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Distributions are everywhere

Distributions are everywhere in machine learning

» Images, vision, graphics, Time series, text, genes, proteins.
» Many datum and datasets can be seen as distributions.

» Important questions:

» How to compare distributions?
> How to use the geometry of distributions?

» Optimal transport provides many tools that can answer those questions.

Illustration from the slides of Gabriel Peyré.
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Discrete distributions: Empirical vs Histogram
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> Constant weight: a; = 1 » Fixed positions x; e.g. grid
» Quotient space: Q", ¥, » Convex polytope ¥,

(simplex):

{(a)i > 0,3 ;2 =1}
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Optimal transport
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Problem introduced by Gaspard Monge in his memoire Monge 1781.
How to move mass while minimizing a cost (mass + cost)
Monge formulation seeks for a mapping between two mass distribution.

Reformulated by Leonid Kantorovich (1912-1986), Economy nobelist in
1975

Focus on where the mass goes, allow splitting Kantorovich 1942.

Applications originally for resource allocation problems



Optimal transport between discrete distributions
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Kantorovitch formulation : OT Linear Program
When 115 = 377 ai0e and i = Y07 bidy:
WP (11, p1e) = TGIKITEL’:M) (T,C)r = ,z; T;jcij
where C is a cost matrix with ¢;; = c(x, xf) =[x} — x;||? and
s, ) = { T € R Tly =2, T71,, = b}
» (n= ns = n;) Solving OT with network simplex is O(n®log(n)).
> W, (s, f1t) is called the Wasserstein distance (EMD for p = 1).



Optimal transport between discrete distributions
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Kantorovitch formulation : OT Linear Program
When 115 = 377 ai0e and pip = Y071 bidy:

W,f(us,,ut) = TGE’ELTM) (T, C),_— = ,ZJ: Tijcij

where C is a cost matrix with ¢;; = c(x, xf) =[x} — x;|? and
(s, pe) = { T € ®*)™*™| T1y =2, TT1y, = b}

» (n= ns = n;) Solving OT with network simplex is O(n®log(n)).

» W,y (1s, f1t) is called the Wasserstein distance (EMD for p = 1).



Optimal transport between discrete distributions

OT matrix with samples
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Kantorovitch formulation : OT Linear Program
When 1o = 371, i and up = Y7 bidye

WP(1s, pit) = _ min T.C)r= Tijcij
p(# ft) TeNt ) ( >F ; JCij

where C is a cost matrix with ¢;; = c(x},x}) = [[x; — x}||P and
M(uspe) = {T € @F)™7| T1y, =2, TT1,, = b}

» (n= ns = n;) Solving OT with network simplex is O(n®log(n)).

» W, (us, p1t) is called the Wasserstein distance (EMD for p = 1).
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Wasserstein distance

Source distribution Divergences (scaled)
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Target distributions /

Wasserstein distance

W (e = min [ lx = ylP(x,y)dxdy = Egeyyos Ix— yI7] (1)
VEP Ja.xq

» Earth Mover's Distance (W{) Rubner, Tomasi, and Guibas 2000.

» Useful between discrete distribution even without overlapping support.
» Smooth approximation can be computed with Sinkhorn Cuturi 2013.
> Wasserstein barycenter: 77 = argmin,, >, w; WP (u, j1;)



Wasserstein distance

L2 Wasserstein Matrix C

Wasserstein distance

W3 (45, 1) = min

/QSXQt [x = y[IPv(x,y)dxdy = E(xy)~ [llx — y[?] (1)
» Earth Mover's Distance (W) Rubner, Tomasi, and Guibas 2000.

» Useful between discrete distribution even without overlapping support.
» Smooth approximation can be computed with Sinkhorn Cuturi 2013.

> Wasserstein barycenter: i = argmin,, >, w;Wp(u, j1;)



Wasserstein distance

L2 Wasserstein Matrix C
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Wasserstein distance
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/QSXQt [x = y[IPv(x,y)dxdy = E(xy)~ [llx — y[?] (1)
» Earth Mover's Distance (W) Rubner, Tomasi, and Guibas 2000.

» Useful between discrete distribution even without overlapping support.
» Smooth approximation can be computed with Sinkhorn Cuturi 2013.

> Wasserstein barycenter: i = argmin,, >, w;Wp(u, j1;)



Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2
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Entropic regularization Cuturi 2013

Ty = argmin  (T,C), + )\Z Tij(log T; j — 1)
TG“(#s,Ht) iJj
» Regularization with the negative entropy of T.
» Looses sparsity but smooth and strictly convex optimization problem.

» Can be solved efficiently with Sinkhorn's matrix scaling algorithm with
u® =1 K = exp(—C/)) and T = diag(u*)Kdiag(v*)

v =boKTu* D uk =agKv®



Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2
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Entropic regularization Cuturi 2013

Ty = argmin  (T,C)p+AY_ Tij(log Tij — 1)
TeN(ps, 1) iJj
» Regularization with the negative entropy of T.
» Looses sparsity but smooth and strictly convex optimization problem.
» Can be solved efficiently with Sinkhorn’s matrix scaling algorithm with
u® =1,K = exp(—C/)) and T = diag(u*)Kdiag(v*)

v =bo KTu* Dyl =agKv®



Three aspects

of optimal transport

Transporting with optimal transport
» |earn to map between distributions.

» Estimate a smooth mapping from discrete
distributions.

» Applications in domain adaptation.
Divergence between histograms

» Use the ground metric to encode complex
relations between the bins of histograms for
data fitting.

» OT losses are non-parametric divergences
between non overlapping distributions.
» Used to train minimal Wasserstein estimators.
Divergence between graphs
» Modeling of structured data and graphs as
distribution.

» OT losses (Wass. or (F)GW) measure similarity
between distributions/objects.
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Gromov-Wasserstein and extensions

i

|dx (z,2") — dy(y,)

Inspired from Gabriel Peyré

GW for discrete distributions Memoli 2011

A
GWplpiss i) = | _min zk:/ Dise — D} 1P Tij Th

with 15 =37, 20 and i = 37 by
> Distance between metric measured spaces : across different spaces.
» OT plan that preserves the pairwise relationships between samples.
» Entropy regularized GW proposed in Peyré, Cuturi, and Solomon 2016.



Gromov-Wasserstein and extensions

FGW for discrete distributions Vayer et al. 2018

FGWh (s, pit) = TGI[ITEL“H ), Z ((1- @)Cq +a|D;jy — Df,/|q)pTi,j Tk,
s t kl

with f1s =37 20 and pe =3, béxt
> Distance between metric measured spaces : across different spaces.
» OT plan that preserves the pairwise relationships between samples.
» Entropy regularized GW proposed in Peyré, Cuturi, and Solomon 2016.



Solving the Gromov Wasserstein optimization
problem

Optimization problem

GWP(lis, pie) =  min Dix—D/,|PT;:; T,
(1, 1) Te”(“s’“‘);jzk:/| ik — DjlPTij Te,

» Quadratic Program (Wasserstein is a linear program).
» Nonconvex, NP-hard, related to Quadratic Assignment Problem.

» Large problem and non convexity forbid standard QP solvers.

Optimization algorithms

» Local solution with conditional gradient
algorithm (Frank-Wolfe) Frank and Wolfe 1956.

» Each FW iteration requires solving an OT
problems.

» With entropic regularization, one can use mirror
descent Peyré, Cuturi, and Solomon 2016.



Entropic Gromov-Wasserstein

Optimization Problem

GWpelpisipe) = | min 3 1Di=D} " Tij Teste 3 Tijlog Tij (2)
=gk ij

» Smoothing the original GW with a convex and smooth entropic term.

Solving the entropic GW Peyré, Cuturi, and Solomon 2016

» Problem (2) can be solved using a KL mirror descent.
» This is equivalent to solving at each iteration t
1 .
T = min <T, G(t)>F + EZ Tijlog T;j
i
Where G,-(j-) =23 ,IDix—Dj P T,Et,) is the gradient of the GW loss
at previous point T®),

» Problem above solved using a Sinkhorn-Knopp algorithm of entropic

OT.
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Applications of (F)GW

Barycenter/averaging of labeled graphs Vayer et al. 2018

Noiseless graph Noisy graphs samples
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Shape matching between surfaces Solomon et al. 2016; Thual
et al. 2022

Source Targets
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Applications of (F)GW

Barycenter/averaging of labeled graphs Vayer et al. 2018
Noiseless graph Noisy graphs samples Barycenter

BRSO B P
288 8L

Shape matching between surfaces Solomon et al. 2016; Thual
et al. 2022

Training (cross-validated grid-search) Test Baseline correlation Aligned correlation

- 300+ Source Target Source contrast k Source contrast k Actual
training contrasts subject s subject t mapped on target mesh  target contrast k



FGW for a pooling layer in GNN

‘ TFGW layer
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Template based FGW layer (TFGW) Vincent-Cuaz et al. 2022

» Principle: represent a graph through its distances to learned templates.
» Learnable parameters are illustrated in red above.
» New end-to-end GNN models for graph-level tasks.

> Sate-of-the-art (still!) on graph classification (1x#1, 3x#2 on
paperwithcode).
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