
Machine learning for graphs and with
graphs

Graph kernels

Titouan Vayer & Pierre Borgnat
email: titouan.vayer@inria.fr, pierre.borgnat@ens-lyon.fr

October 13, 2023

Table of contents

Kernels in Machine Learning
A bit of kernels theory
Back to machine learning: the representer theorem

Kernels for structured data
Basics of graphs-kernels
Focus on Weisfeler-Lehman Kernel
Conclusion

Acknowledgments

Some slides adapted from those of Jean-Philippe Vert and Rémi Flamary.

What is a kernel ?

Measuring similarities between objects

I Two “objects” x, y in an abstract
space X .

I A kernel aims at measuring “how
similar” is x from y.

I e.g. X = Rd , kernel(x, y) = 〈x, y〉 or
cosine similarity.

ML with kernels
I ML methods based on pairwise comparisons.

I By imposing constraints on the kernel (positive definite), we obtain a
general framework for learning from data (RKHS).

I + without making any assumptions regarding the type of data
(vectors, strings, graphs, images, ...)

A principle method for ERM
minf∈?

1
n

∑n
i=1 `(yi , f (xi))→ look for f in specific space (RKHS)

What is a kernel ?

Measuring similarities between objects

I Two “objects” x, y in an abstract
space X .

I A kernel aims at measuring “how
similar” is x from y.

I e.g. X = Rd , kernel(x, y) = 〈x, y〉 or
cosine similarity.

ML with kernels
I ML methods based on pairwise comparisons.

I By imposing constraints on the kernel (positive definite), we obtain a
general framework for learning from data (RKHS).

I + without making any assumptions regarding the type of data
(vectors, strings, graphs, images, ...)

A principle method for ERM
minf∈?

1
n

∑n
i=1 `(yi , f (xi))→ look for f in specific space (RKHS)

What is a kernel ?

Measuring similarities between objects

I Two “objects” x, y in an abstract
space X .

I A kernel aims at measuring “how
similar” is x from y.

I e.g. X = Rd , kernel(x, y) = 〈x, y〉 or
cosine similarity.

ML with kernels
I ML methods based on pairwise comparisons.

I By imposing constraints on the kernel (positive definite), we obtain a
general framework for learning from data (RKHS).

I + without making any assumptions regarding the type of data
(vectors, strings, graphs, images, ...)

A principle method for ERM
minf∈?

1
n

∑n
i=1 `(yi , f (xi))→ look for f in specific space (RKHS)

Table of contents

Kernels in Machine Learning
A bit of kernels theory
Back to machine learning: the representer theorem

Kernels for structured data
Basics of graphs-kernels
Focus on Weisfeler-Lehman Kernel
Conclusion

The definition

Positive definite (PD) kernel
Let X be some space. A function κ : X × X 7→ R is a PD kernel if

I It is symmetric κ(x, y) = κ(y, x).

I For any x1, · · · , xn ∈ X and c1, · · · , cn ∈ R

n∑
i,j=1

cicjκ(xi , xj) ≥ 0 . (1)

Remarks
I (1) equiv. K := (κ(xi , xj))ij ∈ Rn×n is a PSD matrix ∀x1, · · · , xn ∈ X .

I For κ(x, y) = 〈x, y〉 if X = (x1, · · · , xn)> then c>Kc = ‖X>c‖2
2 ≥ 0.

I Works also for κ(x, y) = 〈Φ(x),Φ(y)〉 for any Φ.

I Not entirely obvious κ(x, y) = exp(−‖x− y‖2
2/2σ2). (see TD)

The definition

Positive definite (PD) kernel
Let X be some space. A function κ : X × X 7→ R is a PD kernel if

I It is symmetric κ(x, y) = κ(y, x).

I For any x1, · · · , xn ∈ X and c1, · · · , cn ∈ R

n∑
i,j=1

cicjκ(xi , xj) ≥ 0 . (1)

Remarks
I (1) equiv. K := (κ(xi , xj))ij ∈ Rn×n is a PSD matrix ∀x1, · · · , xn ∈ X .

I For κ(x, y) = 〈x, y〉 if X = (x1, · · · , xn)> then c>Kc = ‖X>c‖2
2 ≥ 0.

I Works also for κ(x, y) = 〈Φ(x),Φ(y)〉 for any Φ.

I Not entirely obvious κ(x, y) = exp(−‖x− y‖2
2/2σ2). (see TD)

Properties of PD kernel

Basic properties (see TD)
Let κ1, κ2, · · · be fixed PD kernels.

I γκ1 for any γ > 0 is a PD kernel.

I κ1 + κ2 is a PD kernel.

I κ(x, y) := lim
n→+∞

κn(x, y) is a PD kernel (provided it exists).

I κ(x, y) := κ1(x, y)κ2(x, y) is a PD kernel.

I If f : X → R then κ(x, y) := f (x)κ1(x, y)f (y) is a PD kernel.

Changing the features

Changing the features

Polynomial kernel
Consider Φ : R2 → R3 defined by Φ(x = (x1, x2)) = (x2

1 ,
√

2x1x2, x
2
2). Then:

κ(x, y) := 〈Φ(x),Φ(y)〉R3 = · · · = (〈x, y〉R2)2 .

Basic properties show that it defines a PD kernel.

Changing the features

Polynomial kernel
Consider Φ : R2 → R3 defined by Φ(x = (x1, x2)) = (x2

1 ,
√

2x1x2, x
2
2). Then:

κ(x, y) := 〈Φ(x),Φ(y)〉R3 = · · · = (〈x, y〉R2)2 .

Basic properties show that it defines a PD kernel.

I More generally κ(x, y) = 〈x, y〉m.

Translation invariant kernels

A generic form of kernel on X = Rd

I For κ0 : Rd → R, kernel defined by

κ(x, y) = κ0(x− y)

I e.g. Gaussian kernel κ(x, y) = exp(−‖x− y‖2
2/(2σ2)).

I Recall Fourier transform: f̂ (ω) =
∫
Rd f (x)e−i〈ω,x〉dx.

I Based on Bochner’s theorem (see Wendland 2004, Theorem 6.11):

κ is a PD kernel ⇐⇒ ∀ω ∈ Rd , κ̂0(ω) ≥ 0

−4 −2 0 2 4

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Functions

exp(−t2)

cos(πt)

sin(2πt)/(2πt)

−10 −5 0 5 10
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
Fourier transforms

√
π exp(−w2/4)

1(−2π,2π)

(1/2)(δ−π + δπ)

Main property of PD kernel

Main property: Moore–Aronszajn theorem Aronszajn 1950

A function κ : X × X → R is a PD kernel if and only if there exists a
Hilbert space H and a mapping Φ : X → H such that

∀x, y ∈ X , κ(x, y) = 〈Φ(x),Φ(y)〉H .

Main property of PD kernel

Main property: Moore–Aronszajn theorem Aronszajn 1950

A function κ : X × X → R is a PD kernel if and only if there exists a
Hilbert space H and a mapping Φ : X → H such that

∀x, y ∈ X , κ(x, y) = 〈Φ(x),Φ(y)〉H .

Main property of PD kernel

Some reminders
I 〈·, ·〉H : H×H → R is a bilinear, symmetric and such that 〈x, x〉H > 0

for any x 6= 0.

I A vector space endowed with an inner product is called pre-Hilbert. It
is endowed with ‖x‖H :=

√
〈x, x〉H.

I A Hilbert space is a pre-Hilbert space complete for the norm defined by
the inner product.

Proof of the theorem in the discrete case

On the board

Complete proof Steinwart and Christmann 2008, Theorem 4.16.

About the feature space

The feature map Φ and feature space H
I The feature space may have infinite dimension and is not unique.

I Polynomial kernel in 2D κ(x, y) = (〈x, y〉)2:

Φ(x = (x1, x2)) = (x2
1 , x

2
2 , x1x2, x1x2), H = R4

I Another possibility:

Φ(x = (x1, x2)) = (x2
1 , x

2
2 ,
√

2x1x2), H = R3

About the feature space

The feature map Φ and feature space H
I The feature space may have infinite dimension and is not unique.

I Polynomial kernel in 2D κ(x, y) = (〈x, y〉)2:

Φ(x = (x1, x2)) = (x2
1 , x

2
2 , x1x2, x1x2), H = R4

I Another possibility:

Φ(x = (x1, x2)) = (x2
1 , x

2
2 ,
√

2x1x2), H = R3

About the feature space

The feature map Φ and feature space H
I The feature space may have infinite dimension and is not unique.

I Gaussian Kernel in 1D κ(x , y) = exp(−|x − y |22/(2σ2)):

Φ(x) = e
− x2

2σ2

(
1,

√
1

1!σ2
x ,

√
1

2!σ4
x2,

√
1

3!σ6
x3, · · ·

)>
(Taylor series)

I Or H = L2(R) using κ(x , y) = 1
σ

√
2
π

∫ +∞
−∞ exp(− (x−t)2

σ2) exp(− (y−t)2

σ2)dt:

Φ(x) = t → 2
1
4

√
σπ

1
4

exp(− (x − t)2

σ2
)

About the feature space

The feature map Φ and feature space H
I The feature space may have infinite dimension and is not unique.

I Gaussian Kernel in 1D κ(x , y) = exp(−|x − y |22/(2σ2)):

Φ(x) = e
− x2

2σ2

(
1,

√
1

1!σ2
x ,

√
1

2!σ4
x2,

√
1

3!σ6
x3, · · ·

)>
(Taylor series)

I Or H = L2(R) using κ(x , y) = 1
σ

√
2
π

∫ +∞
−∞ exp(− (x−t)2

σ2) exp(− (y−t)2

σ2)dt:

Φ(x) = t → 2
1
4

√
σπ

1
4

exp(− (x − t)2

σ2
)

Reproducing Kernel Hilbert Space (RKHS)

From kernels to functions: motivating example

I Kernels can be used to define functions from X to R.

Φ : R2 → R3 = H

x =

[
x1

x2

]
7→ Φ(x) =

 x1

x2

x1x2

 and f (x) = a·x1+b·x2+c ·x1x2 (R2 → R)

I Consider θ = (a, b, c)> ∈ H then f (x) = 〈θ,Φ(x)〉H.

I Evaluation of f at x is an inner product in feature space.

Go into higher dimensions to
linearly separate the classes !

x1

x 2

x 1

x2

x
1 x2

Reproducing Kernel Hilbert Space (RKHS)

From kernels to functions: motivating example

I Kernels can be used to define functions from X to R.

Φ : R2 → R3 = H

x =

[
x1

x2

]
7→ Φ(x) =

 x1

x2

x1x2

 and f (x) = a·x1+b·x2+c ·x1x2 (R2 → R)

I Consider θ = (a, b, c)> ∈ H then f (x) = 〈θ,Φ(x)〉H.

I Evaluation of f at x is an inner product in feature space.

Go into higher dimensions to
linearly separate the classes !

x1

x 2

x 1

x2

x
1 x

2

Reproducing Kernel Hilbert Space (RKHS)

From kernels to functions: first idea
I Given H and Φ : X → H0: defines a kernel κ(x, y) = 〈Φ(x),Φ(y)〉H0

I And a space of functions from X to R.

H := {f : ∃θ ∈ H0,∀x ∈ X , f (x) = 〈θ,Φ(x)〉H0} .

I Endowed with the norm

‖f ‖H := inf{‖θ‖H0 : θ ∈ H0 with f = 〈θ,Φ(·)〉H0} (2)

I It is a Hilbert space of functions called the RKHS of κ.

I We can stop here... but...

From kernels to functions: second idea
I Given a PSD kernel κ : X × X → R.

I 1°) Find a “suitable” (Φ,H) such that κ(x, y) = 〈Φ(x),Φ(y)〉H (recall:
many possible)

I 2°) Build upon it to define a suitable space of functions.

(RKHS)

.

Reproducing Kernel Hilbert Space (RKHS)

From kernels to functions: first idea
I Given H and Φ : X → H0: defines a kernel κ(x, y) = 〈Φ(x),Φ(y)〉H0

I And a space of functions from X to R.

H := {f : ∃θ ∈ H0,∀x ∈ X , f (x) = 〈θ,Φ(x)〉H0} .

I Endowed with the norm

‖f ‖H := inf{‖θ‖H0 : θ ∈ H0 with f = 〈θ,Φ(·)〉H0} (2)

I It is a Hilbert space of functions called the RKHS of κ.

I We can stop here... but...

From kernels to functions: second idea
I Given a PSD kernel κ : X × X → R.

I 1°) Find a “suitable” (Φ,H) such that κ(x, y) = 〈Φ(x),Φ(y)〉H (recall:
many possible)

I 2°) Build upon it to define a suitable space of functions.

(RKHS)

.

Reproducing Kernel Hilbert Space (RKHS)

From kernels to functions: first idea
I Given H and Φ : X → H0: defines a kernel κ(x, y) = 〈Φ(x),Φ(y)〉H0

I And a space of functions from X to R.

H := {f : ∃θ ∈ H0,∀x ∈ X , f (x) = 〈θ,Φ(x)〉H0} .

I Endowed with the norm

‖f ‖H := inf{‖θ‖H0 : θ ∈ H0 with f = 〈θ,Φ(·)〉H0} (2)

I It is a Hilbert space of functions called the RKHS of κ.

I We can stop here... but...

From kernels to functions: second idea
I Given a PSD kernel κ : X × X → R.

I 1°) Find a “suitable” (Φ,H) such that κ(x, y) = 〈Φ(x),Φ(y)〉H (recall:
many possible)

I 2°) Build upon it to define a suitable space of functions.(RKHS).

Reproducing Kernel Hilbert Space (RKHS)

Let κ be fixed
I Among all (Φ,H) mentioned in Aronszjan’s theorem one H, called

RKHS, is of interest to us.

I This is a space of functions from X to R.

I Each data point x ∈ X will be represented by a function given by the
canonical feature map

Φ(x) = κ(·, x) : X → R

Example

I Consider X = R we could decide to represent x ∈ R as a Gaussian
function centered at x :

Φ(x) = y → exp(−(x − y)2/(2σ2))

I What is the corresponding space H (if it exists)? What would be the
inner-product?

Reproducing Kernel Hilbert Space (RKHS)

Let κ be fixed
I Among all (Φ,H) mentioned in Aronszjan’s theorem one H, called

RKHS, is of interest to us.

I This is a space of functions from X to R.

I Each data point x ∈ X will be represented by a function given by the
canonical feature map

Φ(x) = κ(·, x) : X → R

Example

I Consider X = R we could decide to represent x ∈ R as a Gaussian
function centered at x :

Φ(x) = y → exp(−(x − y)2/(2σ2))

I What is the corresponding space H (if it exists)? What would be the
inner-product?

Reproducing Kernel Hilbert Space (RKHS)

Reproducing kernel and RKHS

Let H be a Hilbert space of functions from X to R with inner product
〈·, ·〉H. κ : X × X → R is called a reproducing kernel of H if

I ∀x ∈ X , κ(·, x) ∈ H
I κ satisfies the reproducing property: for any f ∈ H,

∀x ∈ X , f (x) = 〈f , κ(·, x)〉H .

If a reproducing kernel of H exists, then H is called a RKHS.

Reproducing Kernel Hilbert Space (RKHS)

Reproducing kernel and RKHS

Let H be a Hilbert space of functions from X to R with inner product
〈·, ·〉H. κ : X × X → R is called a reproducing kernel of H if

I ∀x ∈ X , κ(·, x) ∈ H
I κ satisfies the reproducing property: for any f ∈ H,

∀x ∈ X , f (x) = 〈f , κ(·, x)〉H .

If a reproducing kernel of H exists, then H is called a RKHS.

Important properties

I If H is a RKHS, then it has a unique reproducing kernel κ.

I (the feature map is not unique only the kernel is)

I A function κ can be the reproducing kernel of at most one RKHS.

Reproducing Kernel Hilbert Space (RKHS)

Reproducing kernel and RKHS

Let H be a Hilbert space of functions from X to R with inner product
〈·, ·〉H. κ : X × X → R is called a reproducing kernel of H if

I ∀x ∈ X , κ(·, x) ∈ H
I κ satisfies the reproducing property: for any f ∈ H,

∀x ∈ X , f (x) = 〈f , κ(·, x)〉H .

If a reproducing kernel of H exists, then H is called a RKHS.

RKHS and feature spaces

Let H be a RKHS with reproducing kernel κ. Then H is one feature
space associated to κ, where the feature map is ∀x ∈ X ,Φ(x) = κ(·, x).

Examples of RKHS

So far these functions are a little bit abstract:

Two questions

I Given a PD kernel κ what is the RKHS associated to κ ?

I Given a function space, is it a RKHS and what is the reproducing
kernel ?

Battery of examples

I (on the board) The RKHS associated to κ(x, y) = 〈x, y〉 is

H = {fθ = x→ 〈θ, x〉;θ ∈ Rd}

endowed with the dot product 〈fθ1 , fθ2〉H := 〈θ1,θ2〉.
I (homework) What is the RKHS associated to κ(x, y) = 〈x, y〉2 ?

I The space L2(Rd) is not a RKHS.

Examples of RKHS

So far these functions are a little bit abstract:

Two questions

I Given a PD kernel κ what is the RKHS associated to κ ?

I Given a function space, is it a RKHS and what is the reproducing
kernel ?

Battery of examples

I (on the board) The RKHS associated to κ(x, y) = 〈x, y〉 is

H = {fθ = x→ 〈θ, x〉;θ ∈ Rd}

endowed with the dot product 〈fθ1 , fθ2〉H := 〈θ1,θ2〉.
I (homework) What is the RKHS associated to κ(x, y) = 〈x, y〉2 ?

I The space L2(Rd) is not a RKHS.

Examples of RKHS

Battery of examples

I The Paley-Wiener space (bandwidth
limited Fourier transform):

Fπ := {f ∈ L2(R) : supp f̂ ∈ [−π, π]}

where f̂ is the Fourier transform of f .

I Inverse Fourier transform

f (t) =
1√
2π

∫ π

−π
f̂ (ω)e iωtdω = 〈f̂ , ω → e−iωt

√
2π
〉L2([−π,π])

I Plancherel-Parseval theorem

∀t ∈ R, f (t) = 〈f̂ , ω → e−iωt

√
2π
〉L2([−π,π]) = 〈f , sin(π(· − t))

π(· − t)
〉L2(R)

I The kernel κ(s, t) = sin(π(s−t))
π(s−t)

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

s

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

κ(s, t) = sin(π(s− t))/(π(s− t))
t = −1.0

t = 0.0

t = 1.0

Examples of RKHS

Battery of examples

I The Paley-Wiener space (bandwidth
limited Fourier transform):

Fπ := {f ∈ L2(R) : supp f̂ ∈ [−π, π]}

where f̂ is the Fourier transform of f .
I Inverse Fourier transform

f (t) =
1√
2π

∫ π

−π
f̂ (ω)e iωtdω = 〈f̂ , ω → e−iωt

√
2π
〉L2([−π,π])

I Plancherel-Parseval theorem

∀t ∈ R, f (t) = 〈f̂ , ω → e−iωt

√
2π
〉L2([−π,π]) = 〈f , sin(π(· − t))

π(· − t)
〉L2(R)

I The kernel κ(s, t) = sin(π(s−t))
π(s−t)

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

s

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

κ(s, t) = sin(π(s− t))/(π(s− t))
t = −1.0

t = 0.0

t = 1.0

Examples of RKHS

Battery of examples

I The Paley-Wiener space (bandwidth
limited Fourier transform):

Fπ := {f ∈ L2(R) : supp f̂ ∈ [−π, π]}

where f̂ is the Fourier transform of f .
I Inverse Fourier transform

f (t) =
1√
2π

∫ π

−π
f̂ (ω)e iωtdω = 〈f̂ , ω → e−iωt

√
2π
〉L2([−π,π])

I Plancherel-Parseval theorem

∀t ∈ R, f (t) = 〈f̂ , ω → e−iωt

√
2π
〉L2([−π,π]) = 〈f , sin(π(· − t))

π(· − t)
〉L2(R)

I The kernel κ(s, t) = sin(π(s−t))
π(s−t)

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

s

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

κ(s, t) = sin(π(s− t))/(π(s− t))
t = −1.0

t = 0.0

t = 1.0

Examples of RKHS

Battery of examples

I Translation invariant PD kernels on Rd κ(x, y) = κ0(x− y) with
κ0 ∈ L1(Rd) ∩ C (Rd) and ∀ω ∈ Rd , κ̂0(ω) ≥ 0.

I The corresponding RKHS is

H = {f ∈ L2(Rd) ∩ C (Rd) : f̂ /
√
κ̂0 ∈ L2(Rd)}

I The inner product is given by:

〈f , g〉H := (2π)−d/2

∫
Rd

f̂ (ω)ĝ(ω)

κ̂0(ω)
dω .

I Special case: Matèrn kernel κ̂0(ω) ∝ (α2 + ‖ω‖2
2)−s , s > d/2

I Sobolev spaces of order s: ‖f ‖2
H = smoothness of the functions as its

derivatives in L2(Rd).

Examples of RKHS

Battery of examples

I Translation invariant PD kernels on Rd κ(x, y) = κ0(x− y) with
κ0 ∈ L1(Rd) ∩ C (Rd) and ∀ω ∈ Rd , κ̂0(ω) ≥ 0.

I The corresponding RKHS is

H = {f ∈ L2(Rd) ∩ C (Rd) : f̂ /
√
κ̂0 ∈ L2(Rd)}

I The inner product is given by:

〈f , g〉H := (2π)−d/2

∫
Rd

f̂ (ω)ĝ(ω)

κ̂0(ω)
dω .

I Special case: Matèrn kernel κ̂0(ω) ∝ (α2 + ‖ω‖2
2)−s , s > d/2

I Sobolev spaces of order s: ‖f ‖2
H = smoothness of the functions as its

derivatives in L2(Rd).

Examples of RKHS

Battery of examples

I Translation invariant PD kernels on Rd κ(x, y) = κ0(x− y) with
κ0 ∈ L1(Rd) ∩ C (Rd) and ∀ω ∈ Rd , κ̂0(ω) ≥ 0.

I The corresponding RKHS is

H = {f ∈ L2(Rd) ∩ C (Rd) : f̂ /
√
κ̂0 ∈ L2(Rd)}

I The inner product is given by:

〈f , g〉H := (2π)−d/2

∫
Rd

f̂ (ω)ĝ(ω)

κ̂0(ω)
dω .

I Special case: Matèrn kernel κ̂0(ω) ∝ (α2 + ‖ω‖2
2)−s , s > d/2

I Sobolev spaces of order s: ‖f ‖2
H = smoothness of the functions as its

derivatives in L2(Rd).

Reproducing Kernel Hilbert Space (RKHS)

Reproducing kernels are PD kernels

A function κ : X × X → R is a reproducing kernel if and only if it is a
PD kernel.

Remarks
I One direction easy: a reproducing kernel is a PD kernel (on the board).

I The other more work: use Moore–Aronszajn theorem + F + Steinwart
and Christmann 2008, Theorem 4.21.

Important consequence

I Any PSD kernel defines a Hilbert space of functions from X to R.

I These functions satisfy

∀x ∈ X , f (x) = 〈f , κ(·, x)〉H .

I Abstract view of H:

H = Span{κ(·, x); x ∈ X} .

Reproducing Kernel Hilbert Space (RKHS)

Reproducing kernels are PD kernels

A function κ : X × X → R is a reproducing kernel if and only if it is a
PD kernel.

Remarks
I One direction easy: a reproducing kernel is a PD kernel (on the board).

I The other more work: use Moore–Aronszajn theorem + F + Steinwart
and Christmann 2008, Theorem 4.21.

Important consequence

I Any PSD kernel defines a Hilbert space of functions from X to R.

I These functions satisfy

∀x ∈ X , f (x) = 〈f , κ(·, x)〉H .

I Abstract view of H:

H = Span{κ(·, x); x ∈ X} .

Reproducing Kernel Hilbert Space (RKHS)

Reproducing kernels are PD kernels

A function κ : X × X → R is a reproducing kernel if and only if it is a
PD kernel.

Remarks
I One direction easy: a reproducing kernel is a PD kernel (on the board).

I The other more work: use Moore–Aronszajn theorem + F + Steinwart
and Christmann 2008, Theorem 4.21.

Important consequence

I Any PSD kernel defines a Hilbert space of functions from X to R.

I These functions satisfy

∀x ∈ X , f (x) = 〈f , κ(·, x)〉H .

I Abstract view of H:

H = Span{κ(·, x); x ∈ X} .

Table of contents

Kernels in Machine Learning
A bit of kernels theory
Back to machine learning: the representer theorem

Kernels for structured data
Basics of graphs-kernels
Focus on Weisfeler-Lehman Kernel
Conclusion

Recap on supervised ML

Samples + labels:

X =

x>1
x>2
...

x>n

 y =

y1

y2

...
yn

Classification Regression

Supervised learning

I The dataset contains the samples (xi , yi)
n
i=1 where xi is the feature

sample and yi ∈ Y its label.

I Prediction space Y can be:
I Y = {−1, 1} or Y = {1, . . . ,K} for classification problems.
I Y = R for regression problems (Rp for multi-output regression).

Minimizing the averaged error on the training data
To find f : X → Y the idea is to minimize:

min
f

1

n

n∑
i=1

`(yi , f (xi)) + λReg(f) (ERM)

Recap on supervised ML

Samples + labels:

X =

x>1
x>2
...

x>n

 y =

y1

y2

...
yn

Classification Regression

Supervised learning

I The dataset contains the samples (xi , yi)
n
i=1 where xi is the feature

sample and yi ∈ Y its label.

I Prediction space Y can be:
I Y = {−1, 1} or Y = {1, . . . ,K} for classification problems.
I Y = R for regression problems (Rp for multi-output regression).

Minimizing the averaged error on the training data
To find f : X → Y the idea is to minimize:

min
f

1

n

n∑
i=1

`(yi , f (xi)) + λReg(f) (ERM)

Supervised learning

Minimizing the averaged error on the training data
To find f : X → Y the idea is to minimize:

min
f∈???

1

n

n∑
i=1

`(yi , f (xi)) + λReg(f) (ERM)

Problems
I How to choose the adequate space of functions for f ?

I How to properly regularize ?

I How to efficiently minimize the quantity ?

One solution
I When Y ⊂ R we can consider f ∈ H where H is a RKHS.

I A natural candidate Reg(f) = ‖f ‖2
H: the higher the smoother f is.

I How to ensure that this is not so difficult ?

Supervised learning

Minimizing the averaged error on the training data
To find f : X → Y the idea is to minimize:

min
f∈???

1

n

n∑
i=1

`(yi , f (xi)) + λReg(f) (ERM)

Problems
I How to choose the adequate space of functions for f ?

I How to properly regularize ?

I How to efficiently minimize the quantity ?

One solution
I When Y ⊂ R we can consider f ∈ H where H is a RKHS.

I A natural candidate Reg(f) = ‖f ‖2
H: the higher the smoother f is.

I How to ensure that this is not so difficult ?

Interpretation of minimization on a RKHS

I Suppose X = Rd and H a RKHS. Consider ERM

min
f∈H

1

n

n∑
i=1

`(yi , f (xi)) + λ‖f ‖2
H

I Since f ∈ H, then f (x) = 〈f , κ(·, x)〉H = 〈f ,Φ(x)〉H.
I Rewriting ERM in RKHS as

min
θ∈H

1

n

n∑
i=1

`(yi , 〈θ,Φ(xi)〉H) + λ‖θ‖2
H

Interpretation of minimization on a RKHS

I Suppose X = Rd and H a RKHS. Consider ERM

min
f∈H

1

n

n∑
i=1

`(yi , f (xi)) + λ‖f ‖2
H

I Since f ∈ H, then f (x) = 〈f , κ(·, x)〉H = 〈f ,Φ(x)〉H.
I Rewriting ERM in RKHS as

min
θ∈H

1

n

n∑
i=1

`(yi , 〈θ,Φ(xi)〉H) + λ‖θ‖2
H

Important interpretation

I Φ : X → H pushes the points to a potentially very high-dimensional
space (even ∞): more powerful representation.

I Then linear classification/regression is made on this high-dim space H
I We can deduce the function in low-dim from the high-dim.

Interpretation of minimization on a RKHS

I Suppose X = Rd and H a RKHS. Consider ERM

min
f∈H

1

n

n∑
i=1

`(yi , f (xi)) + λ‖f ‖2
H

I Since f ∈ H, then f (x) = 〈f , κ(·, x)〉H = 〈f ,Φ(x)〉H.
I Rewriting ERM in RKHS as

min
θ∈H

1

n

n∑
i=1

`(yi , 〈θ,Φ(xi)〉H) + λ‖θ‖2
H

Go into higher dimensions to
linearly separate the classes !

x1

x 2

x 1

x2

x
1 x

2

Interpretation of minimization on a RKHS

I Suppose X = Rd and H a RKHS. Consider ERM

min
f∈H

1

n

n∑
i=1

`(yi , f (xi)) + λ‖f ‖2
H

I Since f ∈ H, then f (x) = 〈f , κ(·, x)〉H = 〈f ,Φ(x)〉H.
I Rewriting ERM in RKHS as

min
θ∈H

1

n

n∑
i=1

`(yi , 〈θ,Φ(xi)〉H) + λ‖θ‖2
H

Go into higher dimensions to
linearly separate the classes !

I But how to implement
Φ(x) ∈ H on a computer
if dimH =∞ ?????

I How to solve ERM in H
????

x1

x 2

x 1

x2

x
1 x

2

The representer theorem

Main result

I Let X be any space, D = {x1, · · · , xn} ⊂ X a finite set of points.

I H a RKHS with reproducing kernel κ : X × X → R.

I Let Ψ : Rn+1 → R any function that is strictly increasing with
respect to the last variable.

I Then any solution f ? of the minimization problem

min
f∈H

Ψ(f (x1), · · · , f (xn), ‖f ‖2
H)

can be written as

∀x ∈ X , f ?(x) =
n∑

i=1

θiκ(x, xi) for some θ ∈ Rn .

Important remarks

I Although the RKHS can be of infinite dimension any solution lives in
Span{κ(·, x1), · · · , κ(·, xn)} which is a subspace of dimension n.

I Works for any X and Ψ = Ψ0 + g with g ↗ !!!

The representer theorem

Main result

I Let X be any space, D = {x1, · · · , xn} ⊂ X a finite set of points.

I H a RKHS with reproducing kernel κ : X × X → R.

I Let Ψ : Rn+1 → R any function that is strictly increasing with
respect to the last variable.

I Then any solution f ? of the minimization problem

min
f∈H

Ψ(f (x1), · · · , f (xn), ‖f ‖2
H)

can be written as

∀x ∈ X , f ?(x) =
n∑

i=1

θiκ(x, xi) for some θ ∈ Rn .

Important remarks

I Although the RKHS can be of infinite dimension any solution lives in
Span{κ(·, x1), · · · , κ(·, xn)} which is a subspace of dimension n.

I Works for any X and Ψ = Ψ0 + g with g ↗ !!!

Practical use of the representer theorem (1/2)

I When the representer theorem holds we can simply look for f as

∀x ∈ X , f (x) =
n∑

i=1

θiκ(x, xi) for some θ ∈ Rn .

I Define K := (κ(xi , xj))ij .

I Then , for any j ∈ [[n]]

f (xj) =
n∑

i=1

θiκ(xi , xj)= [Kθ]j .

I Also

‖f ‖2
H = ‖

n∑
i=1

θiκ(·, xi)‖2
H = 〈

n∑
i=1

θiκ(·, xi),
n∑

j=1

θjκ(·, xj)〉H

=
∑
ij

θiθj〈κ(·, xi), κ(·, xj)〉H =
∑
ij

θiθjκ(xi , xj)

= θ>Kθ .

Practical use of the representer theorem (1/2)

I When the representer theorem holds we can simply look for f as

∀x ∈ X , f (x) =
n∑

i=1

θiκ(x, xi) for some θ ∈ Rn .

I Define K := (κ(xi , xj))ij .

I Then , for any j ∈ [[n]]

f (xj) =
n∑

i=1

θiκ(xi , xj)= [Kθ]j .

I Also

‖f ‖2
H = ‖

n∑
i=1

θiκ(·, xi)‖2
H = 〈

n∑
i=1

θiκ(·, xi),
n∑

j=1

θjκ(·, xj)〉H

=
∑
ij

θiθj〈κ(·, xi), κ(·, xj)〉H =
∑
ij

θiθjκ(xi , xj)

= θ>Kθ .

Practical use of the representer theorem (2/2)

I Therefore the problem

min
f∈H

Ψ(f (x1), · · · , f (xn), ‖f ‖2
H)

I is equivalent to

min
θ∈Rn

Ψ([Kθ]1, · · · , [Kθ]n,θ
>Kθ)

I 1°) To tackle it we only need the Gram matrix K: kernel trick !

I 2°) Can be used whatever X , κ !

I 3°) We can solve it on a computer since finite dimensional !

I 4°) It can usually be solved analytically or by numerical methods.

Application to ERM
If we look for f in a RKHS then we need to solve

min
θ∈Rn

1

n

n∑
i=1

`(yi , [Kθ]i) + λθ>Kθ

Practical use of the representer theorem (2/2)

I Therefore the problem

min
f∈H

Ψ(f (x1), · · · , f (xn), ‖f ‖2
H)

I is equivalent to

min
θ∈Rn

Ψ([Kθ]1, · · · , [Kθ]n,θ
>Kθ)

I 1°) To tackle it we only need the Gram matrix K: kernel trick !

I 2°) Can be used whatever X , κ !

I 3°) We can solve it on a computer since finite dimensional !

I 4°) It can usually be solved analytically or by numerical methods.

Application to ERM
If we look for f in a RKHS then we need to solve

min
θ∈Rn

1

n

n∑
i=1

`(yi , [Kθ]i) + λθ>Kθ

Application to regression

Setting

I xi ∈ X (not necessarily Rd !) and yi ∈ R, y = (y1, · · · , yn)> ∈ Rn

I We consider the square loss `(y , y ′) = (y − y ′)2

I The ERM in the RKHS is

min
f∈H

1

n

n∑
i=1

(yi − f (xi))2 + λ‖f ‖2
H .

Kernel Ridge Regression
The ERM in the RKHS is equivalent to the minimization problem:

min
θ∈Rn

1

n
‖y −Kθ‖2

2 + λθ>Kθ

How can we solve it ? What is the time/memory complexity ?

Solution

Given by θ? = (K + λnI)−1y, ∀x ∈ X , f ?(x) =
∑n

i=1 θ
?
i κ(x, xi).

Application to regression

Setting

I xi ∈ X (not necessarily Rd !) and yi ∈ R, y = (y1, · · · , yn)> ∈ Rn

I We consider the square loss `(y , y ′) = (y − y ′)2

I The ERM in the RKHS is

min
f∈H

1

n

n∑
i=1

(yi − f (xi))2 + λ‖f ‖2
H .

Kernel Ridge Regression
The ERM in the RKHS is equivalent to the minimization problem:

min
θ∈Rn

1

n
‖y −Kθ‖2

2 + λθ>Kθ

How can we solve it ? What is the time/memory complexity ?

Solution

Given by θ? = (K + λnI)−1y, ∀x ∈ X , f ?(x) =
∑n

i=1 θ
?
i κ(x, xi).

Application to regression

Setting

I xi ∈ X (not necessarily Rd !) and yi ∈ R, y = (y1, · · · , yn)> ∈ Rn

I We consider the square loss `(y , y ′) = (y − y ′)2

I The ERM in the RKHS is

min
f∈H

1

n

n∑
i=1

(yi − f (xi))2 + λ‖f ‖2
H .

Kernel Ridge Regression
The ERM in the RKHS is equivalent to the minimization problem:

min
θ∈Rn

1

n
‖y −Kθ‖2

2 + λθ>Kθ

How can we solve it ? What is the time/memory complexity ?

Solution

Given by θ? = (K + λnI)−1y, ∀x ∈ X , f ?(x) =
∑n

i=1 θ
?
i κ(x, xi).

Application to regression

I Gaussian kernel κ(x , x ′) = exp(−|x − x ′|2/(2σ2))

I Regularization parameter λ

x

y

noisy samples

True func.

λ = 1e− 08 λ = 0.0001 λ = 0.01

λ = 0.1 λ = 1 λ = 10

Kernel ridge regression with Gaussian kernel

Kernel ridge regression vs linear regression

I Take X = Rd and the linear kernel κ(x, y) = 〈x, y〉.
I Let X = (x1, ·, xn)> ∈ Rn×d the data. The Gram matrix is K = XX>.
I Then corresponding function is

f ?(x) =
n∑

i=1

θ?i κ(x, xi) = 〈x,
n∑

i=1

θ?i xi 〉 = 〈x,w?〉.

I We have w? = X>(XX> + λnIn)−1y.

`2 penalized linear regression: ridge regression
The problem

min
w∈Rd

1

n

n∑
i=1

(yi −w>xi)
2 + λ‖w‖2

2 has solution w? = (X>X + λnId)−1X>y.

Matrix inversion lemma

(X>X + λnId)−1X> = X>(XX> + λnIn)−1

I Both agree !

I Complexity roughly: KRR O(n3), RR O(min{d3, n3}).

Kernel ridge regression vs linear regression

I Take X = Rd and the linear kernel κ(x, y) = 〈x, y〉.
I Let X = (x1, ·, xn)> ∈ Rn×d the data. The Gram matrix is K = XX>.
I Then corresponding function is

f ?(x) =
n∑

i=1

θ?i κ(x, xi) = 〈x,
n∑

i=1

θ?i xi 〉 = 〈x,w?〉.

I We have w? = X>(XX> + λnIn)−1y.

`2 penalized linear regression: ridge regression
The problem

min
w∈Rd

1

n

n∑
i=1

(yi −w>xi)
2 + λ‖w‖2

2 has solution w? = (X>X + λnId)−1X>y.

Matrix inversion lemma

(X>X + λnId)−1X> = X>(XX> + λnIn)−1

I Both agree !

I Complexity roughly: KRR O(n3), RR O(min{d3, n3}).

Kernel ridge regression vs linear regression

I Take X = Rd and the linear kernel κ(x, y) = 〈x, y〉.
I Let X = (x1, ·, xn)> ∈ Rn×d the data. The Gram matrix is K = XX>.
I Then corresponding function is

f ?(x) =
n∑

i=1

θ?i κ(x, xi) = 〈x,
n∑

i=1

θ?i xi 〉 = 〈x,w?〉.

I We have w? = X>(XX> + λnIn)−1y.

`2 penalized linear regression: ridge regression
The problem

min
w∈Rd

1

n

n∑
i=1

(yi −w>xi)
2 + λ‖w‖2

2 has solution w? = (X>X + λnId)−1X>y.

Matrix inversion lemma

(X>X + λnId)−1X> = X>(XX> + λnIn)−1

I Both agree !

I Complexity roughly: KRR O(n3), RR O(min{d3, n3}).

Binary classification

⇒

Objective

(xi , yi)
n
i=1 ⇒ f : Rd → {−1, 1}

I Train a function f (x) = y ∈ Y predicting a binary value (Y = {−1, 1}).

I f (x) = 0 defines the boundary on the partition of the feature space.

ERM in RKHS

min
f∈H

1

n

n∑
i=1

`(yi , f (xi)) + λ‖f ‖2
H .

Loss functions

A focus on classification problems Y = {−1, 1}

`(yi , f (xi)) = Φ(yi f (xi)) with Φ non-increasing.

I yi f (xi) is the margin (on the board).

I `(yi , f (xi)) = 1yi f (xi)≤0 (0/1 loss)

I `(yi , f (xi)) = max{0, 1− yi f (xi)} (hinge loss: SVM)

I `(yi , f (xi)) = log(1 + e−yi f (xi)) (logistic loss)

4 3 2 1 0 1 2 3 40.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
logistic log(1 + e x)
hinge loss max(1 x, 0)
0/1 loss
square (1 x)2

Loss functions

A focus on classification problems Y = {−1, 1}

`(yi , f (xi)) = Φ(yi f (xi)) with Φ non-increasing.

I yi f (xi) is the margin (on the board).

I `(yi , f (xi)) = 1yi f (xi)≤0 (0/1 loss)

I `(yi , f (xi)) = max{0, 1− yi f (xi)} (hinge loss: SVM)

I `(yi , f (xi)) = log(1 + e−yi f (xi)) (logistic loss)

4 3 2 1 0 1 2 3 40.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
logistic log(1 + e x)
hinge loss max(1 x, 0)
0/1 loss
square (1 x)2

Loss functions

A focus on classification problems Y = {−1, 1}

`(yi , f (xi)) = Φ(yi f (xi)) with Φ non-increasing.

I yi f (xi) is the margin (on the board).

I `(yi , f (xi)) = 1yi f (xi)≤0 (0/1 loss)

I `(yi , f (xi)) = max{0, 1− yi f (xi)} (hinge loss: SVM)

I `(yi , f (xi)) = log(1 + e−yi f (xi)) (logistic loss)

4 3 2 1 0 1 2 3 40.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
logistic log(1 + e x)
hinge loss max(1 x, 0)
0/1 loss
square (1 x)2

Support Vector Machines (SVM)

Definition
I The hinge-loss is the function R→ R+:

Φhinge(x) = max(1− x , 0)

=

{
0 if x ≥ 1

1− x otherwise

I SVM is the corresponding large-margin
classifier, which solves:

min
f∈H

1

n

n∑
i=1

Φhinge(yi f (xi)) + λ‖f ‖2
H .

1
yf (x)

0

2

4

6

`(
y
,f

(x
))

Hinge loss

Solving for the SVM (details in Steinwart and Christmann 2008)

I Representer theorem: sol. of the form f ?(x) =
∑n

i=1 θ
?
i κ(x, xi).

I θ? can be found by solving a quadratic program (QP).

I Again: we only need to know the Gram matrix K = (κ(xi , xj))ij .

Support Vector Machines (SVM)

Definition
I The hinge-loss is the function R→ R+:

Φhinge(x) = max(1− x , 0)

=

{
0 if x ≥ 1

1− x otherwise

I SVM is the corresponding large-margin
classifier, which solves:

min
f∈H

1

n

n∑
i=1

Φhinge(yi f (xi)) + λ‖f ‖2
H .

1
yf (x)

0

2

4

6

`(
y
,f

(x
))

Hinge loss

Solving for the SVM (details in Steinwart and Christmann 2008)

I Representer theorem: sol. of the form f ?(x) =
∑n

i=1 θ
?
i κ(x, xi).

I θ? can be found by solving a quadratic program (QP).

I Again: we only need to know the Gram matrix K = (κ(xi , xj))ij .

What is SVM doing ?

What is SVM doing ?

What is SVM doing ?

What is SVM doing ?

What is SVM doing ?

What is SVM doing ?

Example

Linear SVM Gaussian SVM

Conclusion

I Kernel theory is very rich, kernels are quite simple but also versatile.

I Defines a very general way of learning classifiers/regressors on any kind
of space.

I Based on the representer theorem: we only need the Gram matrix !

I Difficulties: the choice of the kernel (see TD), also can be expensive.

Table of contents

Kernels in Machine Learning
A bit of kernels theory
Back to machine learning: the representer theorem

Kernels for structured data
Basics of graphs-kernels
Focus on Weisfeler-Lehman Kernel
Conclusion

Kernels for structured data

Objective
Given a dataset of graphs (G1, · · · ,Gn) can we build machine learning
models to do:

I Supervised learning: each graph associated to yi ∈ Y.

I Unsupervised learning: PCA, Kernel PCA, graph embedding...

Application of RKHS for graphs
Let X = { set of all graphs } can we build interesting kernels
κ : X × X → R ?

I For G ,G ′ ∈ X , κ(G ,G ′) is a notion of “similarity” between graphs.

I Gram matrix K = (κ(Gi ,Gj))(i,j)∈[[n]]2 .

I Then do stuff...

Some notations
A graph G = (V ,E). Labeling function if attributes/labels `G : V ∪ E → S
(S discrete or continuous ⊂ RN)

Kernels for structured data

Objective
Given a dataset of graphs (G1, · · · ,Gn) can we build machine learning
models to do:

I Supervised learning: each graph associated to yi ∈ Y.

I Unsupervised learning: PCA, Kernel PCA, graph embedding...

Application of RKHS for graphs
Let X = { set of all graphs } can we build interesting kernels
κ : X × X → R ?

I For G ,G ′ ∈ X , κ(G ,G ′) is a notion of “similarity” between graphs.

I Gram matrix K = (κ(Gi ,Gj))(i,j)∈[[n]]2 .

I Then do stuff...

Some notations
A graph G = (V ,E). Labeling function if attributes/labels `G : V ∪ E → S
(S discrete or continuous ⊂ RN)

Kernels for structured data

Objective
Given a dataset of graphs (G1, · · · ,Gn) can we build machine learning
models to do:

I Supervised learning: each graph associated to yi ∈ Y.

I Unsupervised learning: PCA, Kernel PCA, graph embedding...

Application of RKHS for graphs
Let X = { set of all graphs } can we build interesting kernels
κ : X × X → R ?

I For G ,G ′ ∈ X , κ(G ,G ′) is a notion of “similarity” between graphs.

I Gram matrix K = (κ(Gi ,Gj))(i,j)∈[[n]]2 .

I Then do stuff...

Some notations
A graph G = (V ,E). Labeling function if attributes/labels `G : V ∪ E → S
(S discrete or continuous ⊂ RN)

What is a good graph kernel ?

Properties of the graph kernel

I Handle graphs that are directed (or undirected) ?

I Handle node or edge labels or attributes that are present in the graphs?

I Efficient to compute ? Complexity w.r.t. |V |, |E |, dim ?

I Is there a particular relevant substructure (e.g. tree patterns) that
would preclude the choice of a particular kernel?

The kernel jungle

Surveys: K. Borgwardt et al. 2020; Nikolentzos, Siglidis, and Vazirgiannis
2021

Edge
attributes

Node
labels

Node
attributes

Edge
labels

All node-pairs

Node histogram

All edge-pairs

Edge histogram

Shortest-path

GraphHopper

Subtree pattern

Cyclic pattern

Graph edit distance

Graphlet

Direct product graph

Marginalized random walk

Random walk

Quantum walk

Weisfeiler-Lehman

Neighbourhood hash

Neighbourhood subgraph pairwise distance

Hadamard code

Propagation framework

Message passing

Multiscale Laplacian

Subgraph matching

Graph invariant framework

Hash graph kernels

Weighted decomposition

Optimal assignment

Deep graph kernels

Core based kernel framework

Figure 3.2: An overview of the kernels and which node and edge information is used by the kernel. Labels refer
to categorical features on the nodes or edges, whereas attributes refer to continuous features on the on nodes or
edges. The kernels are coloured according to their higher level categorisation (blue: bag of structures, yellow:
information propagation, pink: extensions), and are spaced according to the information that is included. The
graphlet kernel and quantum walk kernel do not incorporate any node or edge labels or attributes.

24

Nikolentzos, Siglidis, & Vazirgiannis

Graph Kernel Exp. �
Node Node

Type Complexity
Labels Attributes

Vertex Histogram 3 3 7 R-convolution O(n)

Edge Histogram 3 3 7 R-convolution O(m)

Random Walk 7† 3 3 R-convolution O(n3)

Subtree 7 3 3 R-convolution O(n24deg⇤
h)

Cyclic Pattern 3 3 7 intersection O((c + 2)n + 2m)

Shortest Path 7† 3 3 R-convolution O(n4)

Graphlet 3 7 7 R-convolution O(nk)

Weisfeiler-Lehman Subtree 3 3 7 R-convolution O(hm)

Neighborhood Hash 3 3 7 intersection O(hm)

Neighborhood Subgraph Pairwise Distance 3 3 7 R-convolution O(n2m log(m))

Lovász # 3 7 7 R-convolution O(n(s + nm
✏

) + s2)

SVM-# 3 7 7 R-convolution O(n(s + n2) + s2)

Ordered Decomposition DAGs 3 3 7 R-convolution O(n log n)

Pyramid Match 7 3 7 assignment O(ndL)

Weisfeiler-Lehman Optimal Assignment 7 3 7 assignment O(hm)

Subgraph Matching 7 3 3 R-convolution O(knk+1)

GraphHopper 7 3 3 R-convolution O(n4)

Graph Invariant Kernels 7 3 3 R-convolution O(n6)

Propagation 3 3 3 R-convolution O(hm)

Multiscale Laplacian 7 3 3 R-convolution O(n5h)

Table 2: Summary of selected graph kernels regarding computation by explicit feature
mapping (Exp. �), support for node-labeled and node-attributed graphs, type, and compu-
tational complexity. A dagger (†) implies that the kernel admits an explicit feature mapping
for certain types of graphs. The complexity refers to the worst-case theoretical complexity
for evaluating the kernel between two graphs. In practice, and for certain kinds of graphs,
some graph kernels (e. g., the shortest-path kernel) can be evaluated much more e�ciently.
The Table uses notation that has not been introduced yet: k: size of largest subgraph
considered, c: upper bound on the number of cycles, h: maximum distance between root of
neighborhood subgraph/subtree pattern and its nodes, s: number of sampled subgraphs, ✏:
additive error associated with semidefinite programming solvers, d: dimensionality of node
representations, L: number of levels.

walk kernel till the very popular Weisfeiler-Lehman subtree kernel. We next present some
approaches that were inspired from the neighborhood aggregation schmeme of the Weisfeiler-
Lehman subtree kernel, and then kernels that do not fall into either of the previous two
categories. The subequent subsections are devoted to assignment kernels, and to kernels
that can handle continuous node attributes. The final subsections deals with frameworks
and approaches that can be applied on top of existing graph kernels. An overview of the
graph kernels that are presented in this survey and their properties is given in Table 2.

4.5 Early Days of Graph Kernels

While early studies on kernel functions and kernel methods focused almost exclusively on
input data represented as vectors, it soon became clear that these methods could handle
more complex structured objects such as strings, trees and graphs. One of the most popular
methods for defining kernels between such objects is to decompose the objects into their

956

Bag of structures

A majority of graph kernels are instances of the convolution kernels Haussler
et al. 1999.

Principle

I Compare graphs by first dividing them into substructures of various
granularity.

I E.g. vertices, subgraphs, all shortest paths of a graph.

I Defining base kernels at the fine granularity and combine them.

I Of the form κ(G ,G ′) =
∑

r∈R,r ′∈R′ κsubstructure(r , r ′).

Advantages & limitations

I Intuitive definitions + relatively good results.

I Sometimes computational limitations.

I Expressiveness limitations.

I “Diagonal dominance problem” Yanardag and Vishwanathan 2015.

Bag of structures

A majority of graph kernels are instances of the convolution kernels Haussler
et al. 1999.

Principle

I Compare graphs by first dividing them into substructures of various
granularity.

I E.g. vertices, subgraphs, all shortest paths of a graph.

I Defining base kernels at the fine granularity and combine them.

I Of the form κ(G ,G ′) =
∑

r∈R,r ′∈R′ κsubstructure(r , r ′).

Advantages & limitations

I Intuitive definitions + relatively good results.

I Sometimes computational limitations.

I Expressiveness limitations.

I “Diagonal dominance problem” Yanardag and Vishwanathan 2015.

All node-pairs kernel

A first idea
I Given G = (V ,E),G ′ = (V ′,E ′),

I Suppose the labels of the nodes of both graphs are in S .

I Consider a kernel on the nodes

κnode : S × S → R

I The all node-pairs kernel is defined by

κ(G ,G ′) =
∑
v∈V

∑
v ′∈V ′

κnode(`G (v), `G ′(v ′))

Remarks
I Runtime in O(|V | × |V ′| × dim(S)).

I Can handle discrete/continuous labels.

I Does not take into account the structures of the graphs.

All node-pairs kernel

A first idea
I Given G = (V ,E),G ′ = (V ′,E ′),

I Suppose the labels of the nodes of both graphs are in S .

I Consider a kernel on the nodes

κnode : S × S → R

I The all node-pairs kernel is defined by

κ(G ,G ′) =
∑
v∈V

∑
v ′∈V ′

κnode(`G (v), `G ′(v ′))

Remarks
I Runtime in O(|V | × |V ′| × dim(S)).

I Can handle discrete/continuous labels.

I Does not take into account the structures of the graphs.

Node histogram kernel

A baseline kernel (1/2)

I Suppose the labels are discrete over a
finite alphabet

Σ = {σ1, · · · , σ|Σ|}

I The node histogram kernel is defined as

κNH(G ,G ′) = 〈Φ(G),Φ(G ′)〉 .

where

Φ(G) = (
∑
v∈V

1`G (v)=σ1
, · · · ,

∑
v∈V

1`G (v)=σ|Σ|) .

I Simply corresponds to an unnormalised
histogram that counts the occurrence of
each node label in the graph.

Remarks
I Can be computed in

O(|V |+ |V |′).

I Does not take into
account the structures of
the graphs.

I Of the form
κNH(G ,G ′) =∑
v∈V ,v ′∈V ′

1`G (v)=`G′ (v ′).

Node histogram kernel

A baseline kernel (1/2)

I Suppose the labels are discrete over a
finite alphabet

Σ = {σ1, · · · , σ|Σ|}

I The node histogram kernel is defined as

κNH(G ,G ′) = 〈Φ(G),Φ(G ′)〉 .

where

Φ(G) = (
∑
v∈V

1`G (v)=σ1
, · · · ,

∑
v∈V

1`G (v)=σ|Σ|) .

I Simply corresponds to an unnormalised
histogram that counts the occurrence of
each node label in the graph.

Remarks
I Can be computed in

O(|V |+ |V |′).

I Does not take into
account the structures of
the graphs.

I Of the form
κNH(G ,G ′) =∑
v∈V ,v ′∈V ′

1`G (v)=`G′ (v ′).

Node histogram kernel

A baseline kernel (1/2)

I Suppose the labels are discrete over a
finite alphabet

Σ = {σ1, · · · , σ|Σ|}

I The node histogram kernel is defined as

κNH(G ,G ′) = 〈Φ(G),Φ(G ′)〉 .

where

Φ(G) = (
∑
v∈V

1`G (v)=σ1
, · · · ,

∑
v∈V

1`G (v)=σ|Σ|) .

I Simply corresponds to an unnormalised
histogram that counts the occurrence of
each node label in the graph.

Remarks
I Can be computed in

O(|V |+ |V |′).

I Does not take into
account the structures of
the graphs.

I Of the form
κNH(G ,G ′) =∑
v∈V ,v ′∈V ′

1`G (v)=`G′ (v ′).

Edge histogram kernel

A baseline kernel (2/2)

I Suppose the edges labels
are discrete over a finite
alphabet

Σ = {σ1, · · · , σ|Σ|}

I The edge histogram kernel is
defined as

κEH(G ,G ′) = 〈Φ(G),Φ(G ′)〉 .

where Φ(G) =

(
∑

e∈E 1`(e)=σ1
, · · · ,

∑
e∈E 1`(e)=σ|Σ|) .

Remarks
I Can be computed in O(|E |+ |E |′).

I Does not take into account the
labels of the nodes.

I Can be combined with the previous
one as

κ(G ,G ′) = κEH(G ,G ′)× κNH(G ,G ′)

Edge histogram kernel

A baseline kernel (2/2)

I Suppose the edges labels
are discrete over a finite
alphabet

Σ = {σ1, · · · , σ|Σ|}

I The edge histogram kernel is
defined as

κEH(G ,G ′) = 〈Φ(G),Φ(G ′)〉 .

where Φ(G) =

(
∑

e∈E 1`(e)=σ1
, · · · ,

∑
e∈E 1`(e)=σ|Σ|) .

Remarks
I Can be computed in O(|E |+ |E |′).

I Does not take into account the
labels of the nodes.

I Can be combined with the previous
one as

κ(G ,G ′) = κEH(G ,G ′)× κNH(G ,G ′)

The shortest-path kernel

K. M. Borgwardt and Kriegel 2005

I Compute all pair-to-pair
shortest-paths in G ,G ′ with
Floyd-Warshall.

I The kernel is defined as

κSP(G ,G ′) =
∑

(v1,v2)∈V

∑
(v ′

1 ,v
′
2)∈V ′

κ0(d(v1, v2), d(v ′1, v
′
2)) .

where d(v1, v2) is the shortest-path
distance between v1, v2.

I κ0 is a kernel that compares the
lengths of the two shortest-paths.

I κ0(x , y) = x × y (linear kernel) or
κ0(x , y) = 1x=y (dirac).

Remarks
I Complexity Floyd-Warshall

on G ,O(|V |3).

I Variants with
Bellman–Ford’s, Dijkstra’s
algorithms.

I General complexity for κSP

O(|V |2|V ′|2).

I Many variants with
attributes.

The shortest-path kernel

K. M. Borgwardt and Kriegel 2005

I Compute all pair-to-pair
shortest-paths in G ,G ′ with
Floyd-Warshall.

I The kernel is defined as

κSP(G ,G ′) =
∑

(v1,v2)∈V

∑
(v ′

1 ,v
′
2)∈V ′

κ0(d(v1, v2), d(v ′1, v
′
2)) .

where d(v1, v2) is the shortest-path
distance between v1, v2.

I κ0 is a kernel that compares the
lengths of the two shortest-paths.

I κ0(x , y) = x × y (linear kernel) or
κ0(x , y) = 1x=y (dirac).

Remarks
I Complexity Floyd-Warshall

on G ,O(|V |3).

I Variants with
Bellman–Ford’s, Dijkstra’s
algorithms.

I General complexity for κSP

O(|V |2|V ′|2).

I Many variants with
attributes.

GraphHopper kernel

Undirected graphs with edge weights and node attributes.

I Even for real-valued/vector attributes Feragen et al. 2013.

I Interestingly averaged overall worst-case complexity O(|V ||V ′| dim(S)).

I Kernel is defined as

κGH(G ,G ′) =
∑
p∈PG

∑
p′∈PG′

κ0(p, p′) where PG : set of all shortest-paths.

I Base kernel κ0(p, p′) =

{∑|p|
j=1 κnode(pj , p

′
j) if equal length|p| = |p′|

0 otherwise

GraphHopper kernel

Undirected graphs with edge weights and node attributes.

I Even for real-valued/vector attributes Feragen et al. 2013.

I Interestingly averaged overall worst-case complexity O(|V ||V ′| dim(S)).

I Kernel is defined as

κGH(G ,G ′) =
∑
p∈PG

∑
p′∈PG′

κ0(p, p′) where PG : set of all shortest-paths.

I Base kernel κ0(p, p′) =

{∑|p|
j=1 κnode(pj , p

′
j) if equal length|p| = |p′|

0 otherwise

GraphHopper kernel

Undirected graphs with edge weights and node attributes.

I Even for real-valued/vector attributes Feragen et al. 2013.

I Interestingly averaged overall worst-case complexity O(|V ||V ′| dim(S)).

I Kernel is defined as

κGH(G ,G ′) =
∑
p∈PG

∑
p′∈PG′

κ0(p, p′) where PG : set of all shortest-paths.

I Base kernel κ0(p, p′) =

{∑|p|
j=1 κnode(pj , p

′
j) if equal length|p| = |p′|

0 otherwise

The Graphlet kernel

Principle Shervashidze, Vishwanathan,

et al. 2009

I Count substructures in graphs.

I Graphlet = subgraph with k vertices.

I G := {g1, · · · , gNk
} set of

k-graphlets (asymptotically

Nk ≈ 2(k
2)/k!).

I Kernel κ(G ,G ′) = 〈Φ(G),Φ(G ′)〉

Φ(G) ∝ (|{gi ∈ G}|, · · · , |{gNk
∈ G}|)>

Remarks
I Ignores all labels.

I Computational bottleneck:
enumeration of all graphlets.

I Complexity in O(|V |k) time.

I Typically k ∈ {3, 4, 5}.
I Counting all possible

subgraphs is NP-hard
Gärtner, Flach, and Wrobel
2003.

The Graphlet kernel

Principle Shervashidze, Vishwanathan,

et al. 2009

I Count substructures in graphs.

I Graphlet = subgraph with k vertices.

I G := {g1, · · · , gNk
} set of

k-graphlets (asymptotically

Nk ≈ 2(k
2)/k!).

I Kernel κ(G ,G ′) = 〈Φ(G),Φ(G ′)〉

Φ(G) ∝ (|{gi ∈ G}|, · · · , |{gNk
∈ G}|)>

Remarks
I Ignores all labels.

I Computational bottleneck:
enumeration of all graphlets.

I Complexity in O(|V |k) time.

I Typically k ∈ {3, 4, 5}.
I Counting all possible

subgraphs is NP-hard
Gärtner, Flach, and Wrobel
2003.

The graph isomorphism problem

Checking if two graphs are “identical”
Two graphs G = (V ,E),G ′ = (V ′,E ′) are isomorphic (G ∼= G ′) if there
exists a bijection Ψ : V → V ′ such that

(u, v) ∈ E ⇐⇒ (Ψ(u),Ψ(v)) ∈ E ′ .

Remark
I Same graphs up to a permutation.

I Currently no known polynomial-time
algorithms for solving this problem.

I Not known to be NP-complete.

I Quasi-polynomial algorithm Babai
2016.

Weisfeiler-Lehman test of isomorphism Leman and Weisfeiler 1968

On the board

The graph isomorphism problem

Checking if two graphs are “identical”
Two graphs G = (V ,E),G ′ = (V ′,E ′) are isomorphic (G ∼= G ′) if there
exists a bijection Ψ : V → V ′ such that

(u, v) ∈ E ⇐⇒ (Ψ(u),Ψ(v)) ∈ E ′ .

Remark
I Same graphs up to a permutation.

I Currently no known polynomial-time
algorithms for solving this problem.

I Not known to be NP-complete.

I Quasi-polynomial algorithm Babai
2016.

Weisfeiler-Lehman test of isomorphism Leman and Weisfeiler 1968

On the board

The graph isomorphism problem

Checking if two graphs are “identical”
Two graphs G = (V ,E),G ′ = (V ′,E ′) are isomorphic (G ∼= G ′) if there
exists a bijection Ψ : V → V ′ such that

(u, v) ∈ E ⇐⇒ (Ψ(u),Ψ(v)) ∈ E ′ .

Remark
I Same graphs up to a permutation.

I Currently no known polynomial-time
algorithms for solving this problem.

I Not known to be NP-complete.

I Quasi-polynomial algorithm Babai
2016.

Weisfeiler-Lehman test of isomorphism Leman and Weisfeiler 1968

On the board

Table of contents

Kernels in Machine Learning
A bit of kernels theory
Back to machine learning: the representer theorem

Kernels for structured data
Basics of graphs-kernels
Focus on Weisfeler-Lehman Kernel
Conclusion

Multi-set vs set

Key differences
Without being too formal.

I A set X = {a, b} is equal to Y = {b, a} because x ∈ X ⇐⇒ x ∈ Y :
order is irrelevant.

I A set Z = {a, a, b} is also equal to X : the same element can appear
more than once.

I A multi-set denoted with {{· · · }} is a “set” where elements can
appear more that once.

I The order is still irrelevant.

I For example {{a, a, b}}.
I Formal definition: a multiset is a couple (X ,m) where X is a set and a

m : X → N counts the multiplicity of each element.

Weisfeiler–Lehman kernel

A very popular graph kernel based on Shervashidze, Schweitzer,
et al. 2011
I Originally handle graphs with discrete labels.

I Uses iterative label refinement.

I Concepts from the Weisfeiler-Lehman test of isomorphism.

Graphs relabeling/refinement

I Recursively refine the node labels by applying local transformations

av = AGGREGATE
(
{{`(old)

G (v ′); v ′ ∈ N (v)}}
)

and `
(new)
G (v) = COMBINE

(
`

(old)
G (v), av

)
.

I This general idea can give rise to a multitude of distinct graph kernels:

I (i) the specific form of COMBINE,AGGREGATE.

I (ii) which kernels are used to compare the resulting modified graphs.

I (iii) how the graph at multiple scales are aggregated into a single value.

Weisfeiler–Lehman kernel

A very popular graph kernel based on Shervashidze, Schweitzer,
et al. 2011
I Originally handle graphs with discrete labels.

I Uses iterative label refinement.

I Concepts from the Weisfeiler-Lehman test of isomorphism.

Graphs relabeling/refinement

I Recursively refine the node labels by applying local transformations

av = AGGREGATE
(
{{`(old)

G (v ′); v ′ ∈ N (v)}}
)

and `
(new)
G (v) = COMBINE

(
`

(old)
G (v), av

)
.

I This general idea can give rise to a multitude of distinct graph kernels:

I (i) the specific form of COMBINE,AGGREGATE.

I (ii) which kernels are used to compare the resulting modified graphs.

I (iii) how the graph at multiple scales are aggregated into a single value.

Weisfeiler–Lehman kernel

Weisfeiler–Lehman kernel

Weisfeiler–Lehman kernel

The Weisfeiler–Lehman kernel
I The function AGGREGATE sorts in alphabetic order.

I The function COMBINE hashes to compress the tuple into a single
integer-valued label.

I Produces a sequence of graphs (G0, · · · ,Gh).

I The Weisfeiler–Lehman kernel is

κWL(G ,G ′) =
h∑

i=0

κ0(Gi ,G
′
i) ,

for a base kernel κ0.

I Most common κ0 subtree kernel: Φ(G) = number of occurrences of
each label in the alphabet of all compressed labels at each step.

I Complexity: for one graph O(|E | × h).

I Runtime scales only linearly with the number of edges !

Weisfeiler–Lehman kernel

The Weisfeiler–Lehman kernel
I The function AGGREGATE sorts in alphabetic order.

I The function COMBINE hashes to compress the tuple into a single
integer-valued label.

I Produces a sequence of graphs (G0, · · · ,Gh).

I The Weisfeiler–Lehman kernel is

κWL(G ,G ′) =
h∑

i=0

κ0(Gi ,G
′
i) ,

for a base kernel κ0.

I Most common κ0 subtree kernel: Φ(G) = number of occurrences of
each label in the alphabet of all compressed labels at each step.

I Complexity: for one graph O(|E | × h).

I Runtime scales only linearly with the number of edges !

Optimal assignment kernel

General setting (Kriege, Giscard, and Wilson 2016)

I Different than “bag of structure” kernels.

I Let X ,Y ⊂ Ω with |X | = |Y |.

κOA(X ,Y) = max
B∈B(X ,Y)

∑
x∈X

κ0(x ,B(y)) where B(X ,Y) = all bijections.

I κ is a valid PSD kernel if κ0 : Ω× Ω→ R+ is strong:

κ0(x , y) ≥ min{κ0(x , z), κ0(z , y)} ∀(x , y , z).

I Assign the parts of one objects to the parts of the other s.t. the total
similarity is maximum possible.

Weisfeiler-Lehman optimal assignment kernel

I i ∈ [[h]], τi (v) denotes the color of vertex v at step i of the WL process.

I The base kernel is κ0(v , v ′) =
∑h

i=0 1τi (v)=τi (v ′) + padding.

I Can also be computed in O(hm).

Optimal assignment kernel

General setting (Kriege, Giscard, and Wilson 2016)

I Different than “bag of structure” kernels.

I Let X ,Y ⊂ Ω with |X | = |Y |.

κOA(X ,Y) = max
B∈B(X ,Y)

∑
x∈X

κ0(x ,B(y)) where B(X ,Y) = all bijections.

I κ is a valid PSD kernel if κ0 : Ω× Ω→ R+ is strong:

κ0(x , y) ≥ min{κ0(x , z), κ0(z , y)} ∀(x , y , z).

I Assign the parts of one objects to the parts of the other s.t. the total
similarity is maximum possible.

Weisfeiler-Lehman optimal assignment kernel

I i ∈ [[h]], τi (v) denotes the color of vertex v at step i of the WL process.

I The base kernel is κ0(v , v ′) =
∑h

i=0 1τi (v)=τi (v ′) + padding.

I Can also be computed in O(hm).

Continuous alternative to Weisfeiler–Lehman

Hash graph kernel Morris et al. 2016

I Let κ be a graph kernel (such as WL).

I H = {h1, h2 · · · } a family of hash functions.

I hi : Rd → N is a hash function.

I hi (G): the discretised graph resulting from applying hi to continuous
attributes of the graph.

I The kernel is defined as

κHGK(G ,G ′) =
1

|H|
∑
i∈H

κ(hi (G), hi (G
′)) .

Example of hash functions

I Locality-sensitive hashing schemes Datar et al. 2004.

I Idea: if x, y are “close” then P[h1(x) = h2(y)] is “high” and conversely.

I More collusion for nearby points.

I e.g. h(x) = b 〈x,a〉+b
r c, a ∼ µ, b ∼ unif([0, r])

Continuous alternative to Weisfeiler–Lehman

Hash graph kernel Morris et al. 2016

I Let κ be a graph kernel (such as WL).

I H = {h1, h2 · · · } a family of hash functions.

I hi : Rd → N is a hash function.

I hi (G): the discretised graph resulting from applying hi to continuous
attributes of the graph.

I The kernel is defined as

κHGK(G ,G ′) =
1

|H|
∑
i∈H

κ(hi (G), hi (G
′)) .

Example of hash functions

I Locality-sensitive hashing schemes Datar et al. 2004.

I Idea: if x, y are “close” then P[h1(x) = h2(y)] is “high” and conversely.

I More collusion for nearby points.

I e.g. h(x) = b 〈x,a〉+b
r c, a ∼ µ, b ∼ unif([0, r])

Table of contents

Kernels in Machine Learning
A bit of kernels theory
Back to machine learning: the representer theorem

Kernels for structured data
Basics of graphs-kernels
Focus on Weisfeler-Lehman Kernel
Conclusion

Conclusion

I Graph kernels are very simple but powerful way of using all the ML
machinery on graphs.

I The big question is to choose the “right” kernel.

I No straight answer, it depends on the task.

I In practice: always use simple graph kernels as baselines.

References I

Aronszajn, Nachman (1950). “Theory of reproducing kernels”. In:
Transactions of the American mathematical society 68.3, pp. 337–404.

Babai, László (2016). “Graph isomorphism in quasipolynomial time”. In:
Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pp. 684–697.

Borgwardt, Karsten et al. (2020). “Graph kernels: State-of-the-art and
future challenges”. In: Foundations and Trends® in Machine Learning
13.5-6, pp. 531–712.

Borgwardt, Karsten M and Hans-Peter Kriegel (2005). “Shortest-path
kernels on graphs”. In: Fifth IEEE international conference on data
mining (ICDM’05). IEEE, 8–pp.

Datar, Mayur et al. (2004). “Locality-sensitive hashing scheme based on
p-stable distributions”. In: Proceedings of the twentieth annual
symposium on Computational geometry, pp. 253–262.

Feragen, Aasa et al. (2013). “Scalable kernels for graphs with continuous
attributes”. In: Advances in neural information processing systems 26.

References II

Gärtner, Thomas, Peter Flach, and Stefan Wrobel (2003). “On graph
kernels: Hardness results and efficient alternatives”. In: Learning Theory
and Kernel Machines: 16th Annual Conference on Learning Theory and
7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA,
August 24-27, 2003. Proceedings. Springer, pp. 129–143.

Haussler, David et al. (1999). Convolution kernels on discrete structures.
Tech. rep. Citeseer.

Kriege, Nils M, Pierre-Louis Giscard, and Richard Wilson (2016). “On valid
optimal assignment kernels and applications to graph classification”. In:
Advances in neural information processing systems 29.

Leman, AA and Boris Weisfeiler (1968). “A reduction of a graph to a
canonical form and an algebra arising during this reduction”. In:
Nauchno-Technicheskaya Informatsiya 2.9, pp. 12–16.

Morris, Christopher et al. (2016). “Faster kernels for graphs with continuous
attributes via hashing”. In: 2016 IEEE 16th International Conference on
Data Mining (ICDM). IEEE, pp. 1095–1100.

References III

Nikolentzos, Giannis, Giannis Siglidis, and Michalis Vazirgiannis (2021).
“Graph kernels: A survey”. In: Journal of Artificial Intelligence Research
72, pp. 943–1027.

Shervashidze, Nino, Pascal Schweitzer, et al. (2011). “Weisfeiler-lehman
graph kernels.”. In: Journal of Machine Learning Research 12.9.

Shervashidze, Nino, SVN Vishwanathan, et al. (2009). “Efficient graphlet
kernels for large graph comparison”. In: Artificial intelligence and
statistics. PMLR, pp. 488–495.

Steinwart, Ingo and Andreas Christmann (2008). Support vector machines.
Springer Science & Business Media.

Wendland, Holger (2004). Scattered data approximation. Vol. 17.
Cambridge university press.

Yanardag, Pinar and SVN Vishwanathan (2015). “Deep graph kernels”. In:
Proceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining, pp. 1365–1374.

	Kernels in Machine Learning
	A bit of kernels theory
	Back to machine learning: the representer theorem

	Kernels for structured data
	Basics of graphs-kernels
	Focus on Weisfeler-Lehman Kernel
	Conclusion

	References

