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What is a neural network ?

Neural network is a certain family of functions parametrized by weights.

Built upon a biological analogy Rosenblatt 1958

I First example f (x = (x1, x2)) = activation(θ1x1 + θ2x2 + θ3):
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What is a neural network ?

Feed-forward neural networks
I Feed-forward NN are function of the form

f (x) = TK ◦ σK−1 ◦ · · · ◦ σ1 ◦ T1(x)

where Tk(z) = W(k)z + b(k)

and σk pointwise activation function.

I All the weights: θ = (W(1), · · · ,W(K),b(1), · · ·b(K)).

I Depending on the task the output of a NN is also transformed
g(x) = norm(f (x)).

I E.g. f : Rd → R and g : Rd → (0, 1) for binary classification with
norm(u) = 1/(1 + exp(−u)) (logistic/sigmoid function).



What is a neural network ?

A zoo of architectures

Richness of neural network



Neural network in practice

The (very) big picture
Find the weights that minimizes the empirical minimization loss.

I In practice gradient descent very slow.

I We use stochastic gradient descents (and variations) on batches of the
data.



(almost) All optimization in one slide
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SGD

Principle

I Minimize a smooth function J(θ) using its gradient (or ≈).

I Initialize a vector θ(0) and update it at each iteration k as:

θ(k+1) = θ(k) + µkdk

where µk is a step and dk is a descent direction d>k ∇J(θ(k)) < 0.

I Classical descent directions are :
I Steepest descent: dk = −∇J(θ(k)) (a.k.a. Gradient descent).
I (Quasi) Newton: dk = −(∇2J(θ(k)))−1∇J(θ(k)), ∇2J is the Hessian.
I Stochastic Gradient Descent : dk = −∇̃J(θ(k)) with approx. gradient.

I For NN: gradient computed with automatic differentiation (TD).
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Why is this a good idea ? (on the board)
Let J : RD → R with L-Lipschitz gradient1 and J? := minθ J(θ) > −∞.

Then, provided that 0 < µk <
2
L , the iterations θ(k+1) = θ(k) − µk∇J(θ(k))

satisfy

J(θ(k+1)) < J(θ(k)) (decrease the objective function)

lim
k→+∞

∇J(θ(k)) = 0 (critical point)

1it means that ∀θ1,θ2 ∈ Rd , ‖∇J(θ1)−∇J(θ2)‖2 ≤ L‖θ1 − θ2‖2.



(almost) All optimization in three slides...

Be aware of local minima
I When the functions are not convex, GD and its variants can fall into

bad local minima.

I Neural networks are not convex w.r.t. the optimized parameters !
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First simple neural network: logistic regression

I It is a classification method: input (xi )i ∈ Rd and (yi )i ∈ {+1,−1}.
I Probabilistic model: find a model hθ s.t. P(y = +1|x) ≈ hθ(x).

I Bayes decision: f (x) = sign(P(y = +1|x)− P(y = −1|x)) ∈ {−1,+1}.

The sigmoid function
σ(z) = 1/(1 + exp(−z)).

I Usually used to model
probabilities.

The logistic regression model
The model is P(y = +1|x) = σ(θ>x + b).

I θ ∈ Rd are weights, b ∈ R is a bias that
are to be optimized.

I It is a generalized linear model.

I Is is also a one layer neural-network (no
hidden layer).
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First simple neural network: logistic regression

One property
P(y = −1|x) = 1− P(y = 1|x) = 1− σ(θ>x + b) = σ(−(θ>x + b))

Maximum likelihood estimation
Find θ ∈ Rd , b ∈ R that maximize the (conditional) log-likelihood (board)

∑

i :yi=1

logP(yi = 1|xi ) +
∑

i :yi=−1

logP(yi = −1|xi )

=
∑

i :yi=1

log σ(θ>xi + b) +
∑

i :yi=−1

log σ(−(θ>x + b))

=
n∑

i=1

log σ(yi (θ
>xi + b)) .

Minimizing the logistic loss

min
θ,b

n∑

i=1

log
[
1 + exp

(
−yi (θ>xi + b)

)]
.

I Convex problem, can be solved with (Quasi) Newton’s method.
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First simple neural network: logistic regression

Remember your losses
With f : Rd → R, many losses can be written
as `(yi , f (xi )) = Φ(yi f (xi )) with Φ ↓.
I `(yi , f (xi )) = 1yi f (xi )≤0.

I `(yi , f (xi )) = max{0, 1− yi f (xi )}.
I `(yi , f (xi )) = log(1 + e−yi f (xi )).
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I Logistic regression = fitting f (x) = θ>x + b with the logistic loss.

I The decision/prediction of the label is sign(f (x)).

I So it is a linear decision boundary (linear classification).
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Convolutional neural networks

I The core block for deep learning on images.

I Induces an implicit bias on the architecture.

What could happen with a fully-connected architecture?



Convolutional neural networks

I The core block for deep learning on images.

I Induces an implicit bias on the architecture.

What could happen with a fully-connected architecture?

I We want a function that doesn’t change if we only translate the image.
We want a translation invariant function.

I Convolution: particular structure on the weights that induce
translation equivariance.



Convolutional neural networks

Convolution/correlation of functions
Let f , h ∈ L2(R). The convolution f ∗ h ∈ L2(R) is defined as

f ∗ h(x) =

∫ +∞

−∞
f (t)h(x − t)dt and f ? h(x) =

∫ +∞

−∞
f (t)h(t + x)dt

I Translate a filter h and then take the inner product with2 f :

f ? h(x) = 〈τ−xh, f 〉L2(R) .

I It weights the local contributions of f by a filter.

I It is translation equivariant.

(τx f ) ∗ h = τx(f ∗ h)

I If we translate the input, the output will be equally translated.

2τx f = t → f (t − x)
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Convolutional neural networks

In practice convolutions are applied on discrete signals.

Discrete convolutions in 1D

Question: size of the output ?



Convolutional neural networks

In practice convolutions are applied on discrete signals.

Discrete convolutions in 1D

I Padding strategies can be used to have output of the same size.

I Also stride can be used to move the filter from more than one pixel.



Convolutional neural networks

Discrete convolutions not in 1D
See also https://github.com/vdumoulin/conv_arithmetic.
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Convolutional neural networks

Figure: LeNet from LeCun et al. 1998

Figure: Schematic view

Principle and intuition (Zeiler and Fergus 2014)

I Define multiple convolutions, learn the corresponding filter weights.

I Recognize local patterns in images.

I Find intermediate features that are “general” and “adaptive” due to
the translation equivariance bias
https://fabianfuchsml.github.io/equivariance1of2/.

I Revealing local features that are shared across the data domain.

https://fabianfuchsml.github.io/equivariance1of2/


Conclusion

I Deep learning: in almost everything when there are images.

I Very versatile: learn complex functions.

I Prior also helps ! (translation equivariance).

I Side note: still struggles on tabular data (Grinsztajn, Oyallon, and
Varoquaux 2022).

Graph neural networks ?

I How do we extend neural networks to graphs?

I Careful to node ordering: must be invariant to relabelling of the nodes
(graph isomorphism).
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Objective

A chronological start

I Idea: to learn on a graph: nodes →
vector → standard ML pipeline.

I The embedding must take into
account the structure of the graph.

I Also useful for visualization.

One naive approach

I Consider each row of the adjacency matrix as an embedding vector.

I If labelled graph: concatenate with the nodes’ features.

I Sensitive to the node ordering ! Also, expensive O(|V |) !

I Not applicable to graph with different sizes !
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An encoder-decoder perspective

Notations
I We suppose we have one graph G = (V ,E ), without features (so far).

I For each u ∈ V we look for an embedding zu ∈ Rk .

Principle
We look for a “good” encoder E : V → Rk such that E (u) = zu.

I Ideally the embedding zu contains the neighbourhood informations of u.



An encoder-decoder perspective

Principle
We look for a “good” encoder E : V → Rk such that E (u) = zu.

I Ideally the embedding zu contains the neighbourhood informations of u.

Encoding/decoding scheme
A lot of methods attempt to minimize

L =
∑

(u,v)∈D

`(similarity(zu, zv ),S [u, v ])

I similarity(zu, zv ) how close are the embeddings.

I S [u, v ] how close are the nodes in the graph.

I ` : R× R→ R is a loss: how similar are the similarities.



Unsupervised node embeddings techniques
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3D Laplacian embedding

Inspiration from Laplacian eigenmaps Belkin and Niyogi 2003

I In the embedding space similarity(zu, zu) = 1
2‖zu − zv‖22.

I When similary is S[ui , vj ] = Aij/
√

degree(ui )
√

degree(uj), loss to
minimize:

1

2

∑

ij

‖zi − zj‖22
Aij√

degree(ui )
√

degree(uj)
= tr(Z>L̃Z) .

I Normalized Laplacian L̃ = D−1/2LD−1/2.

I Interpretation + permutation equivariance of the cost (on the board).

I With the constraint Z>Z = Id it recovers Laplacian eigenmaps.

I Sol. is the d eigenvectors associated to the d smallest eigenvalues of L̃.
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Unsupervised node embeddings techniques

Skip-Gram and the Word2vec model (Mikolov et al. 2013)
The meaning of a word is its use in language (Wittgenstein).

I Objective: “similar” words are embedded into “similar” vectors.

I Goal: predict context words from each input word.

I We want to maximize P(context|input word).
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Unsupervised node embeddings techniques

Skip-Gram and the Word2vec model (Mikolov et al. 2013)
The meaning of a word is its use in language (Wittgenstein).

I Objective: “similar” words are embedded into “similar” vectors.

I Goal: predict context words from each input word.

I We want to maximize P(context|input word).

I Dataset D of input/output words (surrounding). Loss to minimize is:

−
∑

(u,o)∈D

logP(o|u) .

I But computing it in O(|V | × |{words to embed}|): negative sampling.



Unsupervised node embeddings techniques

The node2vec model (Grover and Leskovec 2016)

I Similar as before: each node u ∈ V is embedded as zu ∈ Rk .

I Goal of the embedding: reflect the neighboring nodes of u.

I Sampling strategies based on random walks (BFS/DFS).

I With a dataset D of input/output nodes. Loss to minimize:

L = −
∑

(u,o)∈D

log
exp(z>u zo)∑

w∈V exp(z>u zw )



Unsupervised node embeddings techniques

The node2vec model (Grover and Leskovec 2016)

I Similar as before: each node u ∈ V is embedded as zu ∈ Rk .

I Goal of the embedding: reflect the neighboring nodes of u.

I Sampling strategies based on random walks (BFS/DFS).

Negative sampling (NS)

I Loss is too expensive to compute O(|V |2).

I NS: introduce negative data samples.

I Goal: distinguish between neighboring points of a target node u and
random nodes draws from a noise distribution using logistic regression.

I New loss (explanations on the board) (Goldberg and Levy 2014):

L = −


 ∑

(u+,o+)∈D+

log σ(z>u zo) +
∑

(u−,o−)∈D−

log σ(−z>u zo)




with sigmoid function σ(x) =
1

1 + exp(−x)
.



Unsupervised node embeddings techniques

The node2vec model (Grover and Leskovec 2016)

I Similar as before: each node u ∈ V is embedded as zu ∈ Rk .

I Goal of the embedding: reflect the neighboring nodes of u.

I Sampling strategies based on random walks (BFS/DFS).

Negative sampling (NS)

I Goal: distinguish between neighboring points of a target node u and
random draws from a noise distribution using logistic regression.
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Unsupervised node embeddings techniques

Limitations of previous embeddings techniques

I The previous embeddings are called shallow: encoder function
E : V → Rk is simply an embedding lookup based on the node ID.

E (u) = Z[:, u] = zu .

I Lack of parameter sharing between nodes in the encoder.

I Do not leverage node features !

I Inherently transductive: these methods can only generate embeddings
for nodes that were present during the training phase.

I If new nodes must retrain everything.
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Frameworks considered here

Supervised:

I Graph classification: labelled graphs → label new graph (molecule
classification, drug efficiency prediction).

I Node (or edge) classification: labelled nodes → label other nodes
(advertisement, protein interface prediction).

Unsupervised (semi-supervised):

I Community detection: one graph → group nodes (social network
analysis).

I Link prediction: one graph → potential new edge.

I Unsupervised node embeddings.



Some limitations

Tip of the iceberg

I Approx. 100 GNN papers a month on arXiv.

I Despite 1000s of papers, same ideas coming round: be critical, learn to
spot incremental changes!

I We will only see the most well-known architectures (according to me).

I Be aware that it might already be out-of-date.

I Some surveys Wu et al. 2021; Zhang, Cui, and Zhu 2020;
William L Hamilton 2020.

I See also https://github.com/houchengbin/awesome-GNN-papers.

https://github.com/houchengbin/awesome-GNN-papers
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What is a graph neural network ?

Framework
I Graphs considered here:

I G = (V ,E ) with |V | = n, features on the nodes.

I Adjacency matrix A ∈ Rn×n.

I Feature matrix X ∈ Rn×d , feature xi ∈ Rd .

GNN general definition
A GNN is a specific parametrized function that takes a input a graph
G = (X,A) and outputs “something” (depends on the application).

I It is made of a combination of different layers.

I Graph classification, node classification/regression, node embedding

I Notations: vector output f (X,A), matrix output F (X,A).
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What properties to ensure ?

The training pipeline

I Overall the same procedure: find an embedding of the nodes
F (X,A) ∈ Rn×k (supervised or unsupervised) and then do stuff.

Properties to ensure

I If graph classification then f (X,A) ∈ ±1: the function must be
invariant to permutations of the graph.

I Prediction on the node level: we want to let the permutation of the
graph produce a different result but while making this phenomena
predictable.

I It will be formalized with the notion of invariance/equivariance.
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On invariance and equivariance

The right symmetries can facilitate learning

I Fit a polynomial f̂ (x) =
∑N

n=0 θnx
n on

viii Preface: A visual introduction

How to construct equivariant models ?

How can we guarantee the equivariance of a machine learning model? As a conceptually
simple example, let’s consider a linear regression task (curve fitting), and assume that the
ground truth f : R! R is either known to be symmetric or known to be antisymmetric (i.e.
invariant or equivariant w.r.t. multiplications with �1)4:

symmetric: f(�x) = f(x) antisymmetric: f(�x) = �f(x)

A naive (non-equivariant) approach would be to fit an ordinary polynomial

y(x) =

NX

n=0

wnxn

of some degree N 2 N, where the wn 2 R are N +1 trainable parameters. However, this
general polynomial model would ignore our prior knowledge on the functions’ symmetry
properties – they would have to be learned from the training data.

To take advantage of the symmetries, we can constrain the polynomial model to respect the
symmetries a-priori. Doing so forces either the odd or even terms to zero, leaving us with
equivariant models

ysymm(x) =
NX

n even

wnxn (since (�x)n = xn for even n 2 N)

and yanti(x) =
NX

n odd

wnxn (since (�x)n = �(xn) for odd n 2 N) ,

which are by design symmetric and antisymmetric, respectively. Note that, in comparison
to unconstrained polynomials, these equivariant models have approximately half the number
of parameters. Furthermore, they generalize over reflections: having seen training data for
x > 0 only, they are automatically fitted for all x < 0 as well.

On an abstract level, we started with some space of generic machine learning models, which
is subsequently restricted to a subspace of equivariant models:

equivariant models
symmetry
⇢

constraint
generic models

The layers of equivariant neural networks may similarly be defined as symmetry-constrained
instances of common network operations (e.g. linear maps or bias summations). Specifi-
cally for the translation group, the subspaces of equivariant network operations correspond
exactly to convolutional network layers.

4We encourage the reader to visualize the defining constraints f(�x) = ±f(x) of (anti)symmetric
functions by drawing two commutative diagrams similar to those on page v. Hint: all nodes are R, the
blue transformation arrows are multiplications with �1, and the gray function arrows are labeled by f .

Figure: From Weiler et al. 2023

I Ignore prior knowledge about the function.

I Better: fit
∑N

n even θnx
n (invariant) or

∑N
n odd θnx

n (equivariant).

I Need half of the parameters + generalize well.



On invariance and equivariance

On the previous episodes

Why convolutional neural networks? ix

Why convolutional neural networks ?

Convolutional neural networks (CNNs) are the standard network architecture for spatially
structured signals. They differ from plain, fully connected networks in two respects: firstly,
they usually have a local neural connectivity, and secondly, they share synapse weights (e.g.
a convolution kernel) between different spatial locations:

local connectivity

The weight sharing requirement applies to any type of operation employed in convolutional
networks, enforcing, for instance, that one and the same bias vector or nonlinearity is to be
used at every spatial position. CNNs owe their name to so-called convolution operations,
which are exactly those linear maps that share weights. Intuitively, convolutions can be
thought of as sliding a template pattern – the convolution kernel – across space, matching it
at each single position with the signal to produce a response field.

Both the local connectivity and weight sharing reduce the number of model parameters (vi-
sualized by the number and color of the synapse weights in the graphics above), which makes
CNNs less hungry for training data in comparison to fully connected networks. The local
connectivity implies in addition that each neuron is associated with a specific spatial location
(the center of its receptive field), such that they are naturally arranged in “feature maps”.

More important for us is, however, that the spatial weight sharing implies the translation
equivariance of convolutional networks:

spatial weight sharing =) translation equivariance

To see that this is indeed the case, note that any translation of a network’s input shifts patterns
to other neurons’ receptive fields. Given that the neural connectivity is shared, these neurons
are guaranteed to evoke the same responses as those at the previous location.

(Lizards adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)Figure: From Weiler et al. 2023



On invariance and equivariance

A little bit of group theory
A group G is a set along with a binary operation ◦ : G×G→ G satisfying

I Associativity: ∀g, h, i ∈ G, (g ◦ h) ◦ i = g ◦ (h ◦ i).

I Identity: there exists e ∈ G such that ∀g ∈ G, g ◦ e = e ◦ g = g.

I Inverse: For each g ∈ G there exists g−1 ∈ G such that
g ◦ g−1 = g−1 ◦ g = e.

I Closure: ∀g, h ∈ G, g ◦ h ∈ G.

Commutativity is not part of this definition (g ◦ h 6= h ◦ g).

Some examples

I Translation group on Z2 is an Abelian group:

(m, n) ◦ (p, q) = (n + p,m + q) .

I Translation + rotations, mirror reflections.

I Permutation group Sn = {σ : [[n]]→ [[n]], σ is a bijection} with the
composition of functions.
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On invariance and equivariance

Group action
Given a set Ω and a group G, a (left) group action of G on Ω is a function

G× Ω→ Ω

(g, x)→ gx

satisfying

I ∀x ∈ Ω, ex = x

I Compatibility: ∀g, h ∈ G,∀x ∈ Ω, g(hx) = (g ◦ h)x .

I It acts on the element of the sets via the group.

I A set endowed with an action of G on it is called a G-set.
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Group action
Given a set Ω and a group G, a (left) group action of G on Ω is a function

G× Ω→ Ω

(g, x)→ gx

satisfying

I ∀x ∈ Ω, ex = x

I Compatibility: ∀g, h ∈ G,∀x ∈ Ω, g(hx) = (g ◦ h)x .

I It acts on the element of the sets via the group.

I A set endowed with an action of G on it is called a G-set.

Translation of functions
I Group of translations G = {τx , x ∈ R} with τx ◦ τy = τx+y . Identity

element τ0.

I For a function f and τx the group action

τx f := t → f (t − x) .



On invariance and equivariance

Group action
Given a set Ω and a group G, a (left) group action of G on Ω is a function

G× Ω→ Ω

(g, x)→ gx

satisfying

I ∀x ∈ Ω, ex = x

I Compatibility: ∀g, h ∈ G,∀x ∈ Ω, g(hx) = (g ◦ h)x .

I It acts on the element of the sets via the group.

I A set endowed with an action of G on it is called a G-set.

Permutation of vectors
I Group of permutations Sn with composition ◦. Identity element id.

I For x ∈ Rn a group action is σx = (xσ(1), xσ(2), · · · , xσ(n)).

I Is it a left group action ?
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Group action
Given a set Ω and a group G, a (left) group action of G on Ω is a function

G× Ω→ Ω

(g, x)→ gx

satisfying

I ∀x ∈ Ω, ex = x

I Compatibility: ∀g, h ∈ G,∀x ∈ Ω, g(hx) = (g ◦ h)x .

I It acts on the element of the sets via the group.

I A set endowed with an action of G on it is called a G-set.

Permutation of vectors
I For x ∈ Rn a group action is σx = (xσ(1), xσ(2), · · · , xσ(n)).

I Def (σ1x)i = xσ1(i). So (σ2(σ1x))i = (σ1x)σ2(i) = xσ1(σ2(i)) = xσ1◦σ2(i).

I Thus σ2(σ1x) = (σ1 ◦ σ2)x 6= (σ2 ◦ σ1)x.
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Group action
Given a set Ω and a group G, a (left) group action of G on Ω is a function

G× Ω→ Ω

(g, x)→ gx

satisfying

I ∀x ∈ Ω, ex = x

I Compatibility: ∀g, h ∈ G,∀x ∈ Ω, g(hx) = (g ◦ h)x .

I It acts on the element of the sets via the group.

I A set endowed with an action of G on it is called a G-set.

Permutation of vectors
I For x ∈ Rn a left group action is σx = (xσ−1(1), xσ−1(2), · · · , xσ−1(n)).

I Def (σ1x)i = xσ−1
1 (i). So

(σ2(σ1x))i = (σ1x)σ−1
2 (i) = xσ−1

1 (σ−1
2 (i)) = x(σ2◦σ1)−1(i).

I Thus σ2(σ1x) = (σ2 ◦ σ1)x.
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A formal definition of invariance

Invariance
Let Ω be a G-set. A function f : Ω→ Y is G-invariant if

∀x ∈ Ω, ∀g ∈ G, f (gx) = f (x) .

I f is G-invariant if its output is unaffected by the group action.

Permutation invariant functions
I f (x) =

∑n
i=1 xi , g(x) = maxi∈[[n]] xi , h(x) = sort(x) (to Rn).

I Characterization of all linear permutation invariant functions

L : Rnk → R (Maron et al. 2018).
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Invariance
Let Ω be a G-set. A function f : Ω→ Y is G-invariant if

∀x ∈ Ω, ∀g ∈ G, f (gx) = f (x) .

I f is G-invariant if its output is unaffected by the group action.

Permutation invariant functions
Let X ∈ Rn×d . The action of σ on X is σX = (Xσ−1(i)j)ij . Find a

permutation invariant function F : Rn×d → R.

I With X = (x1, · · · , xn)> and F (X) = φ(
∑n

i=1 ψ(xi )) with any
ψ : Rd → Z , φ : Z → Y .

I F (X) = rank(X).
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A formal definition of invariance

Function operating on sets/multisets
Let X be a countable set. By construction, any function acting on sets
f : 2X → Y for some Y is permutation invariant. That is

∀{x1, · · · , xn} ∈ 2X ,∀σ ∈ Sn, f ({x1, · · · , xn}) = f ({xσ−1(1), · · · , xσ−1(n)}) .

Simply because {x1, · · · , xn} = {xσ−1(1), · · · , xσ−1(n)}.

I Any function f : 2X → R has the form (Zaheer et al. 2018)

f (X ) = φ(
∑

x∈X

ψ(x)) for some ψ : X → R, φ : R→ R .

I See prev. course: a multiset is a “set” where element can be repeated
several times e.g. {{a, a, b}} .

I Same representation result holds for functions on multisets (Wagstaff
et al. 2019).
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A formal definition of equivariance

Equivariance
Let Ω1,Ω2 be two G-sets (of the same group). A function h : Ω1 → Ω2 is
G-equivariant if

∀x ∈ Ω1, ∀g ∈ G, h(gx) = gh(x) .

I Pay attention to the input/output spaces and the compatibility.

I Transform the input + apply h = apply h and transform the result.
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I Transform the input + apply h = apply h and transform the result.

Convolutions
Prove that the convolution with a filter h ∈ L2(R) is translation equivariant.



A formal definition of equivariance

Equivariance
Let Ω1,Ω2 be two G-sets (of the same group). A function h : Ω1 → Ω2 is
G-equivariant if

∀x ∈ Ω1, ∀g ∈ G, h(gx) = gh(x) .

I Pay attention to the input/output spaces and the compatibility.

I Transform the input + apply h = apply h and transform the result.

Convolutions
Consider a filter h ∈ L2(R).

I The convolution with a filter is H : Ω = L2(R)→ L2(R) such that
H(g) := g ∗ h = h ∗ g .

I For any translation τx

∀g ∈ L2(R), H(τxg) = (τxg) ∗ h = τx(g ∗ h) = τxH(g) .

I Translate then convolve = convolve then translate.
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Equivariance
Let Ω1,Ω2 be two G-sets (of the same group). A function h : Ω1 → Ω2 is
G-equivariant if

∀x ∈ Ω1, ∀g ∈ G, h(gx) = gh(x) .

I Pay attention to the input/output spaces and the compatibility.

I Transform the input + apply h = apply h and transform the result.

Permutation equivariant functions

I Find two permutation equivariant functions F : Rn×d1 → Rn×d2 .



A formal definition of equivariance

Equivariance
Let Ω1,Ω2 be two G-sets (of the same group). A function h : Ω1 → Ω2 is
G-equivariant if

∀x ∈ Ω1, ∀g ∈ G, h(gx) = gh(x) .

I Pay attention to the input/output spaces and the compatibility.

I Transform the input + apply h = apply h and transform the result.

Permutation equivariant functions

I Let W ∈ Rd1×d2 and F (X) = XW.

I Let X =




x>1
...

x>n


 previous example F (X) =




(W>x1)>

...
(W>xn)>


.

I More generally F (X) =



ψ(x1)>

...
ψ(xn)>


 where ψ : Rd1 → Rd2 .



A formal definition of equivariance

Equivariance
Let Ω1,Ω2 be two G-sets (of the same group). A function h : Ω1 → Ω2 is
G-equivariant if

∀x ∈ Ω1, ∀g ∈ G, h(gx) = gh(x) .

I Pay attention to the input/output spaces and the compatibility.

I Transform the input + apply h = apply h and transform the result.

Laplacian matrix

I An action of Sn on Rn×n is defined as

σA = (Aσ−1(i),σ−1(j))ij

I L : symn(R)→ symn(R) which takes a symmetric matrix A and
outputs the Laplacian matrix L(A) = diag(A1)− A

I Show that L is Sn-permutation equivariant.



Combining them together

Composition of invariant/equivariant functions
Let Ω1,Ω2 be G-sets.

I Let f : Ω1 → Ω2 be a G-equivariant function.

I Let g : Ω2 → Y be a G-invariant function.

Then h = g ◦ f is G-invariant.

Proof
Indeed with x ∈ Ω1, g ∈ G

h(gx) = g(f (gx)) = g(gf (x)) = g(f (x)) = (g ◦ f )(x) = h(x) .

Simple but powerful: one of the reason CNNs work so well
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Combining them together

Composition of invariant/equivariant functions
Let Ω1,Ω2 be G-sets.

I Let f : Ω1 × Y → Ω2 be a G-equivariant function with respect to its
first variable i.e. ∀y ∈ Ω1,∀g ∈ G,∀y ∈ Y , f (gx , y) = gf (x , y).

I Let g : Ω1 → Y be a G-invariant function.

Then the function h defined by h(x) = f (x , g(x)) is G-equivariant.

Proof
h(gx) = f (gx , g(gx)) = f (gx , g(x)) = gf (x , g(x)) = gh(x) .



Focus on permutation invariance/equivariance

Permutations as matrices

I σ ∈ Sn can be described as Pσ =




e>σ(1)
...

e>σ(n)


 ∈ {0, 1}n×n. Pσ−1 = P>σ .

I For A ∈ Rn×n, the previous action is σA = (Aσ−1(i)σ−1(j))ij = P>σ APσ.

I An action of Sn on Rn×d × Rn×n

σ (X,A) = (P>σ X,P>σ APσ)

Ensuring invariance/equivariance is key when learning on graphs

Find f that are Sn-invariant, F that are Sn-equivariant.

I f (P>σ X,P>σ APσ) = f (X,A) and F (P>σ X,P>σ APσ) = P>σ F (X,A).
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Find f that are Sn-invariant, F that are Sn-equivariant.

I f (P>σ X,P>σ APσ) = f (X,A) and F (P>σ X,P>σ APσ) = P>σ F (X,A).

Examples: equivariance (1/2)

I Take X ∈ Rn×d1 ,W ∈ Rd1×d2 and a function Ψ that applies
independently on each row of a matrix.

I F (X,A) = Ψ(AXW) is Sn-equivariant.

I In particular when Ψ is element-wise.

I But also F (X,A) = Ψ(G (A)XW) where G is Sn-equivariant.

I E.g. F (X,A) = Ψ(L(A)XW) where L computes the Laplacian.

I E.g. F (X,A) = Ψ(P[L](A)XW) where P is a polynomial
P[L] =

∑
m cmLm.
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Focus on permutation invariance/equivariance

Examples: equivariance (2/2)

I Take X =




x>1
...

x>n


 and define the multiset Xi := {{xj : j ∈ N (i)}}.

I Then Xσ(i) = {{xσ(j) : j ∈ N (i)}}:

I A function AGGREGATE operating on multisets of vectors.

I Then the following function is permutation equivariant.

F (X,A) =



ψ(x1,AGGREGATE(X1))

...
ψ(xn,AGGREGATE(Xn))
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Remember

The training pipeline

I Overall the same procedure: find an embedding of the nodes
F (X,A) ∈ Rn×k (supervised or unsupervised) and then do stuff.



Message-passing for node embeddings

Goal of the message passing framework

I Defines specific Sn-equivariant layers/functions.

I Can be used for node embeddings.

I Usually Z(0) = X but when no node features are available several
options (e.g. node statistics).

I Notation: z
(k)
u is the embedding of the node u ∈ V at the k-layer.



The message passing framework

One of the most used GNN framework in practice

I At each iteration, every node aggregates information from its local
neighborhood.

I A zoo of methods for different COMBINE,AGGREGATE functions.

I Why is this defining a permutation equivariant layer ?



The message passing framework

Similarities with CNN
I One layer of message-passing

GNN shares similaries to
convolutional layers.

I Usually it takes the form

z(k+1)
u = φ


 ∑

v∈N (u)∪{u}

αuvz(k)v


 .

k-hop neighbourhood
After k-steps each node has
received the informations from its
k-hop neighbourhood.

Figure: From Jure Leskovec course Machine
Learning with Graphs.
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A first GNN with message passing

Sum/mean aggregation (Scarselli et al. 2008)
A first idea would be

z(k+1)
u = φ(W

(k)
selfz

(k)
u + W

(k)
neigh

∑

v∈N (u)

z(k)v + b(k))

I W
(k)
self ,W

(k)
neigh ∈ Rdk+1×dk are matrices of learnable parameters.

I Do not depend on the number of nodes ! .

I Complexity of computing it for all nodes is O(|E |).

I b(k) ∈ Rdk+1 is a bias term (often omitted to simplify notations).

I φ is a pointwise non-linearity such as ReLu.

Questions

I What is COMBINE,AGGREGATE ?

I Write this in matrix form.
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A first GNN with message passing

Sum/mean aggregation (Scarselli et al. 2008)
A first idea would be
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u = φ(W
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I W
(k)
self ,W

(k)
neigh ∈ Rdk+1×dk are matrices of learnable parameters.

I Do not depend on the number of nodes ! .

I Complexity of computing it for all nodes is O(|E |).

I b(k) ∈ Rdk+1 is a bias term (often omitted to simplify notations).

I φ is a pointwise non-linearity such as ReLu.

Answers
I Write this in matrix form.

I Z(k+1) = φ


AZ(k)W

(k)
neigh + Z(k)W

(k)
self +




b(k)

...
b(k)





.



Graph convolutional neural networks

Most popular baseline model
Introduced by Kipf and Welling 2016 for semi-supervised node classification.

z(k+1)
u = Relu(W

(k)
selfz

(k)
u + W

(k)
neigh

1√
|N (u)|

∑

v∈N (u)

z
(k)
v√
|N (v)|

)

I Also GraphSage framework (William L. Hamilton, R. Ying, and
Leskovec 2018).

I What is COMBINE,AGGREGATE ?

In matrix form
I With Wself = Wneigh,Z(k+1) =

Relu
(

(I + D−
1
2 AD−

1
2 )Z(k)W(k)

)
.

I First-order approximation of localized
spectral filters on graphs.



Graph Attention Networks

Motivations
I In many MP-GNN layers weights of the

convolutions are fixed.

I What if we also learn them ?

I Learn the importance of the neighbours
contributions.

GAT networks (Velivcković et al. 2017)

z(k+1)
u = Relu(W(k)

∑

v∈N (u)∪{u}

αuvz(k)v )

I Here αuv are learnable weights.

I euv = NN(Θ1zu,Θ2zu) with learnable matrices Θ1,Θ2 and

αuv = softmaxv (euv ) =
exp(euv )∑
v ′∈N (u) euv ′

I It is based on attention mechanisms (Vaswani et al. 2023).
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Graph Isomorphism Networks (GIN)

The problem of injectivity
Xu et al. 2019 provide a detailed discussion of the relative power of GNN.

I One interesting property is injectivity of COMBINE,AGGREGATE.

I They propose

z(k+1)
u = MLP(k)


(1 + θ(k))z(k)u +

∑

v∈N (u)

z(k)v




I MLP : Rdk → Rdk+1 is a fully connected neural-network.



Spectral GNN

Learning filters
Originally introduced by Bruna et al. 2013. The idea is

Z(k+1) = Relu(P[L](A)Z(k)W(k))

I L(A) = diag(A1)− A is the Laplacian (or normalized version).

I P[L] =
∑M

m=0 cmLm is a learnable polynomial of the Laplacian.

I As L(A) = UΛU>,P[L](A) = UP[Λ]U>.

I Connections with the Fourier transform on graphs: P[L] acts as a filter.

Limitations
I Niave complexity in O(|V |3) (eigen-decomposition).

I Any perturbation to a graph results in a change of eigenbasis U.

I Learned filters are domain dependent.

I Alternative ChebNet Defferrard, Bresson, and Vandergheynst 2017
relies on Chebyshev polynomials with O(|E |M) complexity.
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Graph pooling

Pooling layers in neural networks
At the core of many NN architectures.

I Most standard type is max-pooling.

I ↓ the number of parameters to learn.

I Improves robustness.

The most standard type of pooling is the max-pooling, which computes max
values over non-overlapping blocks.

For instance in 1d with a kernel of size 2:
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The average pooling computes average values per block instead of max values.

François Fleuret Deep learning / 4.5. Pooling 2 / 7

Pooling in GNN
Equivalent to down-sampling = reducing the number of nodes.
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Diffpool

Learning at the graph level

I The neural message passing approach produces a set of node
embeddings F (X,A) = Z ∈ Rn×k .

I What about predictions at the graph level ? E.g. in graph classification.

I We want one embedding for the entire graph zG .

I It should be a permutation invariant function f (X,A).

I E.g. global average pooling zG = f (X,A) = 1
|V |
∑

u∈V zu ∈ Rk .

Better idea: hierarchical pooling (Z. Ying et al. 2018)

Original
network

Pooled network
at level 1

Pooled network
at level 2

Graph 
classification

Pooled network
at level 3

Figure 1: High-level illustration of our proposed method DIFFPOOL. At each hierarchical layer, we
run a GNN model to obtain embeddings of nodes. We then use these learned embeddings to cluster
nodes together and run another GNN layer on this coarsened graph. This whole process is repeated
for L layers and we use the final output representation to classify the graph.

atoms and their direct bonds) as well as the coarse-grained structure of the molecular graph (e.g.,
groups of atoms and bonds representing functional units in a molecule). This lack of hierarchical
structure is especially problematic for the task of graph classification, where the goal is to predict
the label associated with an entire graph. When applying GNNs to graph classification, the standard
approach is to generate embeddings for all the nodes in the graph and then to globally pool all these
node embeddings together, e.g., using a simple summation or neural network that operates over sets
[7, 11, 15, 26]. This global pooling approach ignores any hierarchical structure that might be present
in the graph, and it prevents researchers from building effective GNN models for predictive tasks
over entire graphs.

Here we propose DIFFPOOL, a differentiable graph pooling module that can be adapted to various
graph neural network architectures in an hierarchical and end-to-end fashion (Figure 1). DIFFPOOL
allows for developing deeper GNN models that can learn to operate on hierarchical representations
of a graph. We develop a graph analogue of the spatial pooling operation in CNNs [24], which
allows for deep CNN architectures to iteratively operate on coarser and coarser representations of
an image. The challenge in the GNN setting—compared to standard CNNs—is that graphs contain
no natural notion of spatial locality, i.e., one cannot simply pool together all nodes in a “m ⇥ m
patch” on a graph, because the complex topological structure of graphs precludes any straightforward,
deterministic definition of a “patch”. Moreover, unlike image data, graph data sets often contain
graphs with varying numbers of nodes and edges, which makes defining a general graph pooling
operator even more challenging.

In order to solve the above challenges, we require a model that learns how to cluster together nodes
to build a hierarchical multi-layer scaffold on top of the underlying graph. Our approach DIFFPOOL
learns a differentiable soft assignment at each layer of a deep GNN, mapping nodes to a set of clusters
based on their learned embeddings. In this framework, we generate deep GNNs by “stacking” GNN
layers in a hierarchical fashion (Figure 1): the input nodes at the layer l GNN module correspond
to the clusters learned at the layer l � 1 GNN module. Thus, each layer of DIFFPOOL coarsens
the input graph more and more, and DIFFPOOL is able to generate a hierarchical representation
of any input graph after training. We show that DIFFPOOL can be combined with various GNN
approaches, resulting in an average 7% gain in accuracy and a new state of the art on four out of
five benchmark graph classification tasks. Finally, we show that DIFFPOOL can learn interpretable
hierarchical clusters that correspond to well-defined communities in the input graphs.

2 Related Work

Our work builds upon a rich line of recent research on graph neural networks and graph classification.

General graph neural networks. A wide variety of graph neural network (GNN) models have
been proposed in recent years, including methods inspired by convolutional neural networks [5,
8, 11, 16, 22, 25, 30, 37], recurrent neural networks [26], recursive neural networks [1, 31] and
loopy belief propagation [7]. Most of these approaches fit within the framework of “neural message
passing” proposed by Gilmer et al. [15]. In the message passing framework, a GNN is viewed as a

2
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Applications

Node classification
I One graph G where each node has a class.

Train GNNs in a fully-supervised manner by minimizing

L =
∑

u∈Vtrain

− log(softmax(zu, yu))

Graph classification

I Many graphs G1, · · · ,Gn associated with classes (yGi )i .

Train GNNs in a fully-supervised manner by minimizing

L =
∑

G∈Ttrain

`(MLP(zG ), yG )
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Connection with the WL test

WL algorithm and MP-GNN

I WL algorithm and the message passing GNN approach are very similar.

I Iteratively aggregate information from local node neighborhoods.

Message passing neural networks are not that powerful ?

I Consider a MP-GNN with K layers

z(k+1)
u = COMBINE(k)

(
z(k)u ,AGGREGATE(k)

(
{{z(k)v : v ∈ N (u)}}

))

I Suppose that discrete node labels Z(0) = X ∈ Zn×d .

I Then Xu et al. 2019 show that

z(K)
u 6= z(K)

v ⇐⇒ labels of u and v are 6= after K iter. of the WL algorithm.

I If the WL test cannot distinguish between G1,G2, then MP-GNN also
incapable of doing it.

I Ability of solving isomorphism = good measure of “expressivity” ?
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Other limitations

I The oversmoothing problem: if too many layers of MP-GNN, the
node features tend to converge to a non-informative limit.

Figure 1: Illustration of both beneficial smoothing and oversmoothing on Cora [32] (top) and Citeseer [14]
(bottom). From left to right: node features after performing respectively k = 0, 10, and 500 steps of mean
aggregation, along the first two principal-components (of the original unsmoothed features), for three classes of
nodes for better visibility. Figure on the right: Mean Square Error of Linear Ridge Regression (LRR) on the
smoothed features with respect to the order of smoothing k. We observe that smoothing first gather same-labels
nodes and improves learning, before they eventually collapses to a single point (note that here we show LRR for
consistency with the analysis presented in this paper, even though these are node classification tasks).

where the aij 2 R+ are the entries of the adjacency matrix of the graph: either positive edge
weights or 0, 1 for unweighted edges, and  is some function (usually a Multi-Layer Perceptron). In
other words, the aggregation process is a weighted average over the neighbors. As we will see, it
corresponds to a multiplication by (identity minus) the random walk Laplacian of the graph.

While MP is a natural and rather general framework, its limitations were quickly observed by
researchers and practitioners. Foremost among them is the so-called oversmoothing phenomenon [27]:
as the GNN gets deeper and many rounds of MP are performed, the node features z

(k)
i tend to become

too similar across the graph, especially for small-world graphs with small diameter. Oversmoothing
prevents GNN from being too deep unless one is particularly careful. A non-negligible part of the
literature is dedicated to fighting oversmoothing with various strategies (see below).

On the theoretical side, oversmoothing has mostly been analyzed in the infinite-layer limit k ! 1.
In this case, classical spectral analysis of graph operators such as the Laplacian can be leveraged to
indeed show that node features will always converge to some limit that carries a limited amount of
information [34]. This is particularly true for mean aggregation (2), with a constant limit across all
nodes for a connected graph, see Sec. 3. Unlike some other graph operators such as the symmetric
normalized Laplacian, where the limit still carries a small amount of information such as the degrees,
with the random walk Laplacian all information is lost in the limit (beyond a single constant).

However, there has been little research at the other end of the spectrum, showing that some smooth-
ing is useful for learning, despite this fact being intuitively and empirically obvious. Generally,
researchers show the power of GNNs for a sufficient (unbounded) number of layers, such as the
now-famous ability to distinguish graph isomorphism as well as the Weisfeiler-Lehman test and all
its variants [47, 30], the ability to compute some graph functions [28], and so on. Since these results
are valid for an unbounded number of layers, the settings adopted in these works are, by definition,
incompatible with non-informative oversmoothing. To our knowledge, there is no work that formally
models both phenomena at once: some smoothing is provably useful for learning, while too much
smoothing inevitably leads to oversmoothing.

This work aims to fill this gap. We showcase two representative exemples, of regression and
classification, on which linear GNNs (aka, here, simply Linear Ridge Regression (LRR) on smoothed
features) are subject to this double phenomenon. Note that restricting ourselves to mean aggregation
makes this claim quite non-trivial: in the absence of any “informative” node features, no information
can be recovered by mean aggregation alone. For instance, it leaves constant node features unchanged,
and the limit k ! 1 is always a constant. So the challenge is the following: node features must
carry some information, such that a finite number of steps of mean aggregation provably increases
the amount of useful information, before it loses it in the limit. See Fig. 1 for an illustration.

To show this we adopt on a model of latent space random graphs, with node features. The latter
contain partial information about the unobserved latent variables on which both the labels and the
graph structure depend. On our examples, we prove that with high probability, graph smoothing
improves performance before oversmoothing occurs. We identify two key phenomena for this:

2

Figure: From Keriven 2022

I Heterophily vs homophilie: neighbours should have similar
embeddings ? (Luan et al. 2022).
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Conclusion

I Flexible: graph/node/edge classification, semi-supervised learning, link
prediction...

I Generally state-of-the-art, but...

I ... sometimes do not work “that well” (compared to other DL)

I Simple methods may perform better but might be “forgotten” in
benchmarks

I Room for improvement (many interesting challenges), but conventional
DL wisdom might not hold

I Arguably, no real “ImageNet moment” yet for GNNs -¿ several recent
initiatives for bigger datasets and more complex tasks (eg Open Graph
Benchmark)



References I

Belkin, Mikhail and Partha Niyogi (2003). “Laplacian eigenmaps for
dimensionality reduction and data representation”. In: Neural
computation 15.6, pp. 1373–1396.

Bruna, Joan et al. (2013). “Spectral networks and locally connected
networks on graphs”. In: arXiv preprint arXiv:1312.6203.

Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst (2017).
Convolutional Neural Networks on Graphs with Fast Localized Spectral
Filtering. arXiv: 1606.09375 [cs.LG].

Goldberg, Yoav and Omer Levy (2014). “word2vec Explained: deriving
Mikolov et al.’s negative-sampling word-embedding method”. In: arXiv
preprint arXiv:1402.3722.
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