\|\mathbf{x} - \mathbf{y}\|^p]$$
 (1)

- Earth Mover's Distance (W₁¹) Rubner, Tomasi, and Guibas 2000.
- Useful between discrete distribution even without overlapping support.
- ▶ Smooth approximation can be computed with Sinkhorn Cuturi 2013.
- ▶ Wasserstein barycenter: $\overline{\mu} = \arg \min_{\mu} \sum_{i} w_{i} W_{p}^{p}(\mu, \mu_{i})$

Wasserstein distance

Wasserstein distance

$$W_p^p(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \min_{\gamma \in \mathcal{P}} \quad \int_{\Omega_s \times \Omega_t} \|\mathbf{x} - \mathbf{y}\|^p \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y} = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma}[\|\mathbf{x} - \mathbf{y}\|^p]$$
 (1)

- Earth Mover's Distance (W₁¹) Rubner, Tomasi, and Guibas 2000.
- ▶ Useful between discrete distribution even without overlapping support.
- ▶ Smooth approximation can be computed with Sinkhorn Cuturi 2013.
- ▶ Wasserstein barycenter: $\overline{\mu} = \arg\min_{\mu} \sum_{i} w_{i} W_{p}^{p}(\mu, \mu_{i})$

Entropic regularized optimal transport

Entropic regularization Cuturi 2013

$$\mathbf{T}_0^{\lambda} = \underset{\mathbf{T} \in \Pi(\boldsymbol{\mu}_s, \boldsymbol{\mu}_t)}{\arg \min} \quad \langle \mathbf{T}, \mathbf{C} \rangle_F + \lambda \sum_{i,j} T_{i,j} (\log T_{i,j} - 1)$$

- ▶ Regularization with the negative entropy of *T*.
- ▶ Looses sparsity but smooth and strictly convex optimization problem.
- Can be solved efficiently with Sinkhorn's matrix scaling algorithm with $\mathbf{u}^{(0)} = \mathbf{1}, \mathbf{K} = \exp(-\mathbf{C}/\lambda)$ and $\mathbf{T} = \operatorname{diag}(\mathbf{u}^*)\mathbf{K}\operatorname{diag}(\mathbf{v}^*)$

$$\mathbf{v}^{(k)} = \mathbf{b} \oslash \mathbf{K}^{\top} \mathbf{u}^{(k-1)}, \quad \mathbf{u}^{(k)} = \mathbf{a} \oslash \mathbf{K} \mathbf{v}^{(k)}$$

Entropic regularized optimal transport

Distributions

Source μ_s Target μ_t

Entropic regularization Cuturi 2013

$$\mathbf{T}_0^{\lambda} = \underset{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})}{\operatorname{arg\,min}} \quad \langle \mathbf{T}, \mathbf{C} \rangle_F + \lambda \sum_{i,j} T_{i,j} (\log T_{i,j} - 1)$$

- Regularization with the negative entropy of T.
- ▶ Looses sparsity but smooth and strictly convex optimization problem.
- Can be solved efficiently with Sinkhorn's matrix scaling algorithm with $\mathbf{u}^{(0)} = \mathbf{1}, \mathbf{K} = \exp(-\mathbf{C}/\lambda)$ and $\mathbf{T} = \operatorname{diag}(\mathbf{u}^*)\mathbf{K}\operatorname{diag}(\mathbf{v}^*)$

$$\mathbf{v}^{(k)} = \mathbf{b} \oslash \mathbf{K}^{\top} \mathbf{u}^{(k-1)}, \quad \mathbf{u}^{(k)} = \mathbf{a} \oslash \mathbf{K} \mathbf{v}^{(k)}$$

Three aspects of optimal transport

Transporting with optimal transport

- ► Learn to map between distributions.
- Estimate a smooth mapping from discrete distributions.
- ► Applications in domain adaptation.

Divergence between histograms

- Use the ground metric to encode complex relations between the bins of histograms for data fitting.
- OT losses are non-parametric divergences between non overlapping distributions.
- ▶ Used to train minimal Wasserstein estimators.

Divergence between graphs

- Modeling of structured data and graphs as distribution.
- ▶ OT losses (Wass. or (F)GW) measure similarity between distributions/objects.

Table of contents

Generalities about Optimal Transport
OT problem and mathematical tools

Optimal Transport for graphs
The Gromov-Wasserstein distance

Gromov-Wasserstein and extensions

Inspired from Gabriel Peyré

GW for discrete distributions Memoli 2011

$$\mathcal{GW}_{p}^{p}(\mu_{s}, \mu_{t}) = \min_{T \in \Pi(\mu_{s}, \mu_{t})} \sum_{i, i, k, l} |D_{i,k} - D'_{j,l}|^{p} T_{i,j} T_{k,l}$$

- with $\mu_s = \sum_j a_i \delta_{\mathbf{x}_j^s}$ and $\mu_t = \sum_j b_j \delta_{\mathbf{x}_j^t}$ Distance between metric measured spaces : across different spaces.
 - OT plan that preserves the pairwise relationships between samples.
 - Entropy regularized GW proposed in Peyré, Cuturi, and Solomon 2016.

Gromov-Wasserstein and extensions

FGW for discrete distributions Vayer et al. 2018

$$\mathcal{FGW}_p^p(\mu_s, \mu_t) = \min_{T \in \Pi(\mu_s, \mu_t)} \sum_{i, j, k, l} \left(\left(1 - \alpha \right) C_{i,j}^q + \alpha |D_{i,k} - D_{j,l}'|^q \right)^p T_{i,j} T_{k,l}$$

- with $\mu_s = \sum_j \mathbf{a}_i \delta_{\mathbf{x}_i^s}$ and $\mu_t = \sum_j \mathbf{b}_j \delta_{\mathbf{x}_j^t}$ Distance between metric measured spaces : across different spaces.
 - OT plan that preserves the pairwise relationships between samples.
 - Entropy regularized GW proposed in Peyré, Cuturi, and Solomon 2016.

Solving the Gromov Wasserstein optimization problem

Optimization problem

$$\mathcal{GW}_p^p(\mu_s, \mu_t) = \min_{\boldsymbol{T} \in \Pi(\mu_s, \mu_t)} \sum_{i,j,k,l} |D_{i,k} - D'_{j,l}|^p T_{i,j} T_{k,l}$$

- Quadratic Program (Wasserstein is a linear program).
- Nonconvex, NP-hard, related to Quadratic Assignment Problem.
- ► Large problem and non convexity forbid standard QP solvers.

Optimization algorithms

- Local solution with conditional gradient algorithm (Frank-Wolfe) Frank and Wolfe 1956.
- Each FW iteration requires solving an OT problems.
- ▶ With entropic regularization, one can use mirror descent Peyré, Cuturi, and Solomon 2016.

Entropic Gromov-Wasserstein

Optimization Problem

$$\mathcal{GW}_{p,\epsilon}^{p}(\boldsymbol{\mu_s},\boldsymbol{\mu_t}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{\mu_s},\boldsymbol{\mu_t})} \sum_{i,j,k,l} |D_{i,k} - D'_{j,l}|^p T_{i,j} \ T_{k,l} + \epsilon \sum_{i,j} T_{i,j} \log T_{i,j}$$
 (2)

▶ Smoothing the original GW with a convex and smooth entropic term.

Solving the entropic \mathcal{GW} Peyré, Cuturi, and Solomon 2016

- ▶ Problem (2) can be solved using a KL mirror descent.
- This is equivalent to solving at each iteration t

$$T^{(t+1)} = \min_{T \in \mathcal{P}} \quad \left\langle T, \mathbf{G}^{(t)} \right\rangle_F + \epsilon \sum_{i,j} T_{i,j} \log T_{i,j}$$

Where $G_{i,j}^{(t)} = 2\sum_{k,l} |D_{i,k} - D'_{j,l}|^p T_{k,l}^{(t)}$ is the gradient of the GW loss at previous point $T^{(k)}$.

Problem above solved using a Sinkhorn-Knopp algorithm of entropic OT.

Table of contents

Generalities about Optimal Transport
OT problem and mathematical tools

Optimal Transport for graphs
The Gromov-Wasserstein distance
Applications

Barycenter/averaging of labeled graphs Vayer et al. 2018

Shape matching between surfaces Solomon et al. 2016; Thual et al. 2022

Source

Barycenter/averaging of labeled graphs Vayer et al. 2018

Shape matching between surfaces Solomon et al. 2016; Thual et al. 2022

Barycenter/averaging of labeled graphs Vayer et al. 2018

Shape matching between surfaces Solomon et al. 2016; Thual et al. 2022

Barycenter/averaging of labeled graphs Vayer et al. 2018

Shape matching between surfaces Solomon et al. 2016; Thual et al. 2022

Targets

Source

Barycenter/averaging of labeled graphs Vayer et al. 2018

Shape matching between surfaces Solomon et al. 2016; Thual et al. 2022

FGW for a pooling layer in GNN

Template based FGW layer (TFGW) Vincent-Cuaz et al. 2022

- ▶ Principle: represent a graph through its distances to learned templates.
- Learnable parameters are illustrated in red above.
- New end-to-end GNN models for graph-level tasks.
- Sate-of-the-art (still!) on graph classification $(1 \times #1, 3 \times #2 \text{ on paperwithcode})$.

References I

- Cuturi, Marco (2013). "Sinkhorn distances: Lightspeed computation of optimal transport". In: *NeurIPS*, pp. 2292–2300.
- Frank, Marguerite and Philip Wolfe (1956). "An algorithm for quadratic programming". In: *Naval research logistics quarterly* 3.1-2, pp. 95–110.
- Kantorovich, L. (1942). "On the translocation of masses". In: C.R. (Doklady) Acad. Sci. URSS (N.S.) 37, pp. 199–201.
 - Memoli, F. (2011). "Gromov Wasserstein Distances and the Metric Approach to Object Matching". In: Foundations of Computational Mathematics, pp. 1–71. ISSN: 1615-3375.
 - Monge, Gaspard (1781). Mémoire sur la théorie des déblais et des remblais. De l'Imprimerie Royale.
- Peyré, Gabriel, Marco Cuturi, and Justin Solomon (2016). "Gromov-Wasserstein averaging of kernel and distance matrices". In: *ICML*, pp. 2664–2672.
 - Rubner, Yossi, Carlo Tomasi, and Leonidas J Guibas (2000). "The earth mover's distance as a metric for image retrieval". In: *International journal of computer vision* 40.2, pp. 99–121.

References II

- Solomon, Justin et al. (2016). "Entropic metric alignment for correspondence problems". In: *ACM Transactions on Graphics (TOG)* 35.4, p. 72.
 - Thual, Alexis et al. (2022). "Aligning individual brains with Fused Unbalanced Gromov-Wasserstein". In: Neural Information Processing Systems (NeurIPS).
 - Vayer, Titouan et al. (2018). "Fused Gromov-Wasserstein distance for structured objects: theoretical foundations and mathematical properties". In:
 - Vincent-Cuaz, Cédric et al. (2022). "Template based Graph Neural Network with Optimal Transport Distances". In: Neural Information Processing Systems (NeurIPS).