Machine learning for graphs and with graphs Graph neural networks

Titouan Vayer & Pierre Borgnat email: titouan.vayer@inria.fr, pierre.borgnat@ens-lyon.fr

November 6, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Table of contents

From neural networks...

The basic ideas Logistic regression and one layer neural-network Convolutional neural networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

... to unsupervised node embeddings techniques...

A chronological start

... to graph neural networks

Learning with graphs What is a GNN ? A bit of group theory Invariance and equivariance Message-passing neural networks Examples of GNN The whole pipeline Expressivity of GNN Conclusion

Table of contents

From neural networks...

The basic ideas

Logistic regression and one layer neural-network Convolutional neural networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

... to unsupervised node embeddings techniques... A chronological start

... to graph neural networks

Learning with graphs What is a GNN ? A bit of group theory Invariance and equivariance Message-passing neural networks Examples of GNN The whole pipeline Expressivity of GNN Conclusion

Neural network is a certain family of functions **parametrized by weights**. Built upon a biological analogy Rosenblatt 1958

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Neural network is a certain family of functions **parametrized by weights**. Built upon a biological analogy Rosenblatt 1958

First example $f(\mathbf{x} = (x_1, x_2)) = \operatorname{activation}(\theta_1 x_1 + \theta_2 x_2 + \theta_3)$:

Neural network is a certain family of functions **parametrized by weights**. Built upon a biological analogy Rosenblatt 1958

Second example $f(\mathbf{x} = (x_1, x_2)) = \operatorname{activation}(\theta_1 x_1 + \theta_2 x_2 + \theta_3)$:

Feed-forward neural networks

Linear neural network:

Feed-forward neural networks

Linear neural network:

Non-linearity:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Feed-forward neural networks

Linear neural network:

Non-linearity:

ъ.

Find a neural network that implements the function f(x) = |x|.

Feed-forward neural networks

Find a neural network that implements the function f(x) = |x|

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

hidden neurons (no bias)

Feed-forward neural networks

Feed-forward neural networks

Feed-forward NN are function of the form

$$f(\mathbf{x}) = T_K \circ \sigma_{K-1} \circ \cdots \circ \sigma_1 \circ T_1(\mathbf{x})$$

where $T_k(\mathbf{z}) = \mathbf{W}^{(k)}\mathbf{z} + \mathbf{b}^{(k)}$

and σ_k pointwise activation function.

- ► All the weights: $\theta = (\mathbf{W}^{(1)}, \cdots, \mathbf{W}^{(K)}, \mathbf{b}^{(1)}, \cdots \mathbf{b}^{(K)}).$
- Depending on the task the output of a NN is also transformed g(x) = norm(f(x)).
- ▶ E.g. $f : \mathbb{R}^d \to \mathbb{R}$ and $g : \mathbb{R}^d \to (0, 1)$ for binary classification with norm $(u) = 1/(1 + \exp(-u))$ (logistic/sigmoid function).

A zoo of architectures

deep-learning also: generative, recurrent, transformers, attention layer transformers... Richness of neural network

Neural network in practice

The (very) big picture

Find the weights that minimizes the empirical minimization loss.

- In practice gradient descent very slow.
- We use stochastic gradient descents (and variations) on batches of the data.

(almost) All optimization in one slide

Principle

- Minimize a smooth function $J(\theta)$ using its gradient (or \approx).
- Initialize a vector $\theta^{(0)}$ and update it at each iteration k as:

$$\boldsymbol{\theta}^{(k+1)} = \boldsymbol{\theta}^{(k)} + \mu_k \mathbf{d}_k$$

where μ_k is a step and \mathbf{d}_k is a descent direction $\mathbf{d}_k^\top \nabla J(\boldsymbol{\theta}^{(k)}) < 0$.

- Classical descent directions are :
 - **Steepest descent**: $\mathbf{d}_k = -\nabla J(\boldsymbol{\theta}^{(k)})$ (a.k.a. Gradient descent).
 - (Quasi) Newton: $\mathbf{d}_k = -(\nabla^2 J(\boldsymbol{\theta}^{(k)}))^{-1} \nabla J(\boldsymbol{\theta}^{(k)}), \nabla^2 J$ is the Hessian.
 - Stochastic Gradient Descent : $\mathbf{d}_k = -\tilde{\nabla} J(\boldsymbol{\theta}^{(k)})$ with approx. gradient.

► For NN: gradient computed with automatic differentiation (TD).

(almost) All optimization in two slides...

Why is this a good idea ? (on the board)

Let $J : \mathbb{R}^D \to \mathbb{R}$ with *L*-Lipschitz gradient¹ and $J^* := \min_{\theta} J(\theta) > -\infty$. Then, provided that $0 < \mu_k < \frac{2}{L}$, the iterations $\theta^{(k+1)} = \theta^{(k)} - \mu_k \nabla J(\theta^{(k)})$ satisfy

$$\begin{split} &J(\boldsymbol{\theta}^{(k+1)}) < J(\boldsymbol{\theta}^{(k)}) \text{ (decrease the objective function)} \\ &\lim_{k \to +\infty} \nabla J(\boldsymbol{\theta}^{(k)}) = \boldsymbol{0} \text{ (critical point)} \end{split}$$

 $^{1}\text{it means that }\forall \theta_{1},\theta_{2}\in \mathbb{R}^{d},\ \|\nabla J(\theta_{1})-\nabla J(\theta_{2})\|_{2}\leq L\|\theta_{1}-\theta_{2}\|_{2}, \text{ for all } t \in \mathbb{R}^{d},\ \|\nabla J(\theta_{1})-\nabla J(\theta_{2})\|_{2}\leq L\|\theta_{1}-\theta_{2}\|_{2}, \text{ for all } t \in \mathbb{R}^{d},\ \|\nabla J(\theta_{1})-\nabla J(\theta_{2})\|_{2}\leq L\|\theta_{1}-\theta_{2}\|_{2}, \text{ for all } t \in \mathbb{R}^{d},\ \|\nabla J(\theta_{1})-\nabla J(\theta_{2})\|_{2}\leq L\|\theta_{1}-\theta_{2}\|_{2}, \text{ for all } t \in \mathbb{R}^{d},\ \|\nabla J(\theta_{1})-\nabla J(\theta_{2})\|_{2}\leq L\|\theta_{1}-\theta_{2}\|_{2}, \text{ for all } t \in \mathbb{R}^{d},\ \|\nabla J(\theta_{1})-\nabla J(\theta_{2})\|_{2}\leq L\|\theta_{1}-\theta_{2}\|_{2}, \text{ for all } t \in \mathbb{R}^{d},\ \|\nabla J(\theta_{1})-\nabla J(\theta_{2})\|_{2}\leq L\|\theta_{1}-\theta_{2}\|_{2}$

(almost) All optimization in three slides...

Be aware of local minima

- When the functions are not convex, GD and its variants can fall into bad local minima.
- Neural networks are not convex w.r.t. the optimized parameters !

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Table of contents

From neural networks...

The basic ideas Logistic regression and one layer neural-network Convolutional neural networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

... to unsupervised node embeddings techniques... A chronological start

... to graph neural networks

Learning with graphs What is a GNN ? A bit of group theory Invariance and equivariance Message-passing neural networks Examples of GNN The whole pipeline Expressivity of GNN Conclusion

- ▶ It is a classification method: input $(\mathbf{x}_i)_i \in \mathbb{R}^d$ and $(y_i)_i \in \{+1, -1\}$.
- **Probabilistic model**: find a model h_{θ} s.t. $\mathbb{P}(y = +1|\mathbf{x}) \approx h_{\theta}(\mathbf{x})$.
- ► Bayes decision: $f(\mathbf{x}) = sign(\mathbb{P}(y = +1|\mathbf{x}) \mathbb{P}(y = -1|\mathbf{x})) \in \{-1, +1\}.$

- ▶ It is a classification method: input $(\mathbf{x}_i)_i \in \mathbb{R}^d$ and $(y_i)_i \in \{+1, -1\}$.
- **Probabilistic model**: find a model h_{θ} s.t. $\mathbb{P}(y = +1|\mathbf{x}) \approx h_{\theta}(\mathbf{x})$.
- ► Bayes decision: $f(\mathbf{x}) = sign(\mathbb{P}(y = +1|\mathbf{x}) \mathbb{P}(y = -1|\mathbf{x})) \in \{-1, +1\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The sigmoid function $\sigma(z) = 1/(1 + \exp(-z))$.

 Usually used to model probabilities.

▶ It is a classification method: input $(\mathbf{x}_i)_i \in \mathbb{R}^d$ and $(y_i)_i \in \{+1, -1\}$.

- **Probabilistic model**: find a model h_{θ} s.t. $\mathbb{P}(y = +1|\mathbf{x}) \approx h_{\theta}(\mathbf{x})$.
- ► Bayes decision: $f(\mathbf{x}) = sign(\mathbb{P}(y = +1|\mathbf{x}) \mathbb{P}(y = -1|\mathbf{x})) \in \{-1, +1\}.$

The sigmoid function $\sigma(z) = 1/(1 + \exp(-z)).$

 Usually used to model probabilities.

The logistic regression model

The model is $\mathbb{P}(y = +1 | \mathbf{x}) = \sigma(\boldsymbol{\theta}^{\top} \mathbf{x} + b).$

- ▶ $\theta \in \mathbb{R}^d$ are weights, $b \in \mathbb{R}$ is a bias that are to be optimized.
- It is a generalized linear model.
- Is is also a one layer neural-network (no hidden layer).

One property

 $\mathbb{P}(y = -1|\mathbf{x}) = 1 - \mathbb{P}(y = 1|\mathbf{x}) = 1 - \sigma(\boldsymbol{\theta}^{\top}\mathbf{x} + b) = \sigma(-(\boldsymbol{\theta}^{\top}\mathbf{x} + b))$

One property $\mathbb{P}(y = -1|\mathbf{x}) = 1 - \mathbb{P}(y = 1|\mathbf{x}) = 1 - \sigma(\boldsymbol{\theta}^{\top}\mathbf{x} + b) = \sigma(-(\boldsymbol{\theta}^{\top}\mathbf{x} + b))$

Maximum likelihood estimation Find $\theta \in \mathbb{R}^d, b \in \mathbb{R}$ that maximize the (conditional) log-likelihood (board)

$$\sum_{i:y_i=1} \log \mathbb{P}(y_i = 1 | \mathbf{x}_i) + \sum_{i:y_i=-1} \log \mathbb{P}(y_i = -1 | \mathbf{x}_i)$$
$$= \sum_{i:y_i=1} \log \sigma(\theta^\top \mathbf{x}_i + b) + \sum_{i:y_i=-1} \log \sigma(-(\theta^\top \mathbf{x} + b))$$
$$= \sum_{i=1}^n \log \sigma(y_i(\theta^\top \mathbf{x}_i + b)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

One property $\mathbb{P}(y = -1|\mathbf{x}) = 1 - \mathbb{P}(y = 1|\mathbf{x}) = 1 - \sigma(\boldsymbol{\theta}^{\top}\mathbf{x} + b) = \sigma(-(\boldsymbol{\theta}^{\top}\mathbf{x} + b))$

Maximum likelihood estimation Find $\theta \in \mathbb{R}^d$, $b \in \mathbb{R}$ that maximize the (conditional) log-likelihood (board)

$$\sum_{i:y_i=1} \log \mathbb{P}(y_i = 1 | \mathbf{x}_i) + \sum_{i:y_i=-1} \log \mathbb{P}(y_i = -1 | \mathbf{x}_i)$$
$$= \sum_{i:y_i=1} \log \sigma(\theta^\top \mathbf{x}_i + b) + \sum_{i:y_i=-1} \log \sigma(-(\theta^\top \mathbf{x} + b))$$
$$= \sum_{i=1}^n \log \sigma(y_i(\theta^\top \mathbf{x}_i + b)).$$

Minimizing the logistic loss

$$\min_{\boldsymbol{\theta}, b} \sum_{i=1}^{n} \log \left[1 + \exp \left(-y_i(\boldsymbol{\theta}^{\top} \mathbf{x}_i + b) \right) \right] \,.$$

► Convex problem, can be solved with (Quasi) Newton's method.

Remember your losses

With $f : \mathbb{R}^d \to \mathbb{R}$, many losses can be written as $\ell(y_i, f(\mathbf{x}_i)) = \Phi(y_i f(\mathbf{x}_i))$ with $\Phi \downarrow$.

$$\blacktriangleright \ \ell(y_i, f(\mathbf{x}_i)) = \mathbf{1}_{y_i f(\mathbf{x}_i) \leq 0}.$$

$$\ell(y_i, f(\mathbf{x}_i)) = \max\{0, 1 - y_i f(\mathbf{x}_i)\}.$$

$$\blacktriangleright \ \ell(y_i, f(\mathbf{x}_i)) = \log(1 + e^{-y_i f(\mathbf{x}_i)}).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Remember your losses

With $f : \mathbb{R}^d \to \mathbb{R}$, many losses can be written as $\ell(y_i, f(\mathbf{x}_i)) = \Phi(y_i f(\mathbf{x}_i))$ with $\Phi \downarrow$.

$$\ell(y_i, f(\mathbf{x}_i)) = \mathbf{1}_{y_i f(\mathbf{x}_i) \leq 0}.$$

$$\ell(y_i, f(\mathbf{x}_i)) = \max\{0, 1 - y_i f(\mathbf{x}_i)\}.$$

 $\blacktriangleright \ \ell(y_i, f(\mathbf{x}_i)) = \log(1 + e^{-y_i f(\mathbf{x}_i)}).$

And so ?

- Logistic regression = fitting $f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} + b$ with the logistic loss.
- The decision/prediction of the label is $sign(f(\mathbf{x}))$.
- So it is a linear decision boundary (linear classification).

Remember your losses

With $f : \mathbb{R}^d \to \mathbb{R}$, many losses can be written as $\ell(y_i, f(\mathbf{x}_i)) = \Phi(y_i f(\mathbf{x}_i))$ with $\Phi \downarrow$.

$$\ell(y_i, f(\mathbf{x}_i)) = \mathbf{1}_{y_i f(\mathbf{x}_i) \leq 0}.$$

$$\ell(y_i, f(\mathbf{x}_i)) = \max\{0, 1 - y_i f(\mathbf{x}_i)\}.$$

 $\blacktriangleright \ \ell(y_i, f(\mathbf{x}_i)) = \log(1 + e^{-y_i f(\mathbf{x}_i)}).$

And so ?

- Logistic regression = fitting $f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} + b$ with the logistic loss.
- The decision/prediction of the label is $sign(f(\mathbf{x}))$.
- So it is a linear decision boundary (linear classification).

Table of contents

From neural networks...

The basic ideas Logistic regression and one layer neural-network Convolutional neural networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

... to unsupervised node embeddings techniques... A chronological start

... to graph neural networks

Learning with graphs What is a GNN ? A bit of group theory Invariance and equivariance Message-passing neural networks Examples of GNN The whole pipeline Expressivity of GNN Conclusion

- The core block for deep learning on images.
- Induces an implicit bias on the architecture.
- What could happen with a fully-connected architecture?

- The core block for deep learning on images.
- Induces an implicit bias on the architecture.

What could happen with a fully-connected architecture?

We want a function that doesn't change if we only translate the image. We want a translation invariant function.

Convolution: particular structure on the weights that induce translation equivariance.

Convolution/correlation of functions

Let $f, h \in L_2(\mathbb{R})$. The convolution $f * h \in L_2(\mathbb{R})$ is defined as

$$f * h(x) = \int_{-\infty}^{+\infty} f(t)h(x-t)dt$$
 and $f \star h(x) = \int_{-\infty}^{+\infty} f(t)h(t+x)dt$

▶ **Translate a filter** *h* and then take the inner product with² *f*:

$$f \star h(x) = \langle \tau_{-x}h, f \rangle_{L_2(\mathbb{R})}.$$

It weights the local contributions of f by a filter.

$$^{2}\tau_{x}f = t \rightarrow f(t-x)$$

Convolution/correlation of functions

Let $f, h \in L_2(\mathbb{R})$. The convolution $f * h \in L_2(\mathbb{R})$ is defined as

$$f * h(x) = \int_{-\infty}^{+\infty} f(t)h(x-t) \mathrm{d}t$$
 and $f * h(x) = \int_{-\infty}^{+\infty} f(t)h(t+x) \mathrm{d}t$

▶ **Translate a filter** *h* and then take the inner product with² *f*:

$$f \star h(x) = \langle \tau_{-x}h, f \rangle_{L_2(\mathbb{R})}.$$

- It weights the local contributions of f by a filter.
- It is translation equivariant.

$$(\tau_x f) * h = \tau_x (f * h)$$

If we translate the input, the output will be equally translated.

$$^{2}\tau_{x}f = t \rightarrow f(t-x)$$

In practice convolutions are applied on discrete signals.

Discrete convolutions in 1D

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Question: size of the output ?

In practice convolutions are applied on discrete signals.

Discrete convolutions in 1D

Padding strategies can be used to have output of the same size.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Also stride can be used to move the filter from more than one pixel.

Discrete convolutions **not** in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

Discrete convolutions **not** in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

Discrete convolutions **not** in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

Figure: From Franccois Fleuret https://fleuret.org/dlc/

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Discrete convolutions **not** in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

Figure: From Franccois Fleuret https://fleuret.org/dlc/

Discrete convolutions **not** in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

Figure: From Franccois Fleuret https://fleuret.org/dlc/

Figure: LeNet from LeCun et al. 1998

Principle and intuition (Zeiler and Fergus 2014)

- Define multiple convolutions, learn the corresponding filter weights.
- Recognize local patterns in images.
- Find intermediate features that are "general" and "adaptive" due to the translation equivariance bias https://fabianfuchsml.github.io/equivariance1of2/.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Revealing local features that are shared across the data domain.

- Deep learning: in almost everything when there are images.
- Very versatile: learn complex functions.
- Prior also helps ! (translation equivariance).
- Side note: still struggles on tabular data (Grinsztajn, Oyallon, and Varoquaux 2022).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Deep learning: in almost everything when there are images.
- Very versatile: learn complex functions.
- Prior also helps ! (translation equivariance).
- Side note: still struggles on tabular data (Grinsztajn, Oyallon, and Varoquaux 2022).

Graph neural networks ?

- How do we extend neural networks to graphs?
- Careful to node ordering: must be invariant to relabelling of the nodes (graph isomorphism).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Table of contents

From neural networks...

The basic ideas Logistic regression and one layer neural-network Convolutional neural networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

... to unsupervised node embeddings techniques... A chronological start

... to graph neural networks

Learning with graphs What is a GNN ? A bit of group theory Invariance and equivariance Message-passing neural networks Examples of GNN The whole pipeline Expressivity of GNN Conclusion

Objective

A chronological start

- ► Idea: to learn on a graph: nodes → vector → standard ML pipeline.
- The embedding must take into account the structure of the graph.
- Also useful for visualization.

One naive approach

- Consider each row of the adjacency matrix as an embedding vector.
- If labelled graph: concatenate with the nodes' features.

Objective

A chronological start

- ► Idea: to learn on a graph: nodes → vector → standard ML pipeline.
- The embedding must take into account the structure of the graph.
- Also useful for visualization.

One naive approach

- Consider each row of the adjacency matrix as an embedding vector.
- If labelled graph: concatenate with the nodes' features.

 $\begin{array}{c} & & & & \\ & & &$

- Sensitive to the node ordering ! Also, expensive O(|V|) !
- Not applicable to graph with different sizes !

Notations

- We suppose we have one graph G = (V, E), without features (so far).
- For each $u \in V$ we look for an embedding $\mathbf{z}_u \in \mathbb{R}^k$.

Principle

We look for a "good" encoder $E: V \to \mathbb{R}^k$ such that $E(u) = \mathbf{z}_u$.

ldeally the embedding \mathbf{z}_u contains the neighbourhood informations of u.

An encoder-decoder perspective

Principle

We look for a "good" encoder $E: V \to \mathbb{R}^k$ such that $E(u) = \mathbf{z}_u$.

ldeally the embedding \mathbf{z}_u contains the neighbourhood informations of u.

Encoding/decoding scheme

A lot of methods attempt to minimize

$$\mathcal{L} = \sum_{(u,v)\in\mathcal{D}} \ \ell(\mathsf{similarity}(\mathsf{z}_u,\mathsf{z}_v),S[u,v])$$

- similarity(z_u, z_v) how close are the embeddings.
- S[u, v] how close are the nodes in the graph.
- $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a loss: how similar are the similarities.

Inspiration from Laplacian eigenmaps Belkin and Niyogi 2003

- ► In the embedding space similarity $(\mathbf{z}_u, \mathbf{z}_u) = \frac{1}{2} \|\mathbf{z}_u \mathbf{z}_v\|_2^2$.
- ▶ When similary is S[u_i, v_j] = A_{ij}/√degree(u_i)√degree(u_j), loss to minimize:

$$\frac{1}{2} \sum_{ij} \|\mathbf{z}_i - \mathbf{z}_j\|_2^2 \frac{A_{ij}}{\sqrt{\text{degree}(u_i)}\sqrt{\text{degree}(u_j)}} = \text{tr}(\mathbf{Z}^\top \widetilde{\mathbf{L}} \mathbf{Z}).$$

• Normalized Laplacian $\tilde{\mathbf{L}} = \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2}$.

Interpretation + permutation equivariance of the cost (on the board).

Inspiration from Laplacian eigenmaps Belkin and Niyogi 2003

- ► In the embedding space similarity $(\mathbf{z}_u, \mathbf{z}_u) = \frac{1}{2} \|\mathbf{z}_u \mathbf{z}_v\|_2^2$.
- ▶ When similary is S[u_i, v_j] = A_{ij}/√degree(u_i)√degree(u_j), loss to minimize:

$$\frac{1}{2} \sum_{ij} \|\mathbf{z}_i - \mathbf{z}_j\|_2^2 \frac{A_{ij}}{\sqrt{\text{degree}(u_i)}\sqrt{\text{degree}(u_j)}} = \text{tr}(\mathbf{Z}^\top \widetilde{\mathbf{L}} \mathbf{Z}).$$

• Normalized Laplacian $\tilde{\mathbf{L}} = \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2}$.

- Interpretation + permutation equivariance of the cost (on the board).
- With the constraint $\mathbf{Z}^{\top}\mathbf{Z} = \mathbf{I}_d$ it recovers Laplacian eigenmaps.
- Sol. is the *d* eigenvectors associated to the *d* smallest eigenvalues of **L**.

Skip-Gram and the Word2vec model (Mikolov et al. 2013) The meaning of a word is its use in language (Wittgenstein).

- Objective: "similar" words are embedded into "similar" vectors.
- Goal: predict context words from each input word.
- ▶ We want to maximize P(context|input word).

One hot encoding

Skip-Gram and the Word2vec model (Mikolov et al. 2013)

The meaning of a word is its use in language (Wittgenstein).

- Objective: "similar" words are embedded into "similar" vectors.
- Goal: predict context words from each input word.
- We want to maximize $\mathbb{P}(\text{context}|\text{input word})$.

Skip-Gram and the Word2vec model (Mikolov et al. 2013) The meaning of a word is its use in language (Wittgenstein).

- Objective: "similar" words are embedded into "similar" vectors.
- ► Goal: predict context words from each input word.
- We want to maximize $\mathbb{P}(\text{context}|\text{input word})$.

▶ Dataset *D* of input/output words (surrounding). Loss to minimize is:

$$-\sum_{(u,o)\in\mathcal{D}}\log\mathbb{P}(o|u)$$
 .

• But computing it in $\mathcal{O}(|V| \times |\{\text{words to embed}\}|)$: negative sampling.

The node2vec model (Grover and Leskovec 2016)

- Similar as before: each node $u \in V$ is embedded as $\mathbf{z}_u \in \mathbb{R}^k$.
- ► Goal of the embedding: reflect the neighboring nodes of *u*.
- Sampling strategies based on random walks (BFS/DFS).

▶ With a dataset *D* of input/output nodes. Loss to minimize:

$$\mathcal{L} = -\sum_{(u,o)\in\mathcal{D}}\log\frac{\exp(\mathbf{z}_{u}^{\top}\mathbf{z}_{o})}{\sum_{w\in V}\exp(\mathbf{z}_{u}^{\top}\mathbf{z}_{w})}$$

The node2vec model (Grover and Leskovec 2016)

- Similar as before: each node $u \in V$ is embedded as $\mathbf{z}_u \in \mathbb{R}^k$.
- Goal of the embedding: reflect the neighboring nodes of u.
- Sampling strategies based on random walks (BFS/DFS).

Negative sampling (NS)

- Loss is too expensive to compute $\mathcal{O}(|V|^2)$.
- NS: introduce negative data samples.
- Goal: distinguish between neighboring points of a target node u and random nodes draws from a noise distribution using logistic regression.
- New loss (explanations on the board) (Goldberg and Levy 2014):

$$\mathcal{L} = -\left(\sum_{(u_+, o_+) \in \mathcal{D}_+} \log \sigma(\mathbf{z}_u^\top \mathbf{z}_o) + \sum_{(u_-, o_-) \in \mathcal{D}_-} \log \sigma(-\mathbf{z}_u^\top \mathbf{z}_o)\right)$$
with sigmoid function $\sigma(x) = \frac{1}{1 + \exp(-x)}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

The node2vec model (Grover and Leskovec 2016)

- Similar as before: each node $u \in V$ is embedded as $\mathbf{z}_u \in \mathbb{R}^k$.
- ► Goal of the embedding: reflect the neighboring nodes of *u*.
- Sampling strategies based on random walks (BFS/DFS).

Negative sampling (NS)

Goal: distinguish between neighboring points of a target node u and random draws from a noise distribution using logistic regression.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Limitations of previous embeddings techniques

The previous embeddings are called shallow: encoder function
E: V → ℝ^k is simply an embedding lookup based on the node ID.

$$E(u) = \mathbf{Z}[:, u] = \mathbf{z}_u.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Limitations of previous embeddings techniques

The previous embeddings are called shallow: encoder function
E: V → ℝ^k is simply an embedding lookup based on the node ID.

$$E(u) = \mathbf{Z}[:, u] = \mathbf{z}_u.$$

- Lack of parameter sharing between nodes in the encoder.
- Do not leverage node features !
- Inherently transductive: these methods can only generate embeddings for nodes that were present during the training phase.

If new nodes must retrain everything.

Table of contents

From neural networks...

The basic ideas Logistic regression and one layer neural-network Convolutional neural networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

... to unsupervised node embeddings techniques... A chronological start

... to graph neural networks

Learning with graphs

What is a GNN ? A bit of group theory Invariance and equivariance Message-passing neural networks Examples of GNN The whole pipeline Expressivity of GNN Conclusion Supervised:

- ► Graph classification: labelled graphs → label new graph (molecule classification, drug efficiency prediction).
- Node (or edge) classification: labelled nodes → label other nodes (advertisement, protein interface prediction).

Unsupervised (semi-supervised):

- Community detection: one graph → group nodes (social network analysis).
- Link prediction: one graph \rightarrow potential new edge.
- Unsupervised node embeddings.

Tip of the iceberg

- Approx. 100 GNN papers a month on arXiv.
- Despite 1000s of papers, same ideas coming round: be critical, learn to spot incremental changes!
- We will only see the most well-known architectures (according to me).
- Be aware that it might already be out-of-date.
- Some surveys Wu et al. 2021; Zhang, Cui, and Zhu 2020; William L Hamilton 2020.
- See also https://github.com/houchengbin/awesome-GNN-papers.

- ロ ト - 4 回 ト - 4 □

Table of contents

From neural networks...

The basic ideas Logistic regression and one layer neural-network Convolutional neural networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

... to unsupervised node embeddings techniques... A chronological start

... to graph neural networks

Learning with graphs

What is a GNN ?

A bit of group theory Invariance and equivariance Message-passing neural networks Examples of GNN The whole pipeline Expressivity of GNN Conclusion

What is a graph neural network ?

Framework

- Graphs considered here:
- G = (V, E) with |V| = n, features on the nodes.
- Adjacency matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$.
- ▶ Feature matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$, feature $\mathbf{x}_i \in \mathbb{R}^d$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What is a graph neural network ?

Framework

- Graphs considered here:
- G = (V, E) with |V| = n, features on the nodes.
- Adjacency matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$.
- ▶ Feature matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$, feature $\mathbf{x}_i \in \mathbb{R}^d$.

GNN general definition

- A GNN is a **specific parametrized function** that takes a input a graph $G = (\mathbf{X}, \mathbf{A})$ and outputs "something" (depends on the application).
 - It is made of a combination of different layers.
 - Graph classification, node classification/regression, node embedding

Notations: vector output f(X, A), matrix output F(X, A)

What properties to ensure ?

The training pipeline

Overall the same procedure: find an embedding of the nodes F(X, A) ∈ ℝ^{n×k} (supervised or unsupervised) and then do stuff.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What properties to ensure ?

The training pipeline

Overall the same procedure: find an embedding of the nodes F(X, A) ∈ ℝ^{n×k} (supervised or unsupervised) and then do stuff.

Properties to ensure

- If graph classification then f(X, A) ∈ ±1: the function must be invariant to permutations of the graph.
- Prediction on the node level: we want to let the permutation of the graph produce a different result but while making this phenomena predictable.
- It will be formalized with the notion of invariance/equivariance.

Table of contents

From neural networks...

The basic ideas Logistic regression and one layer neural-network Convolutional neural networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

... to unsupervised node embeddings techniques... A chronological start

... to graph neural networks

Learning with graphs What is a GNN ?

A bit of group theory

Invariance and equivariance Message-passing neural networks Examples of GNN The whole pipeline Expressivity of GNN Conclusion

Figure: From Weiler et al. 2023

- Ignore prior knowledge about the function.
- Better: fit $\sum_{n \text{ even}}^{N} \theta_n x^n$ (invariant) or $\sum_{n \text{ odd}}^{N} \theta_n x^n$ (equivariant).
- Need half of the parameters + generalize well.

On the previous episodes

Figure: From Weiler et al. 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A little bit of group theory

A group \mathfrak{G} is a set along with a binary operation $\circ : \mathfrak{G} \times \mathfrak{G} \to \mathfrak{G}$ satisfying

- Associativity: $\forall \mathfrak{g}, \mathfrak{h}, \mathfrak{i} \in \mathfrak{G}, \ (\mathfrak{g} \circ \mathfrak{h}) \circ \mathfrak{i} = \mathfrak{g} \circ (\mathfrak{h} \circ \mathfrak{i}).$
- *Identity*: there exists $\mathfrak{e} \in \mathfrak{G}$ such that $\forall \mathfrak{g} \in \mathfrak{G}, \mathfrak{g} \circ \mathfrak{e} = \mathfrak{e} \circ \mathfrak{g} = \mathfrak{g}$.
- ► *Inverse*: For each $\mathfrak{g} \in \mathfrak{G}$ there exists $\mathfrak{g}^{-1} \in \mathfrak{G}$ such that $\mathfrak{g} \circ \mathfrak{g}^{-1} = \mathfrak{g}^{-1} \circ \mathfrak{g} = \mathfrak{e}$.
- Closure: $\forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}, \mathfrak{g} \circ \mathfrak{h} \in \mathfrak{G}$.

Commutativity is not part of this definition $(\mathfrak{g} \circ \mathfrak{h} \neq \mathfrak{h} \circ \mathfrak{g})$.

A little bit of group theory

A group \mathfrak{G} is a set along with a binary operation $\circ : \mathfrak{G} \times \mathfrak{G} \to \mathfrak{G}$ satisfying

- Associativity: $\forall \mathfrak{g}, \mathfrak{h}, \mathfrak{i} \in \mathfrak{G}, \ (\mathfrak{g} \circ \mathfrak{h}) \circ \mathfrak{i} = \mathfrak{g} \circ (\mathfrak{h} \circ \mathfrak{i}).$
- *Identity*: there exists $\mathfrak{e} \in \mathfrak{G}$ such that $\forall \mathfrak{g} \in \mathfrak{G}, \mathfrak{g} \circ \mathfrak{e} = \mathfrak{e} \circ \mathfrak{g} = \mathfrak{g}$.
- ► *Inverse*: For each $\mathfrak{g} \in \mathfrak{G}$ there exists $\mathfrak{g}^{-1} \in \mathfrak{G}$ such that $\mathfrak{g} \circ \mathfrak{g}^{-1} = \mathfrak{g}^{-1} \circ \mathfrak{g} = \mathfrak{e}$.
- Closure: $\forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}, \mathfrak{g} \circ \mathfrak{h} \in \mathfrak{G}$.

Commutativity is not part of this definition $(\mathfrak{g} \circ \mathfrak{h} \neq \mathfrak{h} \circ \mathfrak{g})$.

Some examples

• Translation group on \mathbb{Z}^2 is an Abelian group:

$$(m,n)\circ(p,q)=(n+p,m+q).$$

- Translation + rotations, mirror reflections.
- ▶ Permutation group $S_n = \{\sigma : [n] \to [n], \sigma \text{ is a bijection}\}$ with the composition of functions.

Group action

Given a set Ω and a group \mathfrak{G} , a (left) group action of \mathfrak{G} on Ω is a function

 $\mathfrak{G} imes \Omega o \Omega$ $(\mathfrak{g}, x) o \mathfrak{g} x$

satisfying

- $\blacktriangleright \quad \forall x \in \Omega, \mathfrak{e} x = x$
- Compatibility: $\forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}, \forall x \in \Omega, \mathfrak{g}(\mathfrak{h}x) = (\mathfrak{g} \circ \mathfrak{h})x.$

It acts on the element of the sets via the group.

▶ A set endowed with an action of 𝔅 on it is called a 𝔅-set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

On invariance and equivariance

Group action

Given a set Ω and a group $\mathfrak{G},$ a (left) group action of \mathfrak{G} on Ω is a function

```
\mathfrak{G} 	imes \Omega 	o \Omega
(\mathfrak{g}, x) 	o \mathfrak{g} x
```

satisfying

- $\blacktriangleright \quad \forall x \in \Omega, \mathfrak{e} x = x$
- Compatibility: $\forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}, \forall x \in \Omega, \mathfrak{g}(\mathfrak{h}x) = (\mathfrak{g} \circ \mathfrak{h})x.$

It acts on the element of the sets via the group.

▶ A set endowed with an action of 𝔅 on it is called a 𝔅-set.

Translation of functions

- Group of translations $\mathfrak{G} = \{\tau_x, x \in \mathbb{R}\}$ with $\tau_x \circ \tau_y = \tau_{x+y}$. Identity element τ_0 .
- For a function f and τ_x the group action

$$\tau_x f := t \to f(t-x).$$

Group action

Given a set Ω and a group \mathfrak{G} , a (left) group action of \mathfrak{G} on Ω is a function

$$\mathfrak{G} imes \Omega o \Omega \ (\mathfrak{g},x) o \mathfrak{g} x$$

satisfying

$$\blacktriangleright \quad \forall x \in \Omega, \mathfrak{e} x = x$$

- Compatibility: $\forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}, \forall x \in \Omega, \mathfrak{g}(\mathfrak{h}x) = (\mathfrak{g} \circ \mathfrak{h})x.$
- It acts on the element of the sets via the group.
- ▶ A set endowed with an action of 𝔅 on it is called a 𝔅-set.

Permutation of vectors

• Group of permutations S_n with composition \circ . Identity element id.

- For $\mathbf{x} \in \mathbb{R}^n$ a group action is $\sigma \mathbf{x} = (x_{\sigma(1)}, x_{\sigma(2)}, \cdots, x_{\sigma(n)}).$
- Is it a left group action ?

Group action

Given a set Ω and a group \mathfrak{G} , a (left) group action of \mathfrak{G} on Ω is a function

$$egin{aligned} \mathfrak{G} imes \Omega o \Omega \ (\mathfrak{g}, x) o \mathfrak{g} x \end{aligned}$$

satisfying

$$\blacktriangleright \quad \forall x \in \Omega, \mathfrak{e} x = x$$

- Compatibility: $\forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}, \forall x \in \Omega, \mathfrak{g}(\mathfrak{h}x) = (\mathfrak{g} \circ \mathfrak{h})x.$
- It acts on the element of the sets via the group.
- ▶ A set endowed with an action of 𝔅 on it is called a 𝔅-set.

Permutation of vectors

- For $\mathbf{x} \in \mathbb{R}^n$ a group action is $\sigma \mathbf{x} = (x_{\sigma(1)}, x_{\sigma(2)}, \cdots, x_{\sigma(n)}).$
- Def $(\sigma_1 \mathbf{x})_i = x_{\sigma_1(i)}$. So $(\sigma_2(\sigma_1 \mathbf{x}))_i = (\sigma_1 \mathbf{x})_{\sigma_2(i)} = x_{\sigma_1(\sigma_2(i))} = x_{\sigma_1 \circ \sigma_2(i)}$.
- Thus $\sigma_2(\sigma_1 \mathbf{x}) = (\sigma_1 \circ \sigma_2) \mathbf{x} \neq (\sigma_2 \circ \sigma_1) \mathbf{x}$.

On invariance and equivariance

Group action

Given a set Ω and a group $\mathfrak{G},$ a (left) group action of \mathfrak{G} on Ω is a function

```
\mathfrak{G} 	imes \Omega 	o \Omega
(\mathfrak{g}, x) 	o \mathfrak{g} x
```

satisfying

- $\blacktriangleright \quad \forall x \in \Omega, \mathfrak{e} x = x$
- Compatibility: $\forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}, \forall x \in \Omega, \mathfrak{g}(\mathfrak{h}x) = (\mathfrak{g} \circ \mathfrak{h})x.$

It acts on the element of the sets via the group.

▶ A set endowed with an action of 𝔅 on it is called a 𝔅-set.

Permutation of vectors

For $\mathbf{x} \in \mathbb{R}^n$ a left group action is $\sigma \mathbf{x} = (x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \cdots, x_{\sigma^{-1}(n)}).$

• Def
$$(\sigma_1 \mathbf{x})_i = x_{\sigma_1^{-1}(i)}$$
. So
 $(\sigma_2(\sigma_1 \mathbf{x}))_i = (\sigma_1 \mathbf{x})_{\sigma_2^{-1}(i)} = x_{\sigma_1^{-1}(\sigma_2^{-1}(i))} = x_{(\sigma_2 \circ \sigma_1)^{-1}(i)}$.

• Thus
$$\sigma_2(\sigma_1 \mathbf{x}) = (\sigma_2 \circ \sigma_1) \mathbf{x}$$
.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Table of contents

From neural networks...

The basic ideas Logistic regression and one layer neural-network Convolutional neural networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

... to unsupervised node embeddings techniques... A chronological start

... to graph neural networks

Learning with graphs What is a GNN ? A bit of group theory

Invariance and equivariance

Message-passing neural networks Examples of GNN The whole pipeline Expressivity of GNN Conclusion Invariance Let Ω be a \mathfrak{G} -set. A function $f : \Omega \to Y$ is \mathfrak{G} -invariant if

$$\forall x \in \Omega, \ \forall \mathfrak{g} \in \mathfrak{G}, \ f(\mathfrak{g}x) = f(x).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• f is \mathfrak{G} -invariant if its output is unaffected by the group action.

Invariance Let Ω be a \mathfrak{G} -set. A function $f : \Omega \to Y$ is \mathfrak{G} -invariant if

$$\forall x \in \Omega, \ \forall \mathfrak{g} \in \mathfrak{G}, \ f(\mathfrak{g}x) = f(x).$$

▶ *f* is 𝔅-invariant if its output is unaffected by the group action.

Permutation invariant functions

Find three functions $f, g, h : \mathbb{R}^n \to \mathbb{R}$ that are S_n -invariant.

Invariance Let Ω be a \mathfrak{G} -set. A function $f : \Omega \to Y$ is \mathfrak{G} -invariant if

$$\forall x \in \Omega, \ \forall \mathfrak{g} \in \mathfrak{G}, \ f(\mathfrak{g}x) = f(x).$$

▶ *f* is 𝔅-invariant if its output is unaffected by the group action.

Permutation invariant functions

•
$$f(\mathbf{x}) = \sum_{i=1}^{n} x_i, g(\mathbf{x}) = \max_{i \in [n]} x_i, h(\mathbf{x}) = \operatorname{sort}(\mathbf{x}) \text{ (to } \mathbb{R}^n).$$

• Characterization of all linear permutation invariant functions $L : \mathbb{R}^{n^k} \to \mathbb{R}$ (Maron et al. 2018).

Invariance

Let Ω be a \mathfrak{G} -set. A function $f : \Omega \to Y$ is \mathfrak{G} -invariant if

$$\forall x \in \Omega, \ \forall \mathfrak{g} \in \mathfrak{G}, \ f(\mathfrak{g}x) = f(x).$$

▶ *f* is 𝔅-invariant if its output is unaffected by the group action.

Permutation invariant functions

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$. The action of σ on \mathbf{X} is $\sigma \mathbf{X} = (X_{\sigma^{-1}(i)j})_{ij}$. Find a permutation invariant function $F : \mathbb{R}^{n \times d} \to \mathbb{R}$.

Invariance

Let Ω be a \mathfrak{G} -set. A function $f : \Omega \to Y$ is \mathfrak{G} -invariant if

$$\forall x \in \Omega, \ \forall \mathfrak{g} \in \mathfrak{G}, \ f(\mathfrak{g}x) = f(x).$$

f is &-invariant if its output is unaffected by the group action.

Permutation invariant functions

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$. The action of σ on \mathbf{X} is $\sigma \mathbf{X} = (X_{\sigma^{-1}(i)j})_{ij}$. Find a permutation invariant function $F : \mathbb{R}^{n \times d} \to \mathbb{R}$.

• With $\mathbf{X} = (\mathbf{x}_1, \cdots, \mathbf{x}_n)^{\top}$ and $F(\mathbf{X}) = \phi(\sum_{i=1}^n \psi(\mathbf{x}_i))$ with any $\psi : \mathbb{R}^d \to Z, \phi : Z \to Y$.

 $\blacktriangleright F(\mathbf{X}) = \operatorname{rank}(\mathbf{X}).$

A formal definition of invariance

Function operating on sets/multisets

Let \mathcal{X} be a **countable set**. By construction, any function acting on sets $f: 2^{\mathcal{X}} \to Y$ for some Y is **permutation invariant**. That is

 $\forall \{x_1, \cdots, x_n\} \in 2^{\mathcal{X}}, \forall \sigma \in S_n, f(\{x_1, \cdots, x_n\}) = f(\{x_{\sigma^{-1}(1)}, \cdots, x_{\sigma^{-1}(n)}\}).$

A D N A 目 N A E N A E N A B N A C N

Simply because $\{x_1, \dots, x_n\} = \{x_{\sigma^{-1}(1)}, \dots, x_{\sigma^{-1}(n)}\}.$

A formal definition of invariance

Function operating on sets/multisets

Let \mathcal{X} be a **countable set**. By construction, any function acting on sets $f : 2^{\mathcal{X}} \to Y$ for some Y is **permutation invariant**. That is

$$\forall \{x_1, \cdots, x_n\} \in 2^{\mathcal{X}}, \forall \sigma \in S_n, f(\{x_1, \cdots, x_n\}) = f(\{x_{\sigma^{-1}(1)}, \cdots, x_{\sigma^{-1}(n)}\}).$$

Simply because $\{x_1, \dots, x_n\} = \{x_{\sigma^{-1}(1)}, \dots, x_{\sigma^{-1}(n)}\}.$

• Any function $f: 2^{\mathcal{X}} \to \mathbb{R}$ has the form (Zaheer et al. 2018)

$$f(X) = \phi(\sum_{x \in X} \psi(x))$$
 for some $\psi : \mathcal{X} \to \mathbb{R}, \phi : \mathbb{R} \to \mathbb{R}$

- See prev. course: a multiset is a "set" where element can be repeated several times e.g. {{a, a, b}}.
- Same representation result holds for functions on multisets (Wagstaff et al. 2019).

Equivariance

Let Ω_1, Ω_2 be two \mathfrak{G} -sets (of the same group). A function $h : \Omega_1 \to \Omega_2$ is \mathfrak{G} -equivariant if

$$\forall x \in \Omega_1, \ \forall \mathfrak{g} \in \mathfrak{G}, \ h(\mathfrak{g} x) = \mathfrak{g} h(x).$$

- Pay attention to the input/output spaces and the compatibility.
- Transform the input + apply h = apply h and transform the result.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Equivariance

Let Ω_1, Ω_2 be two \mathfrak{G} -sets (of the same group). A function $h : \Omega_1 \to \Omega_2$ is \mathfrak{G} -equivariant if

$$\forall x \in \Omega_1, \ \forall \mathfrak{g} \in \mathfrak{G}, \ h(\mathfrak{g} x) = \mathfrak{g} h(x).$$

Pay attention to the input/output spaces and the compatibility.

• Transform the input + apply h = apply h and transform the result.

Convolutions

Prove that the convolution with a filter $h \in L_2(\mathbb{R})$ is translation equivariant.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A formal definition of equivariance

Equivariance

Let Ω_1, Ω_2 be two \mathfrak{G} -sets (of the same group). A function $h: \Omega_1 \to \Omega_2$ is \mathfrak{G} -equivariant if

$$\forall x \in \Omega_1, \ \forall \mathfrak{g} \in \mathfrak{G}, \ h(\mathfrak{g} x) = \mathfrak{g} h(x).$$

Pay attention to the input/output spaces and the compatibility.

• Transform the input + apply h = apply h and transform the result.

Convolutions

Consider a filter $h \in L_2(\mathbb{R})$.

- The convolution with a filter is $H : \Omega = L_2(\mathbb{R}) \to L_2(\mathbb{R})$ such that H(g) := g * h = h * g.
- For any translation τ_x

$$\forall g \in L_2(\mathbb{R}), \ H(\tau_{\times}g) = (\tau_{\times}g) * h = \tau_{\times}(g * h) = \tau_{\times}H(g).$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Translate then convolve = convolve then translate.

Equivariance

Let Ω_1, Ω_2 be two \mathfrak{G} -sets (of the same group). A function $h : \Omega_1 \to \Omega_2$ is \mathfrak{G} -equivariant if

$$\forall x \in \Omega_1, \ \forall \mathfrak{g} \in \mathfrak{G}, \ h(\mathfrak{g} x) = \mathfrak{g} h(x).$$

- Pay attention to the input/output spaces and the compatibility.
- Transform the input + apply h = apply h and transform the result.

Permutation equivariant functions

▶ Find two permutation equivariant functions $F : \mathbb{R}^{n \times d_1} \to \mathbb{R}^{n \times d_2}$.

A formal definition of equivariance

Equivariance

Let Ω_1, Ω_2 be two \mathfrak{G} -sets (of the same group). A function $h: \Omega_1 \to \Omega_2$ is \mathfrak{G} -equivariant if

$$\forall x \in \Omega_1, \ \forall \mathfrak{g} \in \mathfrak{G}, \ h(\mathfrak{g} x) = \mathfrak{g} h(x).$$

Pay attention to the input/output spaces and the compatibility.

• Transform the input + apply h = apply h and transform the result.

Permutation equivariant functions

► Let
$$\mathbf{W} \in \mathbb{R}^{d_1 \times d_2}$$
 and $F(\mathbf{X}) = \mathbf{X}\mathbf{W}$.
► Let $\mathbf{X} = \begin{pmatrix} \mathbf{x}_1^\top \\ \vdots \\ \mathbf{x}_n^\top \end{pmatrix}$ previous example $F(\mathbf{X}) = \begin{pmatrix} (\mathbf{W}^\top \mathbf{x}_1)^\top \\ \vdots \\ (\mathbf{W}^\top \mathbf{x}_n)^\top \end{pmatrix}$.
► More generally $F(\mathbf{X}) = \begin{pmatrix} \psi(\mathbf{x}_1)^\top \\ \vdots \\ \psi(\mathbf{x}_n)^\top \end{pmatrix}$ where $\psi : \mathbb{R}^{d_1} \to \mathbb{R}^{d_2}$.

Equivariance

Let Ω_1, Ω_2 be two \mathfrak{G} -sets (of the same group). A function $h : \Omega_1 \to \Omega_2$ is \mathfrak{G} -equivariant if

$$\forall x \in \Omega_1, \ \forall \mathfrak{g} \in \mathfrak{G}, \ h(\mathfrak{g} x) = \mathfrak{g} h(x).$$

Pay attention to the input/output spaces and the compatibility.

Transform the input + apply h = apply h and transform the result.

Laplacian matrix

• An action of S_n on $\mathbb{R}^{n \times n}$ is defined as

$$\sigma \mathbf{A} = (A_{\sigma^{-1}(i),\sigma^{-1}(j)})_{ij}$$

▶ \mathcal{L} : sym_n(\mathbb{R}) → sym_n(\mathbb{R}) which takes a symmetric matrix **A** and outputs the Laplacian matrix $\mathcal{L}(\mathbf{A}) = \text{diag}(\mathbf{A1}) - \mathbf{A}$

Show that \mathcal{L} is S_n -permutation equivariant.

Combining them together

Composition of invariant/equivariant functions

Let Ω_1, Ω_2 be \mathfrak{G} -sets.

- Let $f : \Omega_1 \to \Omega_2$ be a \mathfrak{G} -equivariant function.
- Let $g : \Omega_2 \to Y$ be a \mathfrak{G} -invariant function.

Then $h = g \circ f$ is \mathfrak{G} -invariant.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Combining them together

Composition of invariant/equivariant functions

Let Ω_1, Ω_2 be \mathfrak{G} -sets.

- Let $f : \Omega_1 \to \Omega_2$ be a \mathfrak{G} -equivariant function.
- Let $g : \Omega_2 \to Y$ be a \mathfrak{G} -invariant function.

Then $h = g \circ f$ is \mathfrak{G} -invariant.

Proof

Indeed with $x \in \Omega_1, \mathfrak{g} \in \mathfrak{G}$

$$h(\mathfrak{g} x) = g(f(\mathfrak{g} x)) = g(\mathfrak{g} f(x)) = g(f(x)) = (g \circ f)(x) = h(x).$$

Simple but powerful: one of the reason CNNs work so well

Combining them together

Composition of invariant/equivariant functions

Let Ω_1, Ω_2 be \mathfrak{G} -sets.

Let f : Ω₁ × Y → Ω₂ be a 𝔅-equivariant function with respect to its first variable *i.e.* ∀y ∈ Ω₁, ∀𝔅 ∈ 𝔅, ∀y ∈ Y, f(𝔅x, y) = 𝔅f(x, y).

• Let $g : \Omega_1 \to Y$ be a \mathfrak{G} -invariant function.

Then the function h defined by h(x) = f(x, g(x)) is \mathfrak{G} -equivariant.

Proof $h(\mathfrak{g}x) = f(\mathfrak{g}x, g(\mathfrak{g}x)) = f(\mathfrak{g}x, g(x)) = \mathfrak{g}f(x, g(x)) = \mathfrak{g}h(x).$

Permutations as matrices • $\sigma \in S_n$ can be described as $\mathbf{P}_{\sigma} = \begin{pmatrix} \mathbf{e}_{\sigma(1)}^{\top} \\ \vdots \\ \mathbf{e}_{\sigma(n)}^{\top} \end{pmatrix} \in \{0,1\}^{n \times n}$. $\mathbf{P}_{\sigma^{-1}} = \mathbf{P}_{\sigma}^{\top}$.

For A ∈ ℝ^{n×n}, the previous action is σA = (A_{σ⁻¹(i)σ⁻¹(j)})_{ij} = P_σ^TAP_σ.
 An action of S_n on ℝ^{n×d} × ℝ^{n×n}

$$\sigma (\mathbf{X}, \mathbf{A}) = (\mathbf{P}_{\sigma}^{\top} \mathbf{X}, \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Permutations as matrices

•
$$\sigma \in S_n$$
 can be described as $\mathbf{P}_{\sigma} = \begin{pmatrix} \mathbf{c}_{\sigma(1)} \\ \vdots \\ \mathbf{e}_{\sigma(n)}^{\top} \end{pmatrix} \in \{0,1\}^{n \times n}$. $\mathbf{P}_{\sigma^{-1}} = \mathbf{P}_{\sigma}^{\top}$.

 $\langle \mathbf{n}^\top \rangle$

► For $\mathbf{A} \in \mathbb{R}^{n \times n}$, the previous action is $\sigma \mathbf{A} = (A_{\sigma^{-1}(i)\sigma^{-1}(j)})_{ij} = \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}$.

• An action of S_n on $\mathbb{R}^{n \times d} \times \mathbb{R}^{n \times n}$

$$\sigma (\mathbf{X}, \mathbf{A}) = (\mathbf{P}_{\sigma}^{\top} \mathbf{X}, \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma})$$

Interpretation

σ (X, A) permutes the nodes of the graph and the features in the same manner.

Figure: Is it a valid action of σ ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Permutations as matrices

•
$$\sigma \in S_n$$
 can be described as $\mathbf{P}_{\sigma} = \begin{pmatrix} \mathbf{e}_{\sigma(1)} \\ \vdots \\ \mathbf{e}_{\sigma(n)}^{\top} \end{pmatrix} \in \{0,1\}^{n \times n}$. $\mathbf{P}_{\sigma^{-1}} = \mathbf{P}_{\sigma}^{\top}$.

► For $\mathbf{A} \in \mathbb{R}^{n \times n}$, the previous action is $\sigma \mathbf{A} = (A_{\sigma^{-1}(i)\sigma^{-1}(j)})_{ij} = \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}$.

• An action of S_n on $\mathbb{R}^{n \times d} \times \mathbb{R}^{n \times n}$

$$\sigma (\mathbf{X}, \mathbf{A}) = (\mathbf{P}_{\sigma}^{\top} \mathbf{X}, \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma})$$

Back to the GNN context

▶ In classification/regression $f : G = (\mathbf{X}, \mathbf{A}) \rightarrow y \in Y$ (e.g. $(\{+1, -1\})$).

▶ For node embeddings $F : G = (\mathbf{X}, \mathbf{A}) \rightarrow \mathbf{Z} \in \mathbb{R}^{n \times k}$

Permutations as matrices

•
$$\sigma \in S_n$$
 can be described as $\mathbf{P}_{\sigma} = \begin{pmatrix} \mathbf{e}_{\sigma(1)} \\ \vdots \\ \mathbf{e}_{\sigma(n)}^{\top} \end{pmatrix} \in \{0,1\}^{n \times n}$. $\mathbf{P}_{\sigma^{-1}} = \mathbf{P}_{\sigma}^{\top}$.

For $\mathbf{A} \in \mathbb{R}^{n \times n}$, the previous action is $\sigma \mathbf{A} = (A_{\sigma^{-1}(i)\sigma^{-1}(j)})_{ij} = \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma}$.

• An action of S_n on $\mathbb{R}^{n \times d} \times \mathbb{R}^{n \times n}$

$$\sigma (\mathbf{X}, \mathbf{A}) = (\mathbf{P}_{\sigma}^{\top} \mathbf{X}, \mathbf{P}_{\sigma}^{\top} \mathbf{A} \mathbf{P}_{\sigma})$$

Back to the GNN context

- ▶ In classification/regression $f : G = (\mathbf{X}, \mathbf{A}) \rightarrow y \in Y$ (e.g. $(\{+1, -1\})$.
- ▶ For node embeddings $F : G = (\mathbf{X}, \mathbf{A}) \rightarrow \mathbf{Z} \in \mathbb{R}^{n \times k}$

Ensuring invariance/equivariance is key when learning on graphs

Find f that are S_n -invariant, F that are S_n -equivariant.

•
$$f(\mathbf{P}_{\sigma}^{\top}\mathbf{X}, \mathbf{P}_{\sigma}^{\top}\mathbf{A}\mathbf{P}_{\sigma}) = f(\mathbf{X}, \mathbf{A}) \text{ and } F(\mathbf{P}_{\sigma}^{\top}\mathbf{X}, \mathbf{P}_{\sigma}^{\top}\mathbf{A}\mathbf{P}_{\sigma}) = \mathbf{P}_{\sigma}^{\top}F(\mathbf{X}, \mathbf{A}).$$

Ensuring invariance/equivariance is key when learning on graphs

Find f that are S_n -invariant, F that are S_n -equivariant.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

►
$$f(\mathbf{P}_{\sigma}^{\top}\mathbf{X}, \mathbf{P}_{\sigma}^{\top}\mathbf{A}\mathbf{P}_{\sigma}) = f(\mathbf{X}, \mathbf{A})$$
 and $F(\mathbf{P}_{\sigma}^{\top}\mathbf{X}, \mathbf{P}_{\sigma}^{\top}\mathbf{A}\mathbf{P}_{\sigma}) = \mathbf{P}_{\sigma}^{\top}F(\mathbf{X}, \mathbf{A})$.

Examples: equivariance (1/2)

► Take $\mathbf{X} \in \mathbb{R}^{n \times d_1}$, $\mathbf{W} \in \mathbb{R}^{d_1 \times d_2}$ and a function Ψ that applies independently on each row of a matrix.

•
$$F(\mathbf{X}, \mathbf{A}) = \Psi(\mathbf{A}\mathbf{X}\mathbf{W})$$
 is S_n -equivariant.

Ensuring invariance/equivariance is key when learning on graphs

Find f that are S_n -invariant, F that are S_n -equivariant.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

►
$$f(\mathbf{P}_{\sigma}^{\top}\mathbf{X}, \mathbf{P}_{\sigma}^{\top}\mathbf{A}\mathbf{P}_{\sigma}) = f(\mathbf{X}, \mathbf{A})$$
 and $F(\mathbf{P}_{\sigma}^{\top}\mathbf{X}, \mathbf{P}_{\sigma}^{\top}\mathbf{A}\mathbf{P}_{\sigma}) = \mathbf{P}_{\sigma}^{\top}F(\mathbf{X}, \mathbf{A})$.

Examples: equivariance (1/2)

► Take $\mathbf{X} \in \mathbb{R}^{n \times d_1}$, $\mathbf{W} \in \mathbb{R}^{d_1 \times d_2}$ and a function Ψ that applies independently on each row of a matrix.

•
$$F(\mathbf{X}, \mathbf{A}) = \Psi(\mathbf{A}\mathbf{X}\mathbf{W})$$
 is S_n -equivariant.

In particular when Ψ is element-wise.

Ensuring invariance/equivariance is key when learning on graphs

Find f that are S_n -invariant, F that are S_n -equivariant.

►
$$f(\mathbf{P}_{\sigma}^{\top}\mathbf{X}, \mathbf{P}_{\sigma}^{\top}\mathbf{A}\mathbf{P}_{\sigma}) = f(\mathbf{X}, \mathbf{A})$$
 and $F(\mathbf{P}_{\sigma}^{\top}\mathbf{X}, \mathbf{P}_{\sigma}^{\top}\mathbf{A}\mathbf{P}_{\sigma}) = \mathbf{P}_{\sigma}^{\top}F(\mathbf{X}, \mathbf{A})$.

Examples: equivariance (1/2)

► Take X ∈ ℝ^{n×d1}, W ∈ ℝ^{d1×d2} and a function Ψ that applies independently on each row of a matrix.

•
$$F(\mathbf{X}, \mathbf{A}) = \Psi(\mathbf{A}\mathbf{X}\mathbf{W})$$
 is S_n -equivariant.

- In particular when Ψ is **element-wise**.
- But also $F(\mathbf{X}, \mathbf{A}) = \Psi(G(\mathbf{A})\mathbf{X}\mathbf{W})$ where G is S_n -equivariant.
- ► E.g. $F(\mathbf{X}, \mathbf{A}) = \Psi(\mathcal{L}(\mathbf{A})\mathbf{X}\mathbf{W})$ where \mathcal{L} computes the Laplacian.

► E.g.
$$F(\mathbf{X}, \mathbf{A}) = \Psi(P[\mathcal{L}](\mathbf{A})\mathbf{XW})$$
 where *P* is a polynomial $P[\mathcal{L}] = \sum_m c_m \mathcal{L}^m$.

Examples: equivariance (2/2)

► Take
$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1^\top \\ \vdots \\ \mathbf{x}_n^\top \end{pmatrix}$$
 and define the multiset $X_i := \{\{\mathbf{x}_j : j \in \mathcal{N}(i)\}\}.$
► Then $X_{\sigma(i)} = \{\{\mathbf{x}_{\sigma(j)} : j \in \mathcal{N}(i)\}\}:$
 $v_1 \underbrace{v_2}_{v_6 v_5 v_4} \overset{v_3}{\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 6 & 1 & 4 \end{pmatrix}}_{v_4 v_1 v_6} \underbrace{v_2}_{v_4 v_1 v_6} \overset{v_5}{v_6 v_6} \underbrace{v_{\sigma(4)}}_{\mathcal{N}(v_{\sigma(4)}) = \{v_5, v_1\}} = \{v_{\sigma(3)}, v_{\sigma(1)}\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Examples: equivariance (2/2)

► Take
$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1^\top \\ \vdots \\ \mathbf{x}_n^\top \end{pmatrix}$$
 and define the multiset $X_i := \{\{\mathbf{x}_j : j \in \mathcal{N}(i)\}\}.$
► Then $X_{\sigma(i)} = \{\{\mathbf{x}_{\sigma(j)} : j \in \mathcal{N}(i)\}\}:$
 $v_1 \underbrace{v_2}_{v_6 v_5 v_4} \overset{v_3}{\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 6 & 1 & 4 \end{pmatrix}}_{v_4 v_1 v_6} \underbrace{v_2}_{v_4 v_1 v_6 = v_{\sigma(4)}}_{v_6 (v_{\sigma(4)}) = \{v_5, v_1\} = \{v_{\sigma(3)}, v_{\sigma(1)}\}}$

► A function AGGREGATE operating on multisets of vectors.

► Then the following function is permutation equivariant.

$$F(\mathbf{X}, \mathbf{A}) = egin{pmatrix} \psi(\mathbf{x}_1, \mathsf{A}\mathsf{G}\mathsf{G}\mathsf{R}\mathsf{E}\mathsf{G}\mathsf{A}\mathsf{T}\mathsf{E}(X_1)) \ dots \ dots \ \psi(\mathbf{x}_n, \mathsf{A}\mathsf{G}\mathsf{G}\mathsf{R}\mathsf{E}\mathsf{G}\mathsf{A}\mathsf{T}\mathsf{E}(X_n)) \end{pmatrix}$$

Table of contents

From neural networks...

The basic ideas Logistic regression and one layer neural-network Convolutional neural networks

... to unsupervised node embeddings techniques... A chronological start

... to graph neural networks

Learning with graphs What is a GNN ? A bit of group theory Invariance and equivariance Massage passing neural network

Message-passing neural networks

Examples of GNN The whole pipeline Expressivity of GNN Conclusion

The training pipeline

Overall the same procedure: find an embedding of the nodes F(X, A) ∈ ℝ^{n×k} (supervised or unsupervised) and then do stuff.

イロト 不得 トイヨト イヨト

-

Goal of the message passing framework

- **Defines specific** *S_n*-equivariant layers/functions.
- Can be used for node embeddings.
- Usually Z⁽⁰⁾ = X but when no node features are available several options (e.g. node statistics).
- ▶ Notation: $\mathbf{z}_{u}^{(k)}$ is the embedding of the node $u \in V$ at the *k*-layer.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The message passing framework

One of the most used GNN framework in practice

At each iteration, every node aggregates information from its local neighborhood.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

- ► A zoo of methods for different COMBINE, AGGREGATE functions.
- Why is this defining a permutation equivariant layer ?

The message passing framework

Similarities with CNN

- One layer of message-passing GNN shares similaries to convolutional layers.
- Usually it takes the form

$$\mathbf{z}_{u}^{(k+1)} = \phi\left(\sum_{v \in \mathcal{N}(u) \cup \{u\}} \alpha_{uv} \mathbf{z}_{v}^{(k)}\right)$$

(日)

э

The message passing framework

Similarities with CNN

- One layer of message-passing GNN shares similaries to convolutional layers.
- Usually it takes the form

$$\mathbf{z}_{u}^{(k+1)} = \phi\left(\sum_{v \in \mathcal{N}(u) \cup \{u\}} \alpha_{uv} \mathbf{z}_{v}^{(k)}\right)$$

k-hop neighbourhood

After *k*-steps each node has received the informations from its *k*-hop neighbourhood.

Figure: From Jure Leskovec course *Machine Learning with Graphs*.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Table of contents

From neural networks...

The basic ideas Logistic regression and one layer neural-network Convolutional neural networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

... to unsupervised node embeddings techniques... A chronological start

... to graph neural networks

Learning with graphs What is a GNN ? A bit of group theory Invariance and equivariance Message-passing neural networks

Examples of GNN

The whole pipeline Expressivity of GNN Conclusion

A first GNN with message passing

Sum/mean aggregation (Scarselli et al. 2008)

A first idea would be

$$\mathbf{z}_{u}^{(k+1)} = \phi(\mathbf{W}_{\mathsf{self}}^{(k)} \mathbf{z}_{u}^{(k)} + \mathbf{W}_{\mathsf{neigh}}^{(k)} \sum_{v \in \mathcal{N}(u)} \mathbf{z}_{v}^{(k)} + \mathbf{b}^{(k)})$$

► $\mathbf{W}_{self}^{(k)}, \mathbf{W}_{neigh}^{(k)} \in \mathbb{R}^{d_{k+1} \times d_k}$ are matrices of learnable parameters.

- Do not depend on the number of nodes ! .
- Complexity of computing it for all nodes is O(|E|).
- ▶ $\mathbf{b}^{(k)} \in \mathbb{R}^{d_{k+1}}$ is a bias term (often omitted to simplify notations).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• ϕ is a pointwise non-linearity such as ReLu.

Questions

- ▶ What is COMBINE, AGGREGATE ?
- Write this in matrix form.

A first GNN with message passing

Sum/mean aggregation (Scarselli et al. 2008) A first idea would be

$$\mathbf{z}_{u}^{(k+1)} = \phi(\mathbf{W}_{\mathsf{self}}^{(k)} \mathbf{z}_{u}^{(k)} + \mathbf{W}_{\mathsf{neigh}}^{(k)} \sum_{v \in \mathcal{N}(u)} \mathbf{z}_{v}^{(k)} + \mathbf{b}^{(k)})$$

► $\mathbf{W}_{self}^{(k)}, \mathbf{W}_{neigh}^{(k)} \in \mathbb{R}^{d_{k+1} \times d_k}$ are matrices of learnable parameters.

- Do not depend on the number of nodes ! .
- Complexity of computing it for all nodes is O(|E|).
- ▶ $\mathbf{b}^{(k)} \in \mathbb{R}^{d_{k+1}}$ is a bias term (often omitted to simplify notations).
- ϕ is a pointwise non-linearity such as ReLu.

Answers

- What is COMBINE, AGGREGATE ?
- ► $\forall k, \text{AGGREGATE}^{(k)}(\{\{\mathbf{z}_v : v \in \mathcal{N}(u)\}\}) = \sum_{v \in \mathcal{N}(u)} \mathbf{z}_v.$
- ► COMBINE^(k)($\mathbf{z}_1, \mathbf{z}_2$) = $\mathbf{W}_{self}^{(k)} \mathbf{z}_1 + \mathbf{W}_{neigh}^{(k)} \mathbf{z}_2 + \mathbf{b}^{(k)}$.

A first GNN with message passing

Sum/mean aggregation (Scarselli et al. 2008) A first idea would be

$$\mathbf{z}_{u}^{(k+1)} = \phi(\mathbf{W}_{\mathsf{self}}^{(k)} \mathbf{z}_{u}^{(k)} + \mathbf{W}_{\mathsf{neigh}}^{(k)} \sum_{v \in \mathcal{N}(u)} \mathbf{z}_{v}^{(k)} + \mathbf{b}^{(k)})$$

► $\mathbf{W}_{self}^{(k)}, \mathbf{W}_{neigh}^{(k)} \in \mathbb{R}^{d_{k+1} \times d_k}$ are matrices of learnable parameters.

- Do not depend on the number of nodes ! .
- Complexity of computing it for all nodes is O(|E|).
- ▶ $\mathbf{b}^{(k)} \in \mathbb{R}^{d_{k+1}}$ is a bias term (often omitted to simplify notations).
- ϕ is a pointwise non-linearity such as ReLu.

Answers

Write this in matrix form.

$$\blacktriangleright \mathbf{Z}^{(k+1)} = \phi \left(\mathbf{A} \mathbf{Z}^{(k)} \mathbf{W}_{\text{neigh}}^{(k)} + \mathbf{Z}^{(k)} \mathbf{W}_{\text{self}}^{(k)} + \begin{pmatrix} \mathbf{b}^{(k)} \\ \vdots \\ \mathbf{b}^{(k)} \end{pmatrix} \right).$$

Graph convolutional neural networks

Most popular baseline model

Introduced by Kipf and Welling 2016 for semi-supervised node classification.

$$\mathbf{z}_{u}^{(k+1)} = \mathsf{Relu}(\mathbf{W}_{\mathsf{self}}^{(k)} \mathbf{z}_{u}^{(k)} + \mathbf{W}_{\mathsf{neigh}}^{(k)} \frac{1}{\sqrt{|\mathcal{N}(u)|}} \sum_{v \in \mathcal{N}(u)} \frac{\mathbf{z}_{v}^{(k)}}{\sqrt{|\mathcal{N}(v)|}})$$

- Also GraphSage framework (William L. Hamilton, R. Ying, and Leskovec 2018).
- What is COMBINE, AGGREGATE ?

In matrix form

- ► With $\mathbf{W}_{self} = \mathbf{W}_{neigh}, \mathbf{Z}^{(k+1)} =$ Relu $\left((\mathbf{I} + \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}) \mathbf{Z}^{(k)} \mathbf{W}^{(k)} \right).$
- First-order approximation of localized spectral filters on graphs.

Graph Attention Networks

Motivations

- In many MP-GNN layers weights of the convolutions are fixed.
- What if we also learn them ?
- Learn the importance of the neighbours contributions.

イロト 不得 トイヨト イヨト

3

Graph Attention Networks

Motivations

- In many MP-GNN layers weights of the convolutions are fixed.
- What if we also learn them ?
- Learn the importance of the neighbours contributions.

GAT networks (Velivcković et al. 2017)

$$\mathsf{z}_{u}^{(k+1)} = \mathsf{Relu}(\mathsf{W}^{(k)} \sum_{v \in \mathcal{N}(u) \cup \{u\}} \alpha_{uv} \mathsf{z}_{v}^{(k)})$$

• Here α_{uv} are learnable weights.

• $e_{uv} = NN(\Theta_1 z_u, \Theta_2 z_u)$ with learnable matrices Θ_1, Θ_2 and

$$lpha_{uv} = ext{softmax}_v(e_{uv}) = rac{ ext{exp}(e_{uv})}{\sum_{v' \in \mathcal{N}(u)} e_{uv'}}$$

It is based on attention mechanisms (Vaswani et al. 2023).

The problem of injectivity

Xu et al. 2019 provide a detailed discussion of the relative power of GNN.

- One interesting property is injectivity of COMBINE, AGGREGATE.
- They propose

$$\mathbf{z}_{u}^{(k+1)} = \mathsf{MLP}^{(k)} \left((1 + \theta^{(k)}) \mathbf{z}_{u}^{(k)} + \sum_{v \in \mathcal{N}(u)} \mathbf{z}_{v}^{(k)} \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶ MLP : $\mathbb{R}^{d_k} \to \mathbb{R}^{d_{k+1}}$ is a fully connected neural-network.

Spectral GNN

Learning filters

Originally introduced by Bruna et al. 2013. The idea is

$$\mathsf{Z}^{(k+1)} = \mathsf{Relu}(P[\mathcal{L}](\mathsf{A})\mathsf{Z}^{(k)}\mathsf{W}^{(k)})$$

▶ $\mathcal{L}(\mathbf{A}) = \text{diag}(\mathbf{A1}) - \mathbf{A}$ is the Laplacian (or normalized version).

- $P[\mathcal{L}] = \sum_{m=0}^{M} c_m \mathcal{L}^m$ is a **learnable** polynomial of the Laplacian.
- As $\mathcal{L}(\mathbf{A}) = \mathbf{U} \wedge \mathbf{U}^{\top}, P[\mathcal{L}](\mathbf{A}) = \mathbf{U} P[\Lambda] \mathbf{U}^{\top}.$
- ▶ Connections with the Fourier transform on graphs: *P*[*L*] acts as a filter.

Spectral GNN

Learning filters

Originally introduced by Bruna et al. 2013. The idea is

$$\mathsf{Z}^{(k+1)} = \mathsf{Relu}(P[\mathcal{L}](\mathsf{A})\mathsf{Z}^{(k)}\mathsf{W}^{(k)})$$

▶ $\mathcal{L}(\mathbf{A}) = \text{diag}(\mathbf{A1}) - \mathbf{A}$ is the Laplacian (or normalized version).

• $P[\mathcal{L}] = \sum_{m=0}^{M} c_m \mathcal{L}^m$ is a **learnable** polynomial of the Laplacian.

• As
$$\mathcal{L}(\mathbf{A}) = \mathbf{U} \wedge \mathbf{U}^{\top}, P[\mathcal{L}](\mathbf{A}) = \mathbf{U} P[\Lambda] \mathbf{U}^{\top}.$$

▶ Connections with the Fourier transform on graphs: *P*[*L*] acts as a filter.

Limitations

- Niave complexity in $O(|V|^3)$ (eigen-decomposition).
- Any perturbation to a graph results in a change of eigenbasis **U**.
- Learned filters are domain dependent.
- Alternative ChebNet Defferrard, Bresson, and Vandergheynst 2017 relies on Chebyshev polynomials with O(|E|M) complexity.

Graph pooling

Pooling layers in neural networks

At the core of many NN architectures.

- Most standard type is max-pooling.
- \blacktriangleright \downarrow the number of parameters to learn.
- Improves robustness.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Graph pooling

Pooling layers in neural networks

At the core of many NN architectures.

- Most standard type is **max-pooling**.
- \blacktriangleright \downarrow the number of parameters to learn.
- Improves robustness.

Pooling in GNN

Equivalent to down-sampling = reducing the number of nodes.

Diffpool

Learning at the graph level

- The neural message passing approach produces a set of node embeddings F(X, A) = Z ∈ ℝ^{n×k}.
- ▶ What about predictions at the graph level ? E.g. in graph classification.

- We want one embedding for the entire graph z_G .
- It should be a permutation invariant function $f(\mathbf{X}, \mathbf{A})$.
- ▶ E.g. global average pooling $\mathbf{z}_G = f(\mathbf{X}, \mathbf{A}) = \frac{1}{|V|} \sum_{u \in V} \mathbf{z}_u \in \mathbb{R}^k$.

Diffpool

Learning at the graph level

- The neural message passing approach produces a set of node embeddings F(X, A) = Z ∈ ℝ^{n×k}.
- ▶ What about predictions at the graph level ? E.g. in graph classification.
- We want one embedding for the entire graph z_G .
- ▶ It should be a permutation invariant function *f*(**X**, **A**).
- ► E.g. global average pooling $\mathbf{z}_G = f(\mathbf{X}, \mathbf{A}) = \frac{1}{|V|} \sum_{u \in V} \mathbf{z}_u \in \mathbb{R}^k$.

Better idea: hierarchical pooling (Z. Ying et al. 2018)

Table of contents

From neural networks...

The basic ideas Logistic regression and one layer neural-network Convolutional neural networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

... to unsupervised node embeddings techniques... A chronological start

... to graph neural networks

Learning with graphs What is a GNN ? A bit of group theory Invariance and equivariance Message-passing neural networks Examples of GNN

The whole pipeline

Expressivity of GNN Conclusion

Applications

Node classification

One graph *G* where each node has a class.

Train GNNs in a fully-supervised manner by minimizing

$$\mathcal{L} = \sum_{u \in V_{train}} -\log(\operatorname{softmax}(\mathbf{z}_u, y_u))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Node classification

One graph *G* where each node has a class.

Train GNNs in a fully-supervised manner by minimizing

$$\mathcal{L} = \sum_{u \in V_{train}} - \mathsf{log}(\mathsf{softmax}(\mathsf{z}_u, y_u))$$

Graph classification

• Many graphs G_1, \dots, G_n associated with classes $(y_{G_i})_i$. Train GNNs in a fully-supervised manner by minimizing

$$\mathcal{L} = \sum_{G \in \mathcal{T}_{train}} \ell(\mathsf{MLP}(\mathsf{z}_G), y_G)$$

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ●

Table of contents

From neural networks...

The basic ideas Logistic regression and one layer neural-network Convolutional neural networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

... to unsupervised node embeddings techniques... A chronological start

... to graph neural networks

Learning with graphs What is a GNN ? A bit of group theory Invariance and equivariance Message-passing neural networks Examples of GNN The whole pipeline Expressivity of GNN

Conclusion

Connection with the WL test

WL algorithm and MP-GNN

▶ WL algorithm and the message passing GNN approach are very similar.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Iteratively aggregate information from local node neighborhoods.

Connection with the WL test

WL algorithm and MP-GNN

- ▶ WL algorithm and the message passing GNN approach are very similar.
- Iteratively aggregate information from local node neighborhoods.

Message passing neural networks are not that powerful ?

Consider a MP-GNN with K layers

$$\mathbf{z}_{u}^{(k+1)} = \mathsf{COMBINE}^{(k)} \left(\mathbf{z}_{u}^{(k)}, \mathsf{AGGREGATE}^{(k)} \left(\{ \{ \mathbf{z}_{v}^{(k)} : v \in \mathcal{N}(u) \} \} \right) \right)$$

- Suppose that discrete node labels $\mathbf{Z}^{(0)} = \mathbf{X} \in \mathbb{Z}^{n \times d}$.
- Then Xu et al. 2019 show that

 $\mathbf{z}_u^{(K)} \neq \mathbf{z}_v^{(K)} \iff \text{ labels of u and v are} \neq \text{after K iter. of the WL algorithm}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

- If the WL test cannot distinguish between G₁, G₂, then MP-GNN also incapable of doing it.
- Ability of solving isomorphism = good measure of "expressivity" ?

The oversmoothing problem: if too many layers of MP-GNN, the node features tend to converge to a non-informative limit.

Figure: From Keriven 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Heterophily vs homophilie: neighbours should have similar embeddings ? (Luan et al. 2022).

Table of contents

From neural networks...

The basic ideas Logistic regression and one layer neural-network Convolutional neural networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

... to unsupervised node embeddings techniques... A chronological start

... to graph neural networks

Learning with graphs What is a GNN ? A bit of group theory Invariance and equivariance Message-passing neural networks Examples of GNN The whole pipeline Expressivity of GNN Conclusion

- Flexible: graph/node/edge classification, semi-supervised learning, link prediction...
- Generally state-of-the-art, but...
- ... sometimes do not work "that well" (compared to other DL)
- Simple methods may perform better but might be "forgotten" in benchmarks
- Room for improvement (many interesting challenges), but conventional DL wisdom might not hold
- Arguably, no real "ImageNet moment" yet for GNNs -¿ several recent initiatives for bigger datasets and more complex tasks (eg Open Graph Benchmark)

References I

Ē.

- Belkin, Mikhail and Partha Niyogi (2003). "Laplacian eigenmaps for dimensionality reduction and data representation". In: Neural computation 15.6, pp. 1373–1396.
- Bruna, Joan et al. (2013). "Spectral networks and locally connected networks on graphs". In: *arXiv preprint arXiv:1312.6203*.
- Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst (2017). Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. arXiv: 1606.09375 [cs.LG].
 - Goldberg, Yoav and Omer Levy (2014). "word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method". In: *arXiv* preprint arXiv:1402.3722.

Grinsztajn, Léo, Edouard Oyallon, and Gaël Varoquaux (2022). "Why do tree-based models still outperform deep learning on typical tabular data?" In: Advances in Neural Information Processing Systems 35, pp. 507–520.

Grover, Aditya and Jure Leskovec (2016). "node2vec: Scalable feature learning for networks". In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855–864.

References II

- Hamilton, William L (2020). Graph representation learning. Morgan & Claypool Publishers.
- Hamilton, William L., Rex Ying, and Jure Leskovec (2018). *Inductive* Representation Learning on Large Graphs. arXiv: 1706.02216 [cs.SI].
- Keriven, Nicolas (2022). "Not too little, not too much: a theoretical analysis of graph (over) smoothing". In: Advances in Neural Information Processing Systems 35, pp. 2268–2281.
- Kipf, Thomas N and Max Welling (2016). "Semi-supervised classification with graph convolutional networks". In: arXiv preprint arXiv:1609.02907.
- LeCun, Yann et al. (1998). "Gradient-based learning applied to document recognition". In: *Proceedings of the IEEE* 86.11, pp. 2278–2324.
- Luan, Sitao et al. (2022). "Revisiting heterophily for graph neural networks". In: Advances in neural information processing systems 35, pp. 1362–1375.
- Maron, Haggai et al. (2018). "Invariant and equivariant graph networks". In: arXiv preprint arXiv:1812.09902.
- Mikolov, Tomas et al. (2013). "Distributed representations of words and phrases and their compositionality". In: Advances in neural information processing systems 26.

References III

- -
- Rosenblatt, Frank (1958). "The perceptron: a probabilistic model for information storage and organization in the brain.". In: *Psychological review* 65.6, p. 386.
- Scarselli, Franco et al. (2008). "The graph neural network model". In: *IEEE transactions on neural networks* 20.1, pp. 61–80.
 - Vaswani, Ashish et al. (2023). Attention Is All You Need. arXiv: 1706.03762 [cs.CL].
 - Velivcković, Petar et al. (2017). "Graph attention networks". In: *arXiv* preprint arXiv:1710.10903.
 - Wagstaff, Edward et al. (2019). "On the limitations of representing functions on sets". In: International Conference on Machine Learning. PMLR, pp. 6487–6494.
- Weiler, Maurice et al. (2023). Equivariant and Coordinate Independent Convolutional Networks. A Gauge Field Theory of Neural Networks. URL: https://maurice-weiler.gitlab.io/cnn_book/ EquivariantAndCoordinateIndependentCNNs.pdf.

References IV

- Wu, Zonghan et al. (Jan. 2021). "A Comprehensive Survey on Graph Neural Networks". In: IEEE Transactions on Neural Networks and Learning Systems 32.1, pp. 4–24. DOI: 10.1109/tnnls.2020.2978386. URL: https://doi.org/10.1109%2Ftnnls.2020.2978386.
- Xu, Keyulu et al. (2019). How Powerful are Graph Neural Networks? arXiv: 1810.00826 [cs.LG].
- Ying, Zhitao et al. (2018). "Hierarchical graph representation learning with differentiable pooling". In: *Advances in neural information processing systems* 31.
- Zaheer, Manzil et al. (2018). Deep Sets. arXiv: 1703.06114 [cs.LG].

Zeiler, Matthew D and Rob Fergus (2014). "Visualizing and understanding convolutional networks". In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13. Springer, pp. 818–833.

Zhang, Ziwei, Peng Cui, and Wenwu Zhu (2020). Deep Learning on Graphs: A Survey. arXiv: 1812.04202 [cs.LG].