Machine learning for graphs and with graphs
 Graph neural networks

Titouan Vayer \& Pierre Borgnat email: titouan.vayer@inria.fr, pierre.borgnat@ens-lyon.fr

November 6, 2023

Table of contents

From neural networks...
The basic ideas
Logistic regression and one layer neural-network
Convolutional neural networks
... to unsupervised node embeddings techniques...
A chronological start
... to graph neural networks
Learning with graphs
What is a GNN ?
A bit of group theory
Invariance and equivariance
Message-passing neural networks
Examples of GNN
The whole pipeline
Expressivity of GNN
Conclusion

Table of contents

From neural networks...
The basic ideas
Logistic regression and one layer neural-network
Convolutional neural networks
to unsupervised node embeddings techniques..
A chronological start
to graph neural networks
Learning with graphs
What is a GNN ?
A bit of group theory
Invariance and equivariance
Message-passing neural networks
Examples of GNN
The whole pipeline
Expressivity of GNN
Conclusion

What is a neural network ?

Neural network is a certain family of functions parametrized by weights.
Built upon a biological analogy Rosenblatt 1958

What is a neural network ?

Neural network is a certain family of functions parametrized by weights.
Built upon a biological analogy Rosenblatt 1958

- First example $f\left(\mathbf{x}=\left(x_{1}, x_{2}\right)\right)=\operatorname{activation}\left(\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3}\right)$:
input
neurons (input)
neuron (output)

What is a neural network ?

Neural network is a certain family of functions parametrized by weights.
Built upon a biological analogy Rosenblatt 1958

- Second example $f\left(\mathbf{x}=\left(x_{1}, x_{2}\right)\right)=\operatorname{activation}\left(\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3}\right)$: input

What is a neural network ?

Feed-forward neural networks

- Linear neural network:

What is a neural network ?

Feed-forward neural networks

- Linear neural network:

$$
y=\left(\theta_{3} \theta_{1}+\theta_{4} \theta_{2}\right) x+\theta_{3} b_{1}+\theta_{4} b_{2}+b_{3}
$$

- Non-linearity:

What is a neural network ?

Feed-forward neural networks

- Linear neural network:

- Non-linearity:
hidden neurons

$$
\begin{aligned}
& u_{1}=\theta_{1} x+b_{1} \\
& u_{2}=\theta_{2} x+b_{2} \\
& y=\theta_{3} \max \left\{u_{1}, 0\right\}+\theta_{4} \max \left\{u_{2}, 0\right\}+b_{3} \\
& \pm
\end{aligned}
$$

input

$$
x \in \mathbb{R} \square
$$

$$
\square \rightarrow \theta_{\theta_{4}}
$$

- Find a neural network that implements the function $f(x)=|x|$.

What is a neural network ?

Feed-forward neural networks

- Find a neural network that implements the function $f(x)=|x|$
hidden neurons (no bias)

What is a neural network ?

Feed-forward neural networks

What is a neural network?

Feed-forward neural networks

- Feed-forward NN are function of the form

$$
\begin{aligned}
f(\mathbf{x}) & =T_{K} \circ \sigma_{K-1} \circ \cdots \circ \sigma_{1} \circ T_{1}(\mathbf{x}) \\
& \text { where } T_{k}(\mathbf{z})=\mathbf{W}^{(k)} \mathbf{z}+\mathbf{b}^{(k)} \\
& \text { and } \sigma_{k} \text { pointwise activation function. }
\end{aligned}
$$

- All the weights: $\boldsymbol{\theta}=\left(\mathbf{W}^{(1)}, \cdots, \mathbf{W}^{(K)}, \mathbf{b}^{(1)}, \cdots \mathbf{b}^{(K)}\right)$.
- Depending on the task the output of a NN is also transformed $g(\mathbf{x})=\operatorname{norm}(f(\mathbf{x}))$.
- E.g. $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{d} \rightarrow(0,1)$ for binary classification with norm $(u)=1 /(1+\exp (-u))($ logistic/sigmoid function).

What is a neural network ?

A zoo of architectures

multi-layers

fully-connected
convolutional [LeCun, 1989]

deep-learning also: generative, recurrent, transformers, attention layer transformers...
Richness of neural network

Neural network in practice

The (very) big picture

Find the weights that minimizes the empirical minimization loss.

- In practice gradient descent very slow.
- We use stochastic gradient descents (and variations) on batches of the data.

(almost) All optimization in one slide

Principle

- Minimize a smooth function $J(\boldsymbol{\theta})$ using its gradient (or \approx).
- Initialize a vector $\boldsymbol{\theta}^{(0)}$ and update it at each iteration k as:

$$
\boldsymbol{\theta}^{(k+1)}=\boldsymbol{\theta}^{(k)}+\mu_{k} \mathbf{d}_{k}
$$

where μ_{k} is a step and \mathbf{d}_{k} is a descent direction $\mathbf{d}_{k}^{\top} \nabla J\left(\boldsymbol{\theta}^{(k)}\right)<0$.

- Classical descent directions are :
- Steepest descent: $\mathbf{d}_{k}=-\nabla J\left(\theta^{(k)}\right)$ (a.k.a. Gradient descent).
- (Quasi) Newton: $\mathbf{d}_{k}=-\left(\nabla^{2} J\left(\boldsymbol{\theta}^{(k)}\right)\right)^{-1} \nabla J\left(\boldsymbol{\theta}^{(k)}\right), \nabla^{2} J$ is the Hessian.
- Stochastic Gradient Descent : $\mathbf{d}_{k}=-\tilde{\nabla} J\left(\boldsymbol{\theta}^{(k)}\right)$ with approx. gradient.
- For NN: gradient computed with automatic differentiation (TD).

(almost) All optimization in two slides...

Why is this a good idea ? (on the board)
Let $J: \mathbb{R}^{D} \rightarrow \mathbb{R}$ with L-Lipschitz gradient ${ }^{1}$ and $J^{\star}:=\min _{\theta} J(\theta)>-\infty$. Then, provided that $0<\mu_{k}<\frac{2}{L}$, the iterations $\boldsymbol{\theta}^{(k+1)}=\boldsymbol{\theta}^{(k)}-\mu_{k} \nabla J\left(\boldsymbol{\theta}^{(k)}\right)$ satisfy

$$
\begin{aligned}
& J\left(\boldsymbol{\theta}^{(k+1)}\right)<J\left(\boldsymbol{\theta}^{(k)}\right) \text { (decrease the objective function) } \\
& \lim _{k \rightarrow+\infty} \nabla J\left(\boldsymbol{\theta}^{(k)}\right)=\mathbf{0} \text { (critical point) }
\end{aligned}
$$

${ }^{1}{ }_{\text {it }}$ means that $\forall \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2} \in \mathbb{R}^{d},\left\|\nabla J\left(\boldsymbol{\theta}_{1}\right)-\nabla J\left(\boldsymbol{\theta}_{2}\right)\right\|_{2} \leq L\left\|\boldsymbol{\theta}_{1}-\boldsymbol{\theta}_{2}\right\|_{2}$.

(almost) All optimization in three slides.

Be aware of local minima

- When the functions are not convex, GD and its variants can fall into bad local minima.
- Neural networks are not convex w.r.t. the optimized parameters !

Table of contents

From neural networks...
The basic ideas
Logistic regression and one layer neural-network Convolutional neural networks
to unsupervised node embeddings techniques..
A chronological start
to graph neural networks
Learning with graphs
What is a GNN ?
A bit of group theory
Invariance and equivariance
Message-passing neural networks
Examples of GNN
The whole pipeline
Expressivity of GNN
Conclusion

First simple neural network: logistic regression

- It is a classification method: input $\left(\mathbf{x}_{i}\right)_{i} \in \mathbb{R}^{d}$ and $\left(y_{i}\right)_{i} \in\{+1,-1\}$.
- Probabilistic model: find a model h_{θ} s.t. $\mathbb{P}(y=+1 \mid \mathbf{x}) \approx h_{\theta}(\mathbf{x})$.
- Bayes decision: $f(\mathbf{x})=\operatorname{sign}(\mathbb{P}(y=+1 \mid \mathbf{x})-\mathbb{P}(y=-1 \mid \mathbf{x})) \in\{-1,+1\}$.

First simple neural network: logistic regression

- It is a classification method: input $\left(\mathbf{x}_{i}\right)_{i} \in \mathbb{R}^{d}$ and $\left(y_{i}\right)_{i} \in\{+1,-1\}$.
- Probabilistic model: find a model $h_{\boldsymbol{\theta}}$ s.t. $\mathbb{P}(y=+1 \mid \mathbf{x}) \approx h_{\theta}(\mathbf{x})$.
- Bayes decision: $f(\mathbf{x})=\operatorname{sign}(\mathbb{P}(y=+1 \mid \mathbf{x})-\mathbb{P}(y=-1 \mid \mathbf{x})) \in\{-1,+1\}$.

The sigmoid function
$\sigma(z)=1 /(1+\exp (-z))$.

- Usually used to model probabilities.

First simple neural network: logistic regression

- It is a classification method: input $\left(\mathbf{x}_{i}\right)_{i} \in \mathbb{R}^{d}$ and $\left(y_{i}\right)_{i} \in\{+1,-1\}$.
- Probabilistic model: find a model h_{θ} s.t. $\mathbb{P}(y=+1 \mid \mathbf{x}) \approx h_{\theta}(\mathbf{x})$.
- Bayes decision: $f(\mathbf{x})=\operatorname{sign}(\mathbb{P}(y=+1 \mid \mathbf{x})-\mathbb{P}(y=-1 \mid \mathbf{x})) \in\{-1,+1\}$.

The sigmoid function $\sigma(z)=1 /(1+\exp (-z))$.

- Usually used to model probabilities.

The logistic regression model
The model is $\mathbb{P}(y=+1 \mid \mathbf{x})=\sigma\left(\theta^{\top} \mathbf{x}+b\right)$.

- $\boldsymbol{\theta} \in \mathbb{R}^{d}$ are weights, $b \in \mathbb{R}$ is a bias that are to be optimized.
- It is a generalized linear model.
- Is is also a one layer neural-network (no hidden layer).

First simple neural network: logistic regression

One property

$$
\mathbb{P}(y=-1 \mid \mathbf{x})=1-\mathbb{P}(y=1 \mid \mathbf{x})=1-\sigma\left(\boldsymbol{\theta}^{\top} \mathbf{x}+b\right)=\sigma\left(-\left(\boldsymbol{\theta}^{\top} \mathbf{x}+b\right)\right)
$$

First simple neural network: logistic regression

One property
$\mathbb{P}(y=-1 \mid \mathbf{x})=1-\mathbb{P}(y=1 \mid \mathbf{x})=1-\sigma\left(\boldsymbol{\theta}^{\top} \mathbf{x}+b\right)=\sigma\left(-\left(\boldsymbol{\theta}^{\top} \mathbf{x}+b\right)\right)$
Maximum likelihood estimation
Find $\boldsymbol{\theta} \in \mathbb{R}^{d}, b \in \mathbb{R}$ that maximize the (conditional) log-likelihood (board)

$$
\begin{aligned}
& \sum_{i: y_{i}=1} \log \mathbb{P}\left(y_{i}=1 \mid \mathbf{x}_{i}\right)+\sum_{i: y_{i}=-1} \log \mathbb{P}\left(y_{i}=-1 \mid \mathbf{x}_{i}\right) \\
& =\sum_{i: y_{i}=1} \log \sigma\left(\boldsymbol{\theta}^{\top} \mathbf{x}_{i}+b\right)+\sum_{i: y_{i}=-1} \log \sigma\left(-\left(\boldsymbol{\theta}^{\top} \mathbf{x}+b\right)\right) \\
& =\sum_{i=1}^{n} \log \sigma\left(y_{i}\left(\boldsymbol{\theta}^{\top} \mathbf{x}_{i}+b\right)\right)
\end{aligned}
$$

First simple neural network: logistic regression

One property
$\mathbb{P}(y=-1 \mid \mathbf{x})=1-\mathbb{P}(y=1 \mid \mathbf{x})=1-\sigma\left(\boldsymbol{\theta}^{\top} \mathbf{x}+b\right)=\sigma\left(-\left(\boldsymbol{\theta}^{\top} \mathbf{x}+b\right)\right)$
Maximum likelihood estimation
Find $\boldsymbol{\theta} \in \mathbb{R}^{d}, \boldsymbol{b} \in \mathbb{R}$ that maximize the (conditional) log-likelihood (board)

$$
\begin{aligned}
& \sum_{i: y_{i}=1} \log \mathbb{P}\left(y_{i}=1 \mid \mathbf{x}_{i}\right)+\sum_{i: y_{i}=-1} \log \mathbb{P}\left(y_{i}=-1 \mid \mathbf{x}_{i}\right) \\
& =\sum_{i: y_{i}=1} \log \sigma\left(\boldsymbol{\theta}^{\top} \mathbf{x}_{i}+b\right)+\sum_{i: y_{i}=-1} \log \sigma\left(-\left(\boldsymbol{\theta}^{\top} \mathbf{x}+b\right)\right) \\
& =\sum_{i=1}^{n} \log \sigma\left(y_{i}\left(\boldsymbol{\theta}^{\top} \mathbf{x}_{i}+b\right)\right)
\end{aligned}
$$

Minimizing the logistic loss

$$
\min _{\boldsymbol{\theta}, b} \sum_{i=1}^{n} \log \left[1+\exp \left(-y_{i}\left(\boldsymbol{\theta}^{\top} \mathbf{x}_{i}+b\right)\right)\right] .
$$

- Convex problem, can be solved with (Quasi) Newton's method.

First simple neural network: logistic regression

Remember your losses
With $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, many losses can be written as $\ell\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\Phi\left(y_{i} f\left(\mathbf{x}_{i}\right)\right)$ with $\Phi \downarrow$.

- $\ell\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\mathbf{1}_{y_{i} f\left(\mathbf{x}_{i}\right) \leq 0}$.
- $\ell\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\max \left\{0,1-y_{i} f\left(\mathbf{x}_{i}\right)\right\}$.
- $\ell\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\log \left(1+e^{-y_{i} f\left(\mathbf{x}_{i}\right)}\right)$.

First simple neural network: logistic regression

Remember your losses

With $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, many losses can be written as $\ell\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\Phi\left(y_{i} f\left(\mathbf{x}_{i}\right)\right)$ with $\Phi \downarrow$.

- $\ell\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\mathbf{1}_{y_{i} f\left(\mathbf{x}_{i}\right) \leq 0}$.
- $\ell\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\max \left\{0,1-y_{i} f\left(\mathbf{x}_{i}\right)\right\}$.
- $\ell\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\log \left(1+e^{-y_{i} f\left(\mathbf{x}_{i}\right)}\right)$.

And so ?

- Logistic regression $=$ fitting $f(\mathbf{x})=\boldsymbol{\theta}^{\top} \mathbf{x}+b$ with the logistic loss.
- The decision/prediction of the label is $\operatorname{sign}(f(\mathbf{x}))$.
- So it is a linear decision boundary (linear classification).

First simple neural network: logistic regression

Remember your losses

With $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, many losses can be written as $\ell\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\Phi\left(y_{i} f\left(\mathbf{x}_{i}\right)\right)$ with $\Phi \downarrow$.
$-\ell\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\mathbf{1}_{y_{i} f\left(\mathbf{x}_{i}\right) \leq 0}$.

- $\ell\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\max \left\{0,1-y_{i} f\left(\mathbf{x}_{i}\right)\right\}$.
- $\ell\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\log \left(1+e^{-y_{i} f\left(\mathbf{x}_{i}\right)}\right)$.

And so ?

- Logistic regression $=$ fitting $f(\mathbf{x})=\boldsymbol{\theta}^{\top} \mathbf{x}+b$ with the logistic loss.
- The decision/prediction of the label is $\operatorname{sign}(f(\mathbf{x}))$.
- So it is a linear decision boundary (linear classification).

Table of contents

From neural networks...
The basic ideas
Logistic regression and one layer neural-network
Convolutional neural networks
to unsupervised node embeddings techniques..
A chronological start
to graph neural networks
Learning with graphs
What is a GNN ?
A bit of group theory
Invariance and equivariance
Message-passing neural networks
Examples of GNN
The whole pipeline
Expressivity of GNN
Conclusion

Convolutional neural networks

- The core block for deep learning on images.
- Induces an implicit bias on the architecture.

What could happen with a fully-connected architecture?

Convolutional neural networks

- The core block for deep learning on images.
- Induces an implicit bias on the architecture.

What could happen with a fully-connected architecture?

- We want a function that doesn't change if we only translate the image. We want a translation invariant function.
- Convolution: particular structure on the weights that induce translation equivariance.

Convolutional neural networks

Convolution/correlation of functions

Let $f, h \in L_{2}(\mathbb{R})$. The convolution $f * h \in L_{2}(\mathbb{R})$ is defined as

$$
f * h(x)=\int_{-\infty}^{+\infty} f(t) h(x-t) \mathrm{d} t \text { and } f \star h(x)=\int_{-\infty}^{+\infty} f(t) h(t+x) \mathrm{d} t
$$

- Translate a filter h and then take the inner product with ${ }^{2} f$:

$$
f \star h(x)=\left\langle\tau_{-x} h, f\right\rangle_{L_{2}(\mathbb{R})} .
$$

- It weights the local contributions of f by a filter.

$$
{ }^{2} \tau_{x} f=t \rightarrow f(t-x)
$$

Convolutional neural networks

Convolution/correlation of functions

Let $f, h \in L_{2}(\mathbb{R})$. The convolution $f * h \in L_{2}(\mathbb{R})$ is defined as

$$
f * h(x)=\int_{-\infty}^{+\infty} f(t) h(x-t) \mathrm{d} t \text { and } f \star h(x)=\int_{-\infty}^{+\infty} f(t) h(t+x) \mathrm{d} t
$$

- Translate a filter h and then take the inner product with ${ }^{2} f$:

$$
f \star h(x)=\left\langle\tau_{-x} h, f\right\rangle_{L_{2}(\mathbb{R})} .
$$

- It weights the local contributions of f by a filter.
- It is translation equivariant.

$$
\left(\tau_{\star} f\right) * h=\tau_{\star}(f * h)
$$

- If we translate the input, the output will be equally translated.

$$
{ }^{2} \tau_{x} f=t \rightarrow f(t-x)
$$

Convolutional neural networks

Convolutional neural networks

In practice convolutions are applied on discrete signals.
Discrete convolutions in 1D

212
62

Question: size of the output?

Convolutional neural networks

In practice convolutions are applied on discrete signals.
Discrete convolutions in 1D

- Padding strategies can be used to have output of the same size.

- Also stride can be used to move the filter from more than one pixel.

Convolutional neural networks

Discrete convolutions not in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

Image

Filter

1	0	2				
1	3	0				
				1	$\|l\| l \mid$	
:---	:---	:---				
0	1	0				

Convolutional neural networks

Discrete convolutions not in 1D
See also https://github.com/vdumoulin/conv_arithmetic.

Convolutional neural networks
Discrete convolutions not in 1D
See also https://github.com/vdumoulin/conv_arithmetic.

*

*

$=$

*

$=$

*

$=$

$*$

$=$

Figure: From Francois Fleuret https://fleuret.org/dlc/

Convolutional neural networks

Discrete convolutions not in 1D
 See also https://github.com/vdumoulin/conv_arithmetic.

Figure: From Franccois Fleuret https://fleuret.org/dlc/

Convolutional neural networks

Discrete convolutions not in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

Figure: From Franccois Fleuret https://fleuret.org/dlc/

Convolutional neural networks

Pooling layers (subsampling)

Figure: Schematic view

Figure: LeNet from LeCun et al. 1998
Principle and intuition (Zeiler and Fergus 2014)

- Define multiple convolutions, learn the corresponding filter weights.
- Recognize local patterns in images.
- Find intermediate features that are "general" and "adaptive" due to the translation equivariance bias https://fabianfuchsml.github.io/equivariance1of2/.
- Revealing local features that are shared across the data domain.

Conclusion

- Deep learning: in almost everything when there are images.
- Very versatile: learn complex functions.
- Prior also helps! (translation equivariance).
- Side note: still struggles on tabular data (Grinsztajn, Oyallon, and Varoquaux 2022).

Conclusion

- Deep learning: in almost everything when there are images.
- Very versatile: learn complex functions.
- Prior also helps! (translation equivariance).
- Side note: still struggles on tabular data (Grinsztajn, Oyallon, and Varoquaux 2022).

Graph neural networks ?

- How do we extend neural networks to graphs?
- Careful to node ordering: must be invariant to relabelling of the nodes (graph isomorphism).

Table of contents

From neural networks...
The basic ideas
Logistic regression and one layer neural-network Convolutional neural networks
... to unsupervised node embeddings techniques...
A chronological start
to graph neural networks
Learning with graphs
What is a GNN ?
A bit of group theory
Invariance and equivariance
Message-passing neural networks
Examples of GNN
The whole pipeline
Expressivity of GNN
Conclusion

Objective

A chronological start
\rightarrow Idea: to learn on a graph: nodes \rightarrow vector \rightarrow standard ML pipeline.

- The embedding must take into account the structure of the graph.
- Also useful for visualization.

One naive approach

- Consider each row of the adjacency matrix as an embedding vector.
- If labelled graph: concatenate with the nodes' features.

Objective

A chronological start

- Idea: to learn on a graph: nodes \rightarrow vector \rightarrow standard ML pipeline.
- The embedding must take into account the structure of the graph.
- Also useful for visualization.

One naive approach

- Consider each row of the adjacency matrix as an embedding vector.
- If labelled graph: concatenate with the nodes' features.

- Sensitive to the node ordering ! Also, expensive $O(|V|)$!
- Not applicable to graph with different sizes !

An encoder-decoder perspective

Notations

- We suppose we have one graph $G=(V, E)$, without features (so far).
\rightarrow For each $u \in V$ we look for an embedding $\mathbf{z}_{u} \in \mathbb{R}^{k}$.
Principle
We look for a "good" encoder $E: V \rightarrow \mathbb{R}^{k}$ such that $E(u)=\mathbf{z}_{u}$.
- Ideally the embedding \mathbf{z}_{u} contains the neighbourhood informations of u.

An encoder-decoder perspective

Principle

We look for a "good" encoder $E: V \rightarrow \mathbb{R}^{k}$ such that $E(u)=\mathbf{z}_{u}$.

- Ideally the embedding \mathbf{z}_{u} contains the neighbourhood informations of u.

Encoding/decoding scheme
A lot of methods attempt to minimize

$$
\mathcal{L}=\sum_{(u, v) \in \mathcal{D}} \ell\left(\text { similarity }\left(\mathbf{z}_{u}, \mathbf{z}_{v}\right), S[u, v]\right)
$$

- similarity $\left(\mathbf{z}_{u}, \mathbf{z}_{v}\right)$ how close are the embeddings.
- $S[u, v]$ how close are the nodes in the graph.
- $\ell: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a loss: how similar are the similarities.

Unsupervised node embeddings techniques

3D Laplacian embedding

Inspiration from Laplacian eigenmaps Belkin and Niyogi 2003

- In the embedding space similarity $\left(\mathbf{z}_{u}, \mathbf{z}_{u}\right)=\frac{1}{2}\left\|\mathbf{z}_{u}-\mathbf{z}_{v}\right\|_{2}^{2}$.
- When similary is $\mathbf{S}\left[u_{i}, v_{j}\right]=A_{i j} / \sqrt{\operatorname{degree}\left(u_{i}\right)} \sqrt{\operatorname{degree}\left(u_{j}\right)}$, loss to minimize:

$$
\frac{1}{2} \sum_{i j}\left\|\mathbf{z}_{i}-\mathbf{z}_{j}\right\|_{2}^{2} \frac{A_{i j}}{\sqrt{\operatorname{degree}\left(u_{i}\right)} \sqrt{\operatorname{degree}\left(u_{j}\right)}}=\operatorname{tr}\left(\mathbf{Z}^{\top} \tilde{\mathbf{L}} \mathbf{Z}\right) .
$$

- Normalized Laplacian $\widetilde{\mathbf{L}}=\mathbf{D}^{-1 / 2} \mathbf{L D}^{-1 / 2}$.
- Interpretation + permutation equivariance of the cost (on the board).

Unsupervised node embeddings techniques

3D Laplacian embedding

Inspiration from Laplacian eigenmaps Belkin and Niyogi 2003

- In the embedding space similarity $\left(\mathbf{z}_{u}, \mathbf{z}_{u}\right)=\frac{1}{2}\left\|\mathbf{z}_{u}-\mathbf{z}_{v}\right\|_{2}^{2}$.
- When similary is $\mathbf{S}\left[u_{i}, v_{j}\right]=A_{i j} / \sqrt{\operatorname{degree}\left(u_{i}\right)} \sqrt{\operatorname{degree}\left(u_{j}\right)}$, loss to minimize:

$$
\frac{1}{2} \sum_{i j}\left\|\mathbf{z}_{i}-\mathbf{z}_{j}\right\|_{2}^{2} \frac{A_{i j}}{\sqrt{\text { degree }\left(u_{i}\right)} \sqrt{\operatorname{degree}\left(u_{j}\right)}}=\operatorname{tr}\left(\mathbf{Z}^{\top} \tilde{\mathbf{L}} \mathbf{Z}\right) .
$$

- Normalized Laplacian $\widetilde{\mathbf{L}}=\mathbf{D}^{-1 / 2} \mathbf{L D}^{-1 / 2}$.
- Interpretation + permutation equivariance of the cost (on the board).
- With the constraint $\mathbf{Z}^{\top} \mathbf{Z}=\mathbf{I}_{d}$ it recovers Laplacian eigenmaps.
- Sol. is the d eigenvectors associated to the d smallest eigenvalues of $\widetilde{\mathbf{L}}$.

Unsupervised node embeddings techniques

Skip-Gram and the Word2vec model (Mikolov et al. 2013)
The meaning of a word is its use in language (Wittgenstein).

- Objective: "similar" words are embedded into "similar" vectors.
- Goal: predict context words from each input word.
- We want to maximize \mathbb{P} (context|input word).

One hot encoding

$\left.\begin{array}{ll}v \in \mathscr{N}(u) \\ \text { The cat likes the dog but not so much }\end{array} \begin{array}{l}\text { skip-grams } \\ \text { (cat, the) } \\ \text { (cat, likes) }\end{array}\right)$

Unsupervised node embeddings techniques

Skip-Gram and the Word2vec model (Mikolov et al. 2013)
The meaning of a word is its use in language (Wittgenstein).

- Objective: "similar" words are embedded into "similar" vectors.
- Goal: predict context words from each input word.
- We want to maximize \mathbb{P} (context|input word).

Unsupervised node embeddings techniques

Skip-Gram and the Word2vec model (Mikolov et al. 2013)
The meaning of a word is its use in language (Wittgenstein).

- Objective: "similar" words are embedded into "similar" vectors.
- Goal: predict context words from each input word.
- We want to maximize \mathbb{P} (context|input word).

- Dataset \mathcal{D} of input/output words (surrounding). Loss to minimize is:

$$
-\sum_{(u, o) \in \mathcal{D}} \log \mathbb{P}(o \mid u)
$$

- But computing it in $\mathcal{O}(|V| \times \mid\{$ words to embed $\} \mid)$: negative sampling.

Unsupervised node embeddings techniques

The node2vec model (Grover and Leskovec 2016)

- Similar as before: each node $u \in V$ is embedded as $\mathbf{z}_{u} \in \mathbb{R}^{k}$.
- Goal of the embedding: reflect the neighboring nodes of u.
- Sampling strategies based on random walks (BFS/DFS).

- With a dataset \mathcal{D} of input/output nodes. Loss to minimize:

$$
\mathcal{L}=-\sum_{(u, o) \in \mathcal{D}} \log \frac{\exp \left(\mathbf{z}_{u}^{\top} \mathbf{z}_{o}\right)}{\sum_{w \in V} \exp \left(\mathbf{z}_{u}^{\top} \mathbf{z}_{w}\right)}
$$

Unsupervised node embeddings techniques

The node2vec model (Grover and Leskovec 2016)

- Similar as before: each node $u \in V$ is embedded as $\mathbf{z}_{u} \in \mathbb{R}^{k}$.
- Goal of the embedding: reflect the neighboring nodes of u.
- Sampling strategies based on random walks (BFS/DFS).

Negative sampling (NS)

- Loss is too expensive to compute $\mathcal{O}\left(|V|^{2}\right)$.
- NS: introduce negative data samples.
- Goal: distinguish between neighboring points of a target node u and random nodes draws from a noise distribution using logistic regression.
- New loss (explanations on the board) (Goldberg and Levy 2014):

$$
\mathcal{L}=-\left(\sum_{\left(u_{+}, o_{+}\right) \in \mathcal{D}_{+}} \log \sigma\left(\mathbf{z}_{u}^{\top} \mathbf{z}_{o}\right)+\sum_{\left(u_{-}, o_{-}\right) \in \mathcal{D}_{-}} \log \sigma\left(-\mathbf{z}_{u}^{\top} \mathbf{z}_{o}\right)\right)
$$

with sigmoid function $\sigma(x)=\frac{1}{1+\exp (-x)}$.

Unsupervised node embeddings techniques

The node2vec model (Grover and Leskovec 2016)

- Similar as before: each node $u \in V$ is embedded as $\mathbf{z}_{u} \in \mathbb{R}^{k}$.
- Goal of the embedding: reflect the neighboring nodes of u.
- Sampling strategies based on random walks (BFS/DFS).

Negative sampling (NS)

- Goal: distinguish between neighboring points of a target node u and random draws from a noise distribution using logistic regression.

Unsupervised node embeddings techniques

Limitations of previous embeddings techniques

- The previous embeddings are called shallow: encoder function $E: V \rightarrow \mathbb{R}^{k}$ is simply an embedding lookup based on the node ID.

$$
E(u)=\mathbf{Z}[:, u]=\mathbf{z}_{u} .
$$

Unsupervised node embeddings techniques

Limitations of previous embeddings techniques

- The previous embeddings are called shallow: encoder function $E: V \rightarrow \mathbb{R}^{k}$ is simply an embedding lookup based on the node ID.

$$
E(u)=\mathbf{Z}[:, u]=\mathbf{z}_{u} .
$$

- Lack of parameter sharing between nodes in the encoder.
- Do not leverage node features !
- Inherently transductive: these methods can only generate embeddings for nodes that were present during the training phase.
- If new nodes must retrain everything.

Table of contents

From neural networks...
The basic ideas
Logistic regression and one layer neural-network
Convolutional neural networks
to unsupervised node embeddings techniques..
A chronological start
... to graph neural networks
Learning with graphs
What is a GNN ?
A bit of group theory
Invariance and equivariance
Message-passing neural networks
Examples of GNN
The whole pipeline
Expressivity of GNN
Conclusion

Frameworks considered here

Supervised:

- Graph classification: labelled graphs \rightarrow label new graph (molecule classification, drug efficiency prediction).
- Node (or edge) classification: labelled nodes \rightarrow label other nodes (advertisement, protein interface prediction).
Unsupervised (semi-supervised):
- Community detection: one graph \rightarrow group nodes (social network analysis).
- Link prediction: one graph \rightarrow potential new edge.
- Unsupervised node embeddings.

Some limitations

Tip of the iceberg

- Approx. 100 GNN papers a month on arXiv.
- Despite 1000 s of papers, same ideas coming round: be critical, learn to spot incremental changes!
- We will only see the most well-known architectures (according to me).
- Be aware that it might already be out-of-date.
- Some surveys Wu et al. 2021; Zhang, Cui, and Zhu 2020; William L Hamilton 2020.
- See also https://github.com/houchengbin/awesome-GNN-papers.

Table of contents

From neural networks...
The basic ideas
Logistic regression and one layer neural-network
Convolutional neural networks
to unsupervised node embeddings techniques..
A chronological start
... to graph neural networks
Learning with graphs
What is a GNN ?
A bit of group theory
Invariance and equivariance
Message-passing neural networks
Examples of GNN
The whole pipeline
Expressivity of GNN
Conclusion

What is a graph neural network ?

Framework

- Graphs considered here:
- $G=(V, E)$ with $|V|=n$, features on the nodes.
- Adjacency matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$.
- Feature matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$, feature $\mathbf{x}_{i} \in \mathbb{R}^{d}$.

What is a graph neural network ?

Framework

- Graphs considered here:
- $G=(V, E)$ with $|V|=n$, features on the nodes.
- Adjacency matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$.
- Feature matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$, feature $\mathbf{x}_{i} \in \mathbb{R}^{d}$.

GNN general definition
A GNN is a specific parametrized function that takes a input a graph $G=(\mathbf{X}, \mathbf{A})$ and outputs "something" (depends on the application).

- It is made of a combination of different layers.
- Graph classification, node classification/regression, node embedding

\rightarrow Notations: vector output $f(\mathbf{X}, \mathbf{A})$, matrix output $F(\mathbf{X}, \mathbf{A})$.

What properties to ensure ?

The training pipeline

- Overall the same procedure: find an embedding of the nodes $F(\mathbf{X}, \mathbf{A}) \in \mathbb{R}^{n \times k}$ (supervised or unsupervised) and then do stuff.

What properties to ensure ?

The training pipeline

- Overall the same procedure: find an embedding of the nodes $F(\mathbf{X}, \mathbf{A}) \in \mathbb{R}^{n \times k}$ (supervised or unsupervised) and then do stuff.

Properties to ensure

- If graph classification then $f(\mathbf{X}, \mathbf{A}) \in \pm 1$: the function must be invariant to permutations of the graph.
- Prediction on the node level: we want to let the permutation of the graph produce a different result but while making this phenomena predictable.
- It will be formalized with the notion of invariance/equivariance.

Table of contents

From neural networks...
The basic ideas
Logistic regression and one layer neural-network
Convolutional neural networks
to unsupervised node embeddings techniques..
A chronological start
... to graph neural networks
Learning with graphs
What is a GNN ?
A bit of group theory
Invariance and equivariance
Message-passing neural networks
Examples of GNN
The whole pipeline
Expressivity of GNN
Conclusion

On invariance and equivariance

The right symmetries can facilitate learning

- Fit a polynomial $\hat{f}(x)=\sum_{n=0}^{N} \theta_{n} x^{n}$ on
symmetric: $f(-x)=f(x)$

antisymmetric: $f(-x)=-f(x)$

Figure: From Weiler et al. 2023

- Ignore prior knowledge about the function.
- Better: fit $\sum_{n \text { even }}^{N} \theta_{n} x^{n}$ (invariant) or $\sum_{n \text { odd }}^{N} \theta_{n} x^{n}$ (equivariant).
- Need half of the parameters + generalize well.

On invariance and equivariance

On the previous episodes

Figure: From Weiler et al. 2023

On invariance and equivariance

A little bit of group theory
A group \mathfrak{G} is a set along with a binary operation $\circ: \mathfrak{G} \times \mathfrak{G} \rightarrow \mathfrak{G}$ satisfying

- Associativity: $\forall \mathfrak{g}, \mathfrak{h}, \mathfrak{i} \in \mathfrak{G},(\mathfrak{g} \circ \mathfrak{h}) \circ \mathfrak{i}=\mathfrak{g} \circ(\mathfrak{h} \circ \mathfrak{i})$.
- Identity: there exists $\mathfrak{e} \in \mathfrak{G}$ such that $\forall \mathfrak{g} \in \mathfrak{G}, \mathfrak{g} \circ \mathfrak{e}=\mathfrak{e} \circ \mathfrak{g}=\mathfrak{g}$.
- Inverse: For each $\mathfrak{g} \in \mathfrak{G}$ there exists $\mathfrak{g}^{-1} \in \mathfrak{G}$ such that $\mathfrak{g} \circ \mathfrak{g}^{-1}=\mathfrak{g}^{-1} \circ \mathfrak{g}=\mathfrak{e}$.
- Closure: $\forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}, \mathfrak{g} \circ \mathfrak{h} \in \mathfrak{G}$.

Commutativity is not part of this definition $(\mathfrak{g} \circ \mathfrak{h} \neq \mathfrak{h} \circ \mathfrak{g})$.

On invariance and equivariance

A little bit of group theory
A group \mathfrak{G} is a set along with a binary operation $\circ: \mathfrak{G} \times \mathfrak{G} \rightarrow \mathfrak{G}$ satisfying

- Associativity: $\forall \mathfrak{g}, \mathfrak{h}, \mathfrak{i} \in \mathfrak{G},(\mathfrak{g} \circ \mathfrak{h}) \circ \mathfrak{i}=\mathfrak{g} \circ(\mathfrak{h} \circ \mathfrak{i})$.
- Identity: there exists $\mathfrak{e} \in \mathfrak{G}$ such that $\forall \mathfrak{g} \in \mathfrak{G}, \mathfrak{g} \circ \mathfrak{e}=\mathfrak{e} \circ \mathfrak{g}=\mathfrak{g}$.
- Inverse: For each $\mathfrak{g} \in \mathfrak{G}$ there exists $\mathfrak{g}^{-1} \in \mathfrak{G}$ such that $\mathfrak{g} \circ \mathfrak{g}^{-1}=\mathfrak{g}^{-1} \circ \mathfrak{g}=\mathfrak{e}$.
- Closure: $\forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}, \mathfrak{g} \circ \mathfrak{h} \in \mathfrak{G}$.

Commutativity is not part of this definition $(\mathfrak{g} \circ \mathfrak{h} \neq \mathfrak{h} \circ \mathfrak{g})$.
Some examples

- Translation group on \mathbb{Z}^{2} is an Abelian group:

$$
(m, n) \circ(p, q)=(n+p, m+q)
$$

- Translation + rotations, mirror reflections.
- Permutation group $S_{n}=\{\sigma: \llbracket n \rrbracket \rightarrow \llbracket n \rrbracket, \sigma$ is a bijection $\}$ with the composition of functions.

On invariance and equivariance

Group action

Given a set Ω and a group \mathfrak{G}, a (left) group action of \mathfrak{G} on Ω is a function

$$
\begin{aligned}
\mathfrak{G} \times \Omega & \rightarrow \Omega \\
(\mathfrak{g}, x) & \rightarrow \mathfrak{g} x
\end{aligned}
$$

satisfying

- $\forall x \in \Omega, \mathfrak{e x}=x$
- Compatibility: $\forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}, \forall x \in \Omega, \mathfrak{g}(\mathfrak{h} x)=(\mathfrak{g} \circ \mathfrak{h}) x$.
- It acts on the element of the sets via the group.
- A set endowed with an action of \mathfrak{G} on it is called a \mathfrak{G}-set.

On invariance and equivariance

Group action

Given a set Ω and a group \mathfrak{G}, a (left) group action of \mathfrak{G} on Ω is a function

$$
\begin{aligned}
\mathfrak{G} \times \Omega & \rightarrow \Omega \\
(\mathfrak{g}, x) & \rightarrow \mathfrak{g} x
\end{aligned}
$$

satisfying

- $\forall x \in \Omega, \mathfrak{e x}=x$
- Compatibility: $\forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}, \forall x \in \Omega, \mathfrak{g}(\mathfrak{h} x)=(\mathfrak{g} \circ \mathfrak{h}) x$.
- It acts on the element of the sets via the group.
- A set endowed with an action of \mathfrak{G} on it is called a \mathfrak{G}-set.

Translation of functions

- Group of translations $\mathfrak{G}=\left\{\tau_{x}, x \in \mathbb{R}\right\}$ with $\tau_{x} \circ \tau_{y}=\tau_{x+y}$. Identity element τ_{0}.
- For a function f and τ_{x} the group action

$$
\tau_{x} f:=t \rightarrow f(t-x)
$$

On invariance and equivariance

Group action

Given a set Ω and a group \mathfrak{G}, a (left) group action of \mathfrak{G} on Ω is a function

$$
\begin{aligned}
\mathfrak{G} \times \Omega & \rightarrow \Omega \\
(\mathfrak{g}, x) & \rightarrow \mathfrak{g} x
\end{aligned}
$$

satisfying

- $\forall x \in \Omega, \mathfrak{e x}=x$
- Compatibility: $\forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}, \forall x \in \Omega, \mathfrak{g}(\mathfrak{h} x)=(\mathfrak{g} \circ \mathfrak{h}) x$.
- It acts on the element of the sets via the group.
- A set endowed with an action of \mathfrak{G} on it is called a \mathfrak{G}-set.

Permutation of vectors

- Group of permutations S_{n} with composition \circ. Identity element id.
- For $\mathbf{x} \in \mathbb{R}^{n}$ a group action is $\sigma \mathbf{x}=\left(x_{\sigma(1)}, x_{\sigma(2)}, \cdots, x_{\sigma(n)}\right)$.
- Is it a left group action?

On invariance and equivariance

Group action

Given a set Ω and a group \mathfrak{G}, a (left) group action of \mathfrak{G} on Ω is a function

$$
\begin{aligned}
\mathfrak{G} \times \Omega & \rightarrow \Omega \\
(\mathfrak{g}, x) & \rightarrow \mathfrak{g} x
\end{aligned}
$$

satisfying

- $\forall x \in \Omega, \mathfrak{e x}=x$
- Compatibility: $\forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}, \forall x \in \Omega, \mathfrak{g}(\mathfrak{h} x)=(\mathfrak{g} \circ \mathfrak{h}) x$.
- It acts on the element of the sets via the group.
- A set endowed with an action of \mathfrak{G} on it is called a \mathfrak{G}-set.

Permutation of vectors

- For $\mathbf{x} \in \mathbb{R}^{n}$ a group action is $\sigma \mathbf{x}=\left(x_{\sigma(1)}, x_{\sigma(2)}, \cdots, x_{\sigma(n)}\right)$.
$-\operatorname{Def}\left(\sigma_{1} \mathbf{x}\right)_{i}=x_{\sigma_{1}(i)}$. So $\left(\sigma_{2}\left(\sigma_{1} \mathbf{x}\right)\right)_{i}=\left(\sigma_{1} \mathbf{x}\right)_{\sigma_{2}(i)}=x_{\sigma_{1}\left(\sigma_{2}(i)\right)}=x_{\sigma_{1} \circ \sigma_{2}(i)}$.
- Thus $\sigma_{2}\left(\sigma_{1} \mathbf{x}\right)=\left(\sigma_{1} \circ \sigma_{2}\right) \mathbf{x} \neq\left(\sigma_{2} \circ \sigma_{1}\right) \mathbf{x}$.

On invariance and equivariance

Group action

Given a set Ω and a group \mathfrak{G}, a (left) group action of \mathfrak{G} on Ω is a function

$$
\begin{aligned}
\mathfrak{G} \times \Omega & \rightarrow \Omega \\
(\mathfrak{g}, x) & \rightarrow \mathfrak{g} x
\end{aligned}
$$

satisfying

- $\forall x \in \Omega, \mathfrak{e x}=x$
- Compatibility: $\forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}, \forall x \in \Omega, \mathfrak{g}(\mathfrak{h} x)=(\mathfrak{g} \circ \mathfrak{h}) x$.
- It acts on the element of the sets via the group.
- A set endowed with an action of \mathfrak{G} on it is called a \mathfrak{G}-set.

Permutation of vectors

- For $\mathbf{x} \in \mathbb{R}^{n}$ a left group action is $\sigma \mathbf{x}=\left(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \cdots, x_{\sigma^{-1}(n)}\right)$.
- Def $\left(\sigma_{1} \mathbf{x}\right)_{i}=x_{\sigma_{1}^{-1}(i)}$. So $\left(\sigma_{2}\left(\sigma_{1} \mathbf{x}\right)\right)_{i}=\left(\sigma_{1} \mathbf{x}\right)_{\sigma_{2}^{-1}(i)}=x_{\sigma_{1}^{-1}\left(\sigma_{2}^{-1}(i)\right)}=x_{\left(\sigma_{2} \circ \sigma_{1}\right)^{-1}(i)}$.
- Thus $\sigma_{2}\left(\sigma_{1} \mathbf{x}\right)=\left(\sigma_{2} \circ \sigma_{1}\right) \mathbf{x}$.

Table of contents

From neural networks...
The basic ideas
Logistic regression and one layer neural-network
Convolutional neural networks
to unsupervised node embeddings techniques..
A chronological start
... to graph neural networks
Learning with graphs
What is a GNN ?
A bit of group theory
Invariance and equivariance
Message-passing neural networks
Examples of GNN
The whole pipeline
Expressivity of GNN
Conclusion

A formal definition of invariance

Invariance
Let Ω be a \mathfrak{G}-set. A function $f: \Omega \rightarrow Y$ is \mathfrak{G}-invariant if

$$
\forall x \in \Omega, \forall \mathfrak{g} \in \mathfrak{G}, f(\mathfrak{g} x)=f(x)
$$

- f is \mathfrak{G}-invariant if its output is unaffected by the group action.

A formal definition of invariance

Invariance
Let Ω be a \mathfrak{G}-set. A function $f: \Omega \rightarrow Y$ is \mathfrak{G}-invariant if

$$
\forall x \in \Omega, \forall \mathfrak{g} \in \mathfrak{G}, f(\mathfrak{g} x)=f(x)
$$

- f is \mathfrak{G}-invariant if its output is unaffected by the group action.

Permutation invariant functions
Find three functions $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that are S_{n}-invariant.

A formal definition of invariance

Invariance
Let Ω be a \mathfrak{G}-set. A function $f: \Omega \rightarrow Y$ is \mathfrak{G}-invariant if

$$
\forall x \in \Omega, \forall \mathfrak{g} \in \mathfrak{G}, f(\mathfrak{g} x)=f(x)
$$

- f is \mathfrak{G}-invariant if its output is unaffected by the group action.

Permutation invariant functions

- $f(\mathbf{x})=\sum_{i=1}^{n} x_{i}, g(\mathbf{x})=\max _{i \in \llbracket n \rrbracket} x_{i}, h(\mathbf{x})=\operatorname{sort}(\mathbf{x})\left(\right.$ to $\left.\mathbb{R}^{n}\right)$.
- Characterization of all linear permutation invariant functions $L: \mathbb{R}^{n^{k}} \rightarrow \mathbb{R}$ (Maron et al. 2018).

A formal definition of invariance

Invariance
Let Ω be a \mathfrak{G}-set. A function $f: \Omega \rightarrow Y$ is \mathfrak{G}-invariant if

$$
\forall x \in \Omega, \forall \mathfrak{g} \in \mathfrak{G}, f(\mathfrak{g} x)=f(x)
$$

- f is \mathfrak{G}-invariant if its output is unaffected by the group action.

Permutation invariant functions
Let $\mathbf{X} \in \mathbb{R}^{n \times d}$. The action of σ on \mathbf{X} is $\sigma \mathbf{X}=\left(X_{\sigma^{-1}(i) j}\right)_{i j}$. Find a permutation invariant function $F: \mathbb{R}^{n \times d} \rightarrow \mathbb{R}$.

A formal definition of invariance

Invariance
Let Ω be a \mathfrak{G}-set. A function $f: \Omega \rightarrow Y$ is \mathfrak{G}-invariant if

$$
\forall x \in \Omega, \quad \forall \mathfrak{g} \in \mathfrak{G}, f(\mathfrak{g} x)=f(x)
$$

- f is \mathfrak{G}-invariant if its output is unaffected by the group action.

Permutation invariant functions
Let $\mathbf{X} \in \mathbb{R}^{n \times d}$. The action of σ on \mathbf{X} is $\sigma \mathbf{X}=\left(X_{\sigma^{-1}(i) j}\right)_{i j}$. Find a permutation invariant function $F: \mathbb{R}^{n \times d} \rightarrow \mathbb{R}$.

- With $\mathbf{X}=\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right)^{\top}$ and $F(\mathbf{X})=\phi\left(\sum_{i=1}^{n} \psi\left(\mathbf{x}_{i}\right)\right)$ with any $\psi: \mathbb{R}^{d} \rightarrow Z, \phi: Z \rightarrow Y$.
- $F(\mathbf{X})=\operatorname{rank}(\mathbf{X})$.

A formal definition of invariance

Function operating on sets/multisets
Let \mathcal{X} be a countable set. By construction, any function acting on sets $f: 2^{\mathcal{X}} \rightarrow Y$ for some Y is permutation invariant. That is

$$
\forall\left\{x_{1}, \cdots, x_{n}\right\} \in 2^{\mathcal{X}}, \forall \sigma \in S_{n}, f\left(\left\{x_{1}, \cdots, x_{n}\right\}\right)=f\left(\left\{x_{\sigma^{-1}(1)}, \cdots, x_{\sigma^{-1}(n)}\right\}\right) .
$$

Simply because $\left\{x_{1}, \cdots, x_{n}\right\}=\left\{x_{\sigma^{-1}(1)}, \cdots, x_{\sigma^{-1}(n)}\right\}$.

A formal definition of invariance

Function operating on sets/multisets

Let \mathcal{X} be a countable set. By construction, any function acting on sets $f: 2^{\mathcal{X}} \rightarrow Y$ for some Y is permutation invariant. That is
$\forall\left\{x_{1}, \cdots, x_{n}\right\} \in 2^{\mathcal{X}}, \forall \sigma \in S_{n}, f\left(\left\{x_{1}, \cdots, x_{n}\right\}\right)=f\left(\left\{x_{\sigma^{-1}(1)}, \cdots, x_{\sigma^{-1}(n)}\right\}\right)$.
Simply because $\left\{x_{1}, \cdots, x_{n}\right\}=\left\{x_{\sigma^{-1}(1)}, \cdots, x_{\sigma^{-1}(n)}\right\}$.

- Any function $f: 2^{\mathcal{X}} \rightarrow \mathbb{R}$ has the form (Zaheer et al. 2018)

$$
f(X)=\phi\left(\sum_{x \in X} \psi(x)\right) \text { for some } \psi: \mathcal{X} \rightarrow \mathbb{R}, \phi: \mathbb{R} \rightarrow \mathbb{R}
$$

- See prev. course: a multiset is a "set" where element can be repeated several times e.g. $\{\{a, a, b\}\}$.
- Same representation result holds for functions on multisets (Wagstaff et al. 2019).

A formal definition of equivariance

Equivariance

Let Ω_{1}, Ω_{2} be two \mathfrak{G}-sets (of the same group). A function $h: \Omega_{1} \rightarrow \Omega_{2}$ is \mathfrak{G}-equivariant if

$$
\forall x \in \Omega_{1}, \forall \mathfrak{g} \in \mathfrak{G}, h(\mathfrak{g} x)=\mathfrak{g} h(x)
$$

- Pay attention to the input/output spaces and the compatibility.
- Transform the input + apply $h=$ apply h and transform the result.

A formal definition of equivariance

Equivariance

Let Ω_{1}, Ω_{2} be two \mathfrak{G}-sets (of the same group). A function $h: \Omega_{1} \rightarrow \Omega_{2}$ is \mathfrak{G}-equivariant if

$$
\forall x \in \Omega_{1}, \forall \mathfrak{g} \in \mathfrak{G}, h(\mathfrak{g} x)=\mathfrak{g} h(x)
$$

- Pay attention to the input/output spaces and the compatibility.
- Transform the input + apply $h=$ apply h and transform the result.

Convolutions
Prove that the convolution with a filter $h \in L_{2}(\mathbb{R})$ is translation equivariant.

A formal definition of equivariance

Equivariance

Let Ω_{1}, Ω_{2} be two \mathfrak{G}-sets (of the same group). A function $h: \Omega_{1} \rightarrow \Omega_{2}$ is \mathfrak{G}-equivariant if

$$
\forall x \in \Omega_{1}, \quad \forall \mathfrak{g} \in \mathfrak{G}, h(\mathfrak{g} x)=\mathfrak{g} h(x) .
$$

- Pay attention to the input/output spaces and the compatibility.
- Transform the input + apply $h=$ apply h and transform the result.

Convolutions

Consider a filter $h \in L_{2}(\mathbb{R})$.

- The convolution with a filter is $H: \Omega=L_{2}(\mathbb{R}) \rightarrow L_{2}(\mathbb{R})$ such that $H(g):=g * h=h * g$.
- For any translation τ_{x}

$$
\forall g \in L_{2}(\mathbb{R}), H\left(\tau_{\times} g\right)=\left(\tau_{\times} g\right) * h=\tau_{x}(g * h)=\tau_{x} H(g)
$$

- Translate then convolve $=$ convolve then translate.

A formal definition of equivariance

Equivariance

Let Ω_{1}, Ω_{2} be two \mathfrak{G}-sets (of the same group). A function $h: \Omega_{1} \rightarrow \Omega_{2}$ is \mathfrak{G}-equivariant if

$$
\forall x \in \Omega_{1}, \forall \mathfrak{g} \in \mathfrak{G}, h(\mathfrak{g} x)=\mathfrak{g} h(x)
$$

- Pay attention to the input/output spaces and the compatibility.
- Transform the input + apply $h=$ apply h and transform the result.

Permutation equivariant functions

- Find two permutation equivariant functions $F: \mathbb{R}^{n \times d_{1}} \rightarrow \mathbb{R}^{n \times d_{2}}$.

A formal definition of equivariance

Equivariance

Let Ω_{1}, Ω_{2} be two \mathfrak{G}-sets (of the same group). A function $h: \Omega_{1} \rightarrow \Omega_{2}$ is \mathfrak{G}-equivariant if

$$
\forall x \in \Omega_{1}, \forall \mathfrak{g} \in \mathfrak{G}, h(\mathfrak{g} x)=\mathfrak{g} h(x)
$$

- Pay attention to the input/output spaces and the compatibility.
- Transform the input + apply $h=$ apply h and transform the result.

Permutation equivariant functions

- Let $\mathbf{W} \in \mathbb{R}^{d_{1} \times d_{2}}$ and $F(\mathbf{X})=\mathbf{X W}$.
- Let $\mathbf{X}=\left(\begin{array}{c}\mathbf{x}_{1}^{\top} \\ \vdots \\ \mathbf{x}_{n}^{\top}\end{array}\right)$ previous example $F(\mathbf{X})=\left(\begin{array}{c}\left(\mathbf{W}^{\top} \mathbf{x}_{1}\right)^{\top} \\ \vdots \\ \left(\mathbf{W}^{\top} \mathbf{x}_{n}\right)^{\top}\end{array}\right)$.
- More generally $F(\mathbf{X})=\left(\begin{array}{c}\psi\left(\mathbf{x}_{1}\right)^{\top} \\ \vdots \\ \psi\left(\mathbf{x}_{n}\right)^{\top}\end{array}\right)$ where $\psi: \mathbb{R}^{d_{1}} \rightarrow \mathbb{R}^{d_{2}}$.

A formal definition of equivariance

Equivariance

Let Ω_{1}, Ω_{2} be two \mathfrak{G}-sets (of the same group). A function $h: \Omega_{1} \rightarrow \Omega_{2}$ is \mathfrak{G}-equivariant if

$$
\forall x \in \Omega_{1}, \quad \forall \mathfrak{g} \in \mathfrak{G}, \quad h(\mathfrak{g} x)=\mathfrak{g} h(x)
$$

- Pay attention to the input/output spaces and the compatibility.
- Transform the input + apply $h=$ apply h and transform the result.

Laplacian matrix

- An action of S_{n} on $\mathbb{R}^{n \times n}$ is defined as

$$
\sigma \mathbf{A}=\left(A_{\sigma^{-1}(i), \sigma^{-1}(j)}\right)_{i j}
$$

- $\mathcal{L}: \operatorname{sym}_{n}(\mathbb{R}) \rightarrow \operatorname{sym}_{n}(\mathbb{R})$ which takes a symmetric matrix \mathbf{A} and outputs the Laplacian matrix $\mathcal{L}(\mathbf{A})=\operatorname{diag}(\mathbf{A 1})-\mathbf{A}$
- Show that \mathcal{L} is S_{n}-permutation equivariant.

Combining them together

Composition of invariant/equivariant functions
Let Ω_{1}, Ω_{2} be \mathfrak{G}-sets.

- Let $f: \Omega_{1} \rightarrow \Omega_{2}$ be a \mathfrak{G}-equivariant function.
- Let $g: \Omega_{2} \rightarrow Y$ be a \mathfrak{G}-invariant function.

Then $h=g \circ f$ is \mathfrak{G}-invariant.

Combining them together

Composition of invariant/equivariant functions
Let Ω_{1}, Ω_{2} be \mathfrak{G}-sets.

- Let $f: \Omega_{1} \rightarrow \Omega_{2}$ be a \mathfrak{G}-equivariant function.
- Let $g: \Omega_{2} \rightarrow Y$ be a \mathfrak{G}-invariant function.

Then $h=g \circ f$ is \mathfrak{G}-invariant.
Proof
Indeed with $x \in \Omega_{1}, \mathfrak{g} \in \mathfrak{G}$

$$
h(\mathfrak{g} x)=g(f(\mathfrak{g} x))=g(\mathfrak{g} f(x))=g(f(x))=(g \circ f)(x)=h(x) .
$$

Simple but powerful: one of the reason CNNs work so well

Combining them together

Composition of invariant/equivariant functions

Let Ω_{1}, Ω_{2} be \mathfrak{G}-sets.

- Let $f: \Omega_{1} \times Y \rightarrow \Omega_{2}$ be a \mathfrak{G}-equivariant function with respect to its first variable i.e. $\forall y \in \Omega_{1}, \forall \mathfrak{g} \in \mathfrak{G}, \forall y \in Y, f(\mathfrak{g} x, y)=\mathfrak{g} f(x, y)$.
- Let $g: \Omega_{1} \rightarrow Y$ be a \mathfrak{G}-invariant function.

Then the function h defined by $h(x)=f(x, g(x))$ is \mathfrak{G}-equivariant.
Proof
$h(\mathfrak{g x})=f(\mathfrak{g} x, g(\mathfrak{g} x))=f(\mathfrak{g} x, g(x))=\mathfrak{g} f(x, g(x))=\mathfrak{g} h(x)$.

\mathfrak{G}-equivariant function

Focus on permutation invariance/equivariance

Permutations as matrices

- $\sigma \in S_{n}$ can be described as $\mathbf{P}_{\sigma}=\left(\begin{array}{c}\mathbf{e}_{\sigma(1)}^{\top} \\ \vdots \\ \mathbf{e}_{\sigma(n)}^{\top}\end{array}\right) \in\{0,1\}^{n \times n} . \mathbf{P}_{\sigma^{-1}}=\mathbf{P}_{\sigma}^{\top}$.
- For $\mathbf{A} \in \mathbb{R}^{n \times n}$, the previous action is $\sigma \mathbf{A}=\left(A_{\sigma^{-1}(i) \sigma^{-1}(j)}\right)_{i j}=\mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}$.
- An action of S_{n} on $\mathbb{R}^{n \times d} \times \mathbb{R}^{n \times n}$

$$
\sigma(\mathbf{X}, \mathbf{A})=\left(\mathbf{P}_{\sigma}^{\top} \mathbf{X}, \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}\right)
$$

Focus on permutation invariance/equivariance

Permutations as matrices

- $\sigma \in S_{n}$ can be described as $\mathbf{P}_{\sigma}=\left(\begin{array}{c}\mathbf{e}_{\sigma(1)}^{\top} \\ \vdots \\ \mathbf{e}_{\sigma(n)}^{\top}\end{array}\right) \in\{0,1\}^{n \times n} . \mathbf{P}_{\sigma^{-1}}=\mathbf{P}_{\sigma}^{\top}$.
- For $\mathbf{A} \in \mathbb{R}^{n \times n}$, the previous action is $\sigma \mathbf{A}=\left(A_{\sigma^{-1}(i) \sigma^{-1}(j)}\right)_{i j}=\mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}$.
- An action of S_{n} on $\mathbb{R}^{n \times d} \times \mathbb{R}^{n \times n}$

$$
\sigma(\mathbf{X}, \mathbf{A})=\left(\mathbf{P}_{\sigma}^{\top} \mathbf{X}, \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}\right)
$$

Interpretation

- $\sigma(\mathbf{X}, \mathbf{A})$ permutes the nodes of the graph and the features in the same manner.

Figure: Is it a valid action of σ ?

Focus on permutation invariance/equivariance

Permutations as matrices

- $\sigma \in S_{n}$ can be described as $\mathbf{P}_{\sigma}=\left(\begin{array}{c}\mathbf{e}_{\sigma(1)}^{\top} \\ \vdots \\ \mathbf{e}_{\sigma(n)}^{\top}\end{array}\right) \in\{0,1\}^{n \times n} . \mathbf{P}_{\sigma^{-1}}=\mathbf{P}_{\sigma}^{\top}$.
- For $\mathbf{A} \in \mathbb{R}^{n \times n}$, the previous action is $\sigma \mathbf{A}=\left(A_{\sigma^{-1}(i) \sigma^{-1}(j)}\right)_{i j}=\mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}$.
- An action of S_{n} on $\mathbb{R}^{n \times d} \times \mathbb{R}^{n \times n}$

$$
\sigma(\mathbf{X}, \mathbf{A})=\left(\mathbf{P}_{\sigma}^{\top} \mathbf{X}, \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}\right)
$$

Back to the GNN context

- In classification/regression $f: G=(\mathbf{X}, \mathbf{A}) \rightarrow y \in Y$ (e.g. $(\{+1,-1\})$.
- For node embeddings $F: G=(\mathbf{X}, \mathbf{A}) \rightarrow \mathbf{Z} \in \mathbb{R}^{n \times k}$

Focus on permutation invariance/equivariance

Permutations as matrices

- $\sigma \in S_{n}$ can be described as $\mathbf{P}_{\sigma}=\left(\begin{array}{c}\mathbf{e}_{\sigma(1)}^{\top} \\ \vdots \\ \mathbf{e}_{\sigma(n)}^{\top}\end{array}\right) \in\{0,1\}^{n \times n} . \mathbf{P}_{\sigma^{-1}}=\mathbf{P}_{\sigma}^{\top}$.
- For $\mathbf{A} \in \mathbb{R}^{n \times n}$, the previous action is $\left.\sigma \mathbf{A}=\left(A_{\sigma^{-1}(i) \sigma^{-1}(j)}\right)\right)_{i j}=\mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}$.
- An action of S_{n} on $\mathbb{R}^{n \times d} \times \mathbb{R}^{n \times n}$

$$
\sigma(\mathbf{X}, \mathbf{A})=\left(\mathbf{P}_{\sigma}^{\top} \mathbf{X}, \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}\right)
$$

Back to the GNN context

- In classification/regression $f: G=(\mathbf{X}, \mathbf{A}) \rightarrow y \in Y$ (e.g. $(\{+1,-1\})$.
- For node embeddings $F: G=(\mathbf{X}, \mathbf{A}) \rightarrow \mathbf{Z} \in \mathbb{R}^{n \times k}$

Ensuring invariance/equivariance is key when learning on graphs
Find f that are S_{n}-invariant, F that are S_{n}-equivariant.
$-f\left(\mathbf{P}_{\sigma}^{\top} \mathbf{X}, \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}\right)=f(\mathbf{X}, \mathbf{A})$ and $F\left(\mathbf{P}_{\sigma}^{\top} \mathbf{X}, \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}\right)=\mathbf{P}_{\sigma}^{\top} F(\mathbf{X}, \mathbf{A})$.

Focus on permutation invariance/equivariance

Ensuring invariance/equivariance is key when learning on graphs
Find f that are S_{n}-invariant, F that are S_{n}-equivariant.

- $f\left(\mathbf{P}_{\sigma}^{\top} \mathbf{X}, \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}\right)=f(\mathbf{X}, \mathbf{A})$ and $F\left(\mathbf{P}_{\sigma}^{\top} \mathbf{X}, \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}\right)=\mathbf{P}_{\sigma}^{\top} F(\mathbf{X}, \mathbf{A})$.

Examples: equivariance ($1 / 2$)

- Take $\mathbf{X} \in \mathbb{R}^{n \times d_{1}}, \mathbf{W} \in \mathbb{R}^{d_{1} \times d_{2}}$ and a function Ψ that applies independently on each row of a matrix.
- $F(\mathbf{X}, \mathbf{A})=\Psi(\mathbf{A X W})$ is S_{n}-equivariant.

Focus on permutation invariance/equivariance

Ensuring invariance/equivariance is key when learning on graphs
Find f that are S_{n}-invariant, F that are S_{n}-equivariant.

- $f\left(\mathbf{P}_{\sigma}^{\top} \mathbf{X}, \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}\right)=f(\mathbf{X}, \mathbf{A})$ and $F\left(\mathbf{P}_{\sigma}^{\top} \mathbf{X}, \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}\right)=\mathbf{P}_{\sigma}^{\top} F(\mathbf{X}, \mathbf{A})$.

Examples: equivariance ($1 / 2$)

- Take $\mathbf{X} \in \mathbb{R}^{n \times d_{1}}, \mathbf{W} \in \mathbb{R}^{d_{1} \times d_{2}}$ and a function Ψ that applies independently on each row of a matrix.
- $F(\mathbf{X}, \mathbf{A})=\Psi(\mathbf{A X W})$ is S_{n}-equivariant.
- In particular when Ψ is element-wise.

Focus on permutation invariance/equivariance

Ensuring invariance/equivariance is key when learning on graphs
Find f that are S_{n}-invariant, F that are S_{n}-equivariant.

- $f\left(\mathbf{P}_{\sigma}^{\top} \mathbf{X}, \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}\right)=f(\mathbf{X}, \mathbf{A})$ and $F\left(\mathbf{P}_{\sigma}^{\top} \mathbf{X}, \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}\right)=\mathbf{P}_{\sigma}^{\top} F(\mathbf{X}, \mathbf{A})$.

Examples: equivariance ($1 / 2$)

- Take $\mathbf{X} \in \mathbb{R}^{n \times d_{1}}, \mathbf{W} \in \mathbb{R}^{d_{1} \times d_{2}}$ and a function Ψ that applies independently on each row of a matrix.
- $F(\mathbf{X}, \mathbf{A})=\Psi(\mathbf{A X W})$ is S_{n}-equivariant.
- In particular when Ψ is element-wise.
- But also $F(\mathbf{X}, \mathbf{A})=\Psi(G(\mathbf{A}) \mathbf{X W})$ where G is S_{n}-equivariant.
- E.g. $F(\mathbf{X}, \mathbf{A})=\Psi(\mathcal{L}(\mathbf{A}) \mathbf{X W})$ where \mathcal{L} computes the Laplacian.
- E.g. $F(\mathbf{X}, \mathbf{A})=\Psi(P[\mathcal{L}](\mathbf{A}) \mathbf{X W})$ where P is a polynomial $P[\mathcal{L}]=\sum_{m} c_{m} \mathcal{L}^{m}$.

Focus on permutation invariance/equivariance

Examples: equivariance (2/2)

- Take $\mathbf{X}=\left(\begin{array}{c}\mathbf{x}_{1}^{\top} \\ \vdots \\ \mathbf{x}_{n}^{\top}\end{array}\right)$ and define the multiset $X_{i}:=\left\{\left\{\mathbf{x}_{j}: j \in \mathcal{N}(i)\right\}\right\}$.
- Then $X_{\sigma(i)}=\left\{\left\{\mathbf{x}_{\sigma(j)}: j \in \mathcal{N}(i)\right\}\right\}:$

Focus on permutation invariance/equivariance

Examples: equivariance (2/2)

- Take $\mathbf{X}=\left(\begin{array}{c}\mathbf{x}_{1}^{\top} \\ \vdots \\ \mathbf{x}_{n}^{\top}\end{array}\right)$ and define the multiset $X_{i}:=\left\{\left\{\mathbf{x}_{j}: j \in \mathcal{N}(i)\right\}\right\}$.
- Then $X_{\sigma(i)}=\left\{\left\{\mathbf{x}_{\sigma(j)}: j \in \mathcal{N}(i)\right\}\right\}:$

- A function AGGREGATE operating on multisets of vectors.
- Then the following function is permutation equivariant.

$$
F(\mathbf{X}, \mathbf{A})=\left(\begin{array}{c}
\psi\left(\mathbf{x}_{1}, \operatorname{AGGREGATE}\left(X_{1}\right)\right) \\
\vdots \\
\psi\left(\mathbf{x}_{n}, \operatorname{AGGREGATE}\left(X_{n}\right)\right)
\end{array}\right)
$$

Table of contents

From neural networks...
The basic ideas
Logistic regression and one layer neural-network
Convolutional neural networks
to unsupervised node embeddings techniques..
A chronological start
... to graph neural networks
Learning with graphs
What is a GNN ?
A bit of group theory
Invariance and equivariance
Message-passing neural networks
Examples of GNN
The whole pipeline
Expressivity of GNN
Conclusion

Remember

The training pipeline

- Overall the same procedure: find an embedding of the nodes $F(\mathbf{X}, \mathbf{A}) \in \mathbb{R}^{n \times k}$ (supervised or unsupervised) and then do stuff.

Message-passing for node embeddings

Goal of the message passing framework

- Defines specific S_{n}-equivariant layers/functions.
- Can be used for node embeddings.
- Usually $\mathbf{Z}^{(0)}=\mathbf{X}$ but when no node features are available several options (e.g. node statistics).
- Notation: $\mathbf{z}_{u}^{(k)}$ is the embedding of the node $u \in V$ at the k-layer.

The message passing framework

One of the most used GNN framework in practice

- At each iteration, every node aggregates information from its local neighborhood.
- A zoo of methods for different COMBINE, AGGREGATE functions.
- Why is this defining a permutation equivariant layer ?

The message passing framework

Similarities with CNN

- One layer of message-passing GNN shares similaries to convolutional layers.
- Usually it takes the form

$$
\mathbf{z}_{u}^{(k+1)}=\phi\left(\sum_{v \in \mathcal{N}(u) \cup\{u\}} \alpha_{u v} \mathbf{z}_{v}^{(k)}\right)
$$

The message passing framework

Similarities with CNN

- One layer of message-passing GNN shares similaries to convolutional layers.
- Usually it takes the form

$$
\mathbf{z}_{u}^{(k+1)}=\phi\left(\sum_{v \in \mathcal{N}(u) \cup\{u\}} \alpha_{u v} \mathbf{z}_{v}^{(k)}\right)
$$

Figure: From Jure Leskovec course Machine Learning with Graphs.

Table of contents

From neural networks...
The basic ideas
Logistic regression and one layer neural-network
Convolutional neural networks
to unsupervised node embeddings techniques..
A chronological start
... to graph neural networks
Learning with graphs
What is a GNN ?
A bit of group theory
Invariance and equivariance
Message-passing neural networks
Examples of GNN
The whole pipeline
Expressivity of GNN
Conclusion

A first GNN with message passing

Sum/mean aggregation (Scarselli et al. 2008)
A first idea would be

$$
\mathbf{z}_{u}^{(k+1)}=\phi\left(\mathbf{W}_{\text {self }}^{(k)} \mathbf{z}_{u}^{(k)}+\mathbf{W}_{\text {neigh }}^{(k)} \sum_{v \in \mathcal{N}(u)} \mathbf{z}_{v}^{(k)}+\mathbf{b}^{(k)}\right)
$$

$-\mathbf{W}_{\text {self }}^{(k)}, \mathbf{W}_{\text {neigh }}^{(k)} \in \mathbb{R}^{d_{k+1} \times d_{k}}$ are matrices of learnable parameters.

- Do not depend on the number of nodes!.
- Complexity of computing it for all nodes is $O(|E|)$.
$\rightarrow \mathbf{b}^{(k)} \in \mathbb{R}^{d_{k+1}}$ is a bias term (often omitted to simplify notations).
- ϕ is a pointwise non-linearity such as ReLu.

Questions

- What is COMBINE, AGGREGATE ?
- Write this in matrix form.

A first GNN with message passing

Sum/mean aggregation (Scarselli et al. 2008)
A first idea would be

$$
\mathbf{z}_{u}^{(k+1)}=\phi\left(\mathbf{W}_{\text {self }}^{(k)} \mathbf{z}_{u}^{(k)}+\mathbf{W}_{\text {neigh }}^{(k)} \sum_{v \in \mathcal{N}(u)} \mathbf{z}_{v}^{(k)}+\mathbf{b}^{(k)}\right)
$$

- $\mathbf{W}_{\text {self }}^{(k)}, \mathbf{W}_{\text {neigh }}^{(k)} \in \mathbb{R}^{d_{k+1} \times d_{k}}$ are matrices of learnable parameters.
- Do not depend on the number of nodes!.
- Complexity of computing it for all nodes is $O(|E|)$.
- $\mathbf{b}^{(k)} \in \mathbb{R}^{d_{k+1}}$ is a bias term (often omitted to simplify notations).
- ϕ is a pointwise non-linearity such as ReLu.

Answers

- What is COMBINE, AGGREGATE ?
- $\forall k, \operatorname{AGGREGATE}^{(k)}\left(\left\{\left\{\mathbf{z}_{v}: v \in \mathcal{N}(u)\right\}\right\}\right)=\sum_{v \in \mathcal{N}(u)} \mathbf{z}_{v}$.
- COMBINE $^{(k)}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)=\mathbf{W}_{\text {self }}^{(k)} \mathbf{z}_{1}+\mathbf{W}_{\text {neigh }}^{(k)} \mathbf{z}_{2}+\mathbf{b}^{(k)}$.

A first GNN with message passing

Sum/mean aggregation (Scarselli et al. 2008)
A first idea would be

$$
\mathbf{z}_{u}^{(k+1)}=\phi\left(\mathbf{W}_{\text {self }}^{(k)} \mathbf{z}_{u}^{(k)}+\mathbf{W}_{\text {neigh }}^{(k)} \sum_{v \in \mathcal{N}(u)} \mathbf{z}_{v}^{(k)}+\mathbf{b}^{(k)}\right)
$$

$-\mathbf{W}_{\text {self }}^{(k)}, \mathbf{W}_{\text {neigh }}^{(k)} \in \mathbb{R}^{d_{k+1} \times d_{k}}$ are matrices of learnable parameters.

- Do not depend on the number of nodes!.
- Complexity of computing it for all nodes is $O(|E|)$.
- $\mathbf{b}^{(k)} \in \mathbb{R}^{d_{k+1}}$ is a bias term (often omitted to simplify notations).
- ϕ is a pointwise non-linearity such as ReLu.

Answers

- Write this in matrix form.
$>\mathbf{Z}^{(k+1)}=\phi\left(\mathbf{A} \mathbf{Z}^{(k)} \mathbf{W}_{\text {neigh }}^{(k)}+\mathbf{Z}^{(k)} \mathbf{W}_{\text {self }}^{(k)}+\left(\begin{array}{c}\mathbf{b}^{(k)} \\ \vdots \\ \mathbf{b}^{(k)}\end{array}\right)\right)$.

Graph convolutional neural networks

Most popular baseline model
Introduced by Kipf and Welling 2016 for semi-supervised node classification.

$$
\mathbf{z}_{u}^{(k+1)}=\operatorname{Relu}\left(\mathbf{W}_{\text {self }}^{(k)} \mathbf{z}_{u}^{(k)}+\mathbf{W}_{\text {neigh }}^{(k)} \frac{1}{\sqrt{|\mathcal{N}(u)|}} \sum_{v \in \mathcal{N}(u)} \frac{\mathbf{z}_{v}^{(k)}}{\sqrt{|\mathcal{N}(v)|}}\right)
$$

- Also GraphSage framework (William L. Hamilton, R. Ying, and Leskovec 2018).
- What is COMBINE, AGGREGATE ?

In matrix form

- With $\mathbf{W}_{\text {self }}=\mathbf{W}_{\text {neigh }}, \mathbf{Z}^{(k+1)}=$ $\operatorname{Relu}\left(\left(\mathbf{I}+\mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}\right) \mathbf{Z}^{(k)} \mathbf{W}^{(k)}\right)$.
- First-order approximation of localized spectral filters on graphs.

Graph Attention Networks

Motivations

- In many MP-GNN layers weights of the convolutions are fixed.
- What if we also learn them ?
- Learn the importance of the neighbours contributions.

Graph Attention Networks

Motivations

- In many MP-GNN layers weights of the convolutions are fixed.
- What if we also learn them ?
- Learn the importance of the neighbours contributions.

GAT networks (Velivcković et al. 2017)

$$
\mathbf{z}_{u}^{(k+1)}=\operatorname{Relu}\left(\mathbf{W}^{(k)} \sum_{v \in \mathcal{N}(u) \cup\{u\}} \alpha_{u v} \mathbf{z}_{v}^{(k)}\right)
$$

- Here $\alpha_{u v}$ are learnable weights.
- $e_{u v}=\operatorname{NN}\left(\boldsymbol{\Theta}_{1} \mathbf{z}_{u}, \boldsymbol{\Theta}_{2} \mathbf{z}_{u}\right)$ with learnable matrices $\boldsymbol{\Theta}_{1}, \boldsymbol{\Theta}_{2}$ and

$$
\alpha_{u v}=\operatorname{softmax}_{v}\left(e_{u v}\right)=\frac{\exp \left(e_{u v}\right)}{\sum_{v^{\prime} \in \mathcal{N}(u)} e_{u v^{\prime}}}
$$

- It is based on attention mechanisms (Vaswani et al. 2023).

Graph Isomorphism Networks (GIN)

The problem of injectivity
Xu et al. 2019 provide a detailed discussion of the relative power of GNN.

- One interesting property is injectivity of COMBINE, AGGREGATE.
- They propose

$$
\mathbf{z}_{u}^{(k+1)}=\operatorname{MLP}^{(k)}\left(\left(1+\theta^{(k)}\right) \mathbf{z}_{u}^{(k)}+\sum_{v \in \mathcal{N}(u)} \mathbf{z}_{v}^{(k)}\right)
$$

- MLP : $\mathbb{R}^{d_{k}} \rightarrow \mathbb{R}^{d_{k+1}}$ is a fully connected neural-network.

Spectral GNN

Learning filters

Originally introduced by Bruna et al. 2013. The idea is

$$
\mathbf{Z}^{(k+1)}=\operatorname{Relu}\left(P[\mathcal{L}](\mathbf{A}) \mathbf{Z}^{(k)} \mathbf{W}^{(k)}\right)
$$

- $\mathcal{L}(\mathbf{A})=\operatorname{diag}(\mathbf{A} 1)-\mathbf{A}$ is the Laplacian (or normalized version).
- $P[\mathcal{L}]=\sum_{m=0}^{M} c_{m} \mathcal{L}^{m}$ is a learnable polynomial of the Laplacian.
- As $\mathcal{L}(\mathbf{A})=\mathbf{U} \wedge \mathbf{U}^{\top}, P[\mathcal{L}](\mathbf{A})=\mathbf{U} P[\Lambda] \mathbf{U}^{\top}$.
- Connections with the Fourier transform on graphs: $P[\mathcal{L}]$ acts as a filter.

Spectral GNN

Learning filters

Originally introduced by Bruna et al. 2013. The idea is

$$
\mathbf{Z}^{(k+1)}=\operatorname{Relu}\left(P[\mathcal{L}](\mathbf{A}) \mathbf{Z}^{(k)} \mathbf{W}^{(k)}\right)
$$

- $\mathcal{L}(\mathbf{A})=\operatorname{diag}(\mathbf{A} \mathbf{1})-\mathbf{A}$ is the Laplacian (or normalized version).
- $P[\mathcal{L}]=\sum_{m=0}^{M} c_{m} \mathcal{L}^{m}$ is a learnable polynomial of the Laplacian.
- As $\mathcal{L}(\mathbf{A})=\mathbf{U} \wedge \mathbf{U}^{\top}, P[\mathcal{L}](\mathbf{A})=\mathbf{U} P[\Lambda] \mathbf{U}^{\top}$.
- Connections with the Fourier transform on graphs: $P[\mathcal{L}]$ acts as a filter.

Limitations

- Niave complexity in $O\left(|V|^{3}\right)$ (eigen-decomposition).
- Any perturbation to a graph results in a change of eigenbasis \mathbf{U}.
- Learned filters are domain dependent.
- Alternative ChebNet Defferrard, Bresson, and Vandergheynst 2017 relies on Chebyshev polynomials with $O(|E| M)$ complexity.

Graph pooling

Pooling layers in neural networks At the core of many NN architectures.

- Most standard type is max-pooling.
- \downarrow the number of parameters to learn.
- Improves robustness.

Graph pooling

Pooling layers in neural networks At the core of many NN architectures.

- Most standard type is max-pooling.

- \downarrow the number of parameters to learn.
- Improves robustness.

Pooling in GNN

Equivalent to down-sampling $=$ reducing the number of nodes.

Diffpool

Learning at the graph level

- The neural message passing approach produces a set of node embeddings $F(\mathbf{X}, \mathbf{A})=\mathbf{Z} \in \mathbb{R}^{n \times k}$.
- What about predictions at the graph level ? E.g. in graph classification.
- We want one embedding for the entire graph \mathbf{z}_{G}.
- It should be a permutation invariant function $f(\mathbf{X}, \mathbf{A})$.
- E.g. global average pooling $\mathbf{z}_{G}=f(\mathbf{X}, \mathbf{A})=\frac{1}{|V|} \sum_{u \in V} \mathbf{z}_{u} \in \mathbb{R}^{k}$.

Diffpool

Learning at the graph level

- The neural message passing approach produces a set of node embeddings $F(\mathbf{X}, \mathbf{A})=\mathbf{Z} \in \mathbb{R}^{n \times k}$.
- What about predictions at the graph level ? E.g. in graph classification.
- We want one embedding for the entire graph z_{G}.
- It should be a permutation invariant function $f(\mathbf{X}, \mathbf{A})$.
- E.g. global average pooling $\mathbf{z}_{G}=f(\mathbf{X}, \mathbf{A})=\frac{1}{|V|} \sum_{u \in V} \mathbf{z}_{u} \in \mathbb{R}^{k}$.

Better idea: hierarchical pooling (Z. Ying et al. 2018)

Original
network
Pooled network at level 1
Pooled network at level 2

Pooled network at level 3

Graph classification

Table of contents

From neural networks...
The basic ideas
Logistic regression and one layer neural-network
Convolutional neural networks
to unsupervised node embeddings techniques..
A chronological start
... to graph neural networks
Learning with graphs
What is a GNN ?
A bit of group theory
Invariance and equivariance
Message-passing neural networks
Examples of GNN
The whole pipeline
Expressivity of GNN
Conclusion

Applications

Node classification

- One graph G where each node has a class.

Train GNNs in a fully-supervised manner by minimizing

$$
\mathcal{L}=\sum_{u \in V_{\text {train }}}-\log \left(\operatorname{softmax}\left(\mathbf{z}_{u}, y_{u}\right)\right)
$$

Applications

Node classification

- One graph G where each node has a class.

Train GNNs in a fully-supervised manner by minimizing

$$
\mathcal{L}=\sum_{u \in V_{\text {train }}}-\log \left(\operatorname{softmax}\left(\mathbf{z}_{u}, y_{u}\right)\right)
$$

Graph classification

- Many graphs G_{1}, \cdots, G_{n} associated with classes $\left(y_{G_{i}}\right)_{i}$.

Train GNNs in a fully-supervised manner by minimizing

$$
\mathcal{L}=\sum_{G \in T_{\text {train }}} \ell\left(\operatorname{MLP}\left(\mathbf{z}_{G}\right), y_{G}\right)
$$

Table of contents

From neural networks...
The basic ideas
Logistic regression and one layer neural-network
Convolutional neural networks
to unsupervised node embeddings techniques..
A chronological start
... to graph neural networks
Learning with graphs
What is a GNN ?
A bit of group theory
Invariance and equivariance
Message-passing neural networks
Examples of GNN
The whole pipeline

Expressivity of GNN

Conclusion

Connection with the WL test

WL algorithm and MP-GNN

- WL algorithm and the message passing GNN approach are very similar.
- Iteratively aggregate information from local node neighborhoods.

Connection with the WL test

WL algorithm and MP-GNN

- WL algorithm and the message passing GNN approach are very similar.
- Iteratively aggregate information from local node neighborhoods.

Message passing neural networks are not that powerful ?

- Consider a MP-GNN with K layers

$$
\mathbf{z}_{u}^{(k+1)}=\operatorname{CoMBINE}^{(k)}\left(\mathbf{z}_{u}^{(k)}, \operatorname{AGGREGATE}^{(k)}\left(\left\{\left\{\mathbf{z}_{v}^{(k)}: v \in \mathcal{N}(u)\right\}\right\}\right)\right)
$$

- Suppose that discrete node labels $\mathbf{Z}^{(0)}=\mathbf{X} \in \mathbb{Z}^{n \times d}$.
- Then Xu et al. 2019 show that
$\mathbf{z}_{u}^{(K)} \neq \mathbf{z}_{v}^{(K)} \Longleftrightarrow$ labels of u and v are \neq after K iter. of the WL algorithm.
- If the WL test cannot distinguish between G_{1}, G_{2}, then MP-GNN also incapable of doing it.
- Ability of solving isomorphism = good measure of "expressivity" ?

Other limitations

- The oversmoothing problem: if too many layers of MP-GNN, the node features tend to converge to a non-informative limit.

Figure: From Keriven 2022

- Heterophily vs homophilie: neighbours should have similar embeddings ? (Luan et al. 2022).

Table of contents

From neural networks...
The basic ideas
Logistic regression and one layer neural-network
Convolutional neural networks
to unsupervised node embeddings techniques..
A chronological start
... to graph neural networks
Learning with graphs
What is a GNN ?
A bit of group theory
Invariance and equivariance
Message-passing neural networks
Examples of GNN
The whole pipeline
Expressivity of GNN
Conclusion

Conclusion

- Flexible: graph/node/edge classification, semi-supervised learning, link prediction...
- Generally state-of-the-art, but...
- ... sometimes do not work "that well" (compared to other DL)
- Simple methods may perform better but might be "forgotten" in benchmarks
- Room for improvement (many interesting challenges), but conventional DL wisdom might not hold
- Arguably, no real "ImageNet moment" yet for GNNs -i several recent initiatives for bigger datasets and more complex tasks (eg Open Graph Benchmark)

References I

Belkin, Mikhail and Partha Niyogi (2003). "Laplacian eigenmaps for dimensionality reduction and data representation". In: Neural computation 15.6, pp. 1373-1396.
Bruna, Joan et al. (2013). "Spectral networks and locally connected networks on graphs". In: arXiv preprint arXiv:1312.6203.
Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst (2017). Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. arXiv: 1606.09375 [cs.LG].
Goldberg, Yoav and Omer Levy (2014). "word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method". In: arXiv preprint arXiv:1402.3722.
Grinsztajn, Léo, Edouard Oyallon, and Gaël Varoquaux (2022). "Why do tree-based models still outperform deep learning on typical tabular data?" In: Advances in Neural Information Processing Systems 35, pp. 507-520. Grover, Aditya and Jure Leskovec (2016). "node2vec: Scalable feature learning for networks". In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855-864.

References II

Br
Hamilton, William L (2020). Graph representation learning. Morgan \& Claypool Publishers.
Hamilton, William L., Rex Ying, and Jure Leskovec (2018). Inductive Representation Learning on Large Graphs. arXiv: 1706.02216 [cs.SI].
囯 Keriven, Nicolas (2022). "Not too little, not too much: a theoretical analysis of graph (over) smoothing". In: Advances in Neural Information Processing Systems 35, pp. 2268-2281.
Kipf, Thomas N and Max Welling (2016). "Semi-supervised classification with graph convolutional networks". In: arXiv preprint arXiv:1609.02907.
LeCun, Yann et al. (1998). "Gradient-based learning applied to document recognition". In: Proceedings of the IEEE 86.11, pp. 2278-2324.
Ruan, Sitao et al. (2022). "Revisiting heterophily for graph neural networks". In: Advances in neural information processing systems 35, pp. 1362-1375.
(Maron, Haggai et al. (2018). "Invariant and equivariant graph networks". In: arXiv preprint arXiv:1812.09902.
Mikolov, Tomas et al. (2013). "Distributed representations of words and phrases and their compositionality". In: Advances in neural information processing systems 26.

References III

B
Rosenblatt，Frank（1958）．＂The perceptron：a probabilistic model for information storage and organization in the brain．＂．In：Psychological review 65．6，p． 386.
（ Scarselli，Franco et al．（2008）．＂The graph neural network model＂．In：IEEE transactions on neural networks 20．1，pp．61－80．
囲 Vaswani，Ashish et al．（2023）．Attention Is All You Need．arXiv： 1706．03762［cs．CL］．
Velivcković，Petar et al．（2017）．＂Graph attention networks＂．In：arXiv preprint arXiv：1710．10903．
庫 Wagstaff，Edward et al．（2019）．＂On the limitations of representing functions on sets＂．In：International Conference on Machine Learning． PMLR，pp．6487－6494．
围 Weiler，Maurice et al．（2023）．Equivariant and Coordinate Independent Convolutional Networks．A Gauge Field Theory of Neural Networks．url： https：／／maurice－weiler．gitlab．io／cnn＿book／ EquivariantAndCoordinateIndependentCNNs．pdf．

References IV

圊 Wu, Zonghan et al. (Jan. 2021). "A Comprehensive Survey on Graph Neural Networks". In: IEEE Transactions on Neural Networks and Learning Systems 32.1, pp. 4-24. DOI: 10.1109/tnnls.2020.2978386. URL: https://doi.org/10.1109\%2Ftnnls. 2020.2978386.
Xu, Keyulu et al. (2019). How Powerful are Graph Neural Networks? arXiv: 1810.00826 [cs.LG].

國 Ying, Zhitao et al. (2018). "Hierarchical graph representation learning with differentiable pooling". In: Advances in neural information processing systems 31.
Raheer, Manzil et al. (2018). Deep Sets. arXiv: 1703.06114 [cs.LG].
Zeiler, Matthew D and Rob Fergus (2014). "Visualizing and understanding convolutional networks". In: Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13. Springer, pp. 818-833.
Zhang, Ziwei, Peng Cui, and Wenwu Zhu (2020). Deep Learning on Graphs: A Survey. arXiv: 1812.04202 [cs.LG].

