Machine learning for graphs and with graphs Graph kernels

Titouan Vayer & Pierre Borgnat email: titouan.vayer@inria.fr, pierre.borgnat@ens-lyon.fr

September 23, 2024

[Kernels in Machine Learning](#page-3-0)

[A bit of kernels theory](#page-8-0) [Back to machine learning: the representer theorem](#page-42-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할) 19 Q Q

[Kernels for structured data](#page-0-0)

[Basics of graphs-kernels](#page-0-0) [Focus on Weisfeler-Lehman Kernel](#page-0-0) [Conclusion](#page-0-0)

Some slides adapted from those of Jean-Philippe Vert and Rémi Flamary.

Kロトメ部トメミトメミト ミニのQC

What is a kernel ?

Measuring similarities between objects

- ▶ Two "objects" x, y in an abstract space *X* .
- \blacktriangleright A kernel aims at measuring "how similar" is x from y.
- \blacktriangleright e.g. $\mathcal{X} = \mathbb{R}^d$, kernel $(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$ or cosine similarity.

KORKARA REPASA DA VOCA

What is a kernel?

Measuring similarities between objects

- ▶ Two "objects" x, y in an abstract space *X* .
- \blacktriangleright A kernel aims at measuring "how similar" is x from y .
- **I** e.g. $\mathcal{X} = \mathbb{R}^d$, kernel $(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$ or cosine similarity.

KORKARA REPASA DA VOCA

ML with kernels

- \blacktriangleright ML methods based on **pairwise comparisons**.
- \triangleright By imposing constraints on the kernel (positive definite), we obtain a general framework for learning from data (RKHS).
- \blacktriangleright + without making any assumptions regarding the type of data (vectors, strings, graphs, images, ...)

What is a kernel ?

Measuring similarities between objects

- ▶ Two "objects" x, y in an abstract space *X* .
- \blacktriangleright A kernel aims at measuring "how similar" is x from y .
- \blacktriangleright e.g. $\mathcal{X} = \mathbb{R}^d$, kernel $(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$ or cosine similarity.

ML with kernels

- \blacktriangleright ML methods based on pairwise comparisons.
- \triangleright By imposing constraints on the kernel (positive definite), we obtain a general framework for learning from data (RKHS).
- \blacktriangleright + without making any assumptions regarding the type of data (vectors, strings, graphs, images, ...)

A principle method for ERM

 $\min_{f \in \mathcal{T}} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{y}_i, f(\mathbf{x}_i)) \to \text{look for } f \text{ in specific space (RKHS)}$

A feature map $\Phi : \mathcal{X} \to \mathcal{H}$

From feature map to functions: motivating example

Feature map can be used to define functions from X to \mathbb{R} .

$$
\Phi : \mathbb{R}^2 \to \mathbb{R}^3 = \mathcal{H}
$$

$$
\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \Phi(\mathbf{x}) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{bmatrix} \text{ and } f(\mathbf{x}) = a \cdot x_1 + b \cdot x_2 + c \cdot x_1 x_2 (\mathbb{R}^2 \to \mathbb{R})
$$

 \triangleright Consider $\theta = (a, b, c)^\top \in \mathbb{R}^3$ then $f(\mathbf{x}) = \langle \theta, \Phi(\mathbf{x}) \rangle$.

Evaluation of f at x is an inner product in feature space.

A feature map $\Phi : \mathcal{X} \to \mathcal{H}$

From feature map to functions: motivating example

Feature map can be used to define functions from X to \mathbb{R} .

$$
\Phi : \mathbb{R}^2 \to \mathbb{R}^3 = \mathcal{H}
$$

$$
\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \Phi(\mathbf{x}) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{bmatrix} \text{ and } f(\mathbf{x}) = a \cdot x_1 + b \cdot x_2 + c \cdot x_1 x_2 (\mathbb{R}^2 \to \mathbb{R})
$$

Consider
$$
\theta = (a, b, c)^{\top} \in \mathbb{R}^3
$$
 then $f(\mathbf{x}) = \langle \theta, \Phi(\mathbf{x}) \rangle$.

Evaluation of *f* at x is an inner product in feature space.

Go into higher dimensions to linearly separate the classes !

[Kernels in Machine Learning](#page-3-0)

[A bit of kernels theory](#page-8-0)

[Back to machine learning: the representer theorem](#page-42-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할) 19 Q Q

[Kernels for structured data](#page-0-0)

[Basics of graphs-kernels](#page-0-0) [Focus on Weisfeler-Lehman Kernel](#page-0-0) [Conclusion](#page-0-0)

The definition

Positive definite (PD) kernel

Let *X* be some space. A function $\kappa : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a PD kernel if

▶ It is symmetric
$$
\kappa(\mathbf{x}, \mathbf{y}) = \kappa(\mathbf{y}, \mathbf{x})
$$
.

For any $x_1, \dots, x_n \in \mathcal{X}$ and $c_1, \dots, c_n \in \mathbb{R}$

$$
\sum_{i,j=1}^n c_i c_j \kappa(\mathbf{x}_i, \mathbf{x}_j) \geq 0.
$$
 (1)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The definition

Positive definite (PD) kernel

Let X be some space. A function $\kappa : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a PD kernel if

▶ It is symmetric
$$
\kappa(\mathbf{x}, \mathbf{y}) = \kappa(\mathbf{y}, \mathbf{x})
$$
.

For any $x_1, \dots, x_n \in \mathcal{X}$ and $c_1, \dots, c_n \in \mathbb{R}$

$$
\sum_{i,j=1}^n c_i c_j \kappa(\mathbf{x}_i, \mathbf{x}_j) \ge 0.
$$
 (1)

Remarks

- ▶ [\(1\)](#page-9-0) equiv. $\mathbf{K} := (\kappa(\mathbf{x}_i, \mathbf{x}_j))_{ii} \in \mathbb{R}^{n \times n}$ is a PSD matrix $\forall \mathbf{x}_1, \cdots, \mathbf{x}_n \in \mathcal{X}$.
- For $\kappa(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$ if $\mathbf{X} = (\mathbf{x}_1, \cdots, \mathbf{x}_n)^\top$ then $\mathbf{c}^\top \mathbf{K} \mathbf{c} = \|\mathbf{X}^\top \mathbf{c}\|_2^2 \geq 0$.
- \triangleright Works also for $\kappa(\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle$ for any Φ .
- \blacktriangleright Not entirely obvious $\kappa(\mathbf{x}, \mathbf{y}) = \exp(-\|\mathbf{x} \mathbf{y}\|_2^2/2\sigma^2)$. (see TD)

Basic properties (see TD)

Let $\kappa_1, \kappa_2, \cdots$ be fixed PD kernels.

- $\triangleright \gamma \kappa_1$ for any $\gamma > 0$ is a PD kernel.
- \triangleright $\kappa_1 + \kappa_2$ is a PD kernel.
- \triangleright $\kappa(\mathbf{x}, \mathbf{y}) := \lim_{n \to +\infty} \kappa_n(\mathbf{x}, \mathbf{y})$ is a PD kernel (provided it exists).

$$
\blacktriangleright \kappa(\mathbf{x}, \mathbf{y}) := \kappa_1(\mathbf{x}, \mathbf{y}) \kappa_2(\mathbf{x}, \mathbf{y}) \text{ is a PD Kernel.}
$$

If $f : \mathcal{X} \to \mathbb{R}$ then $\kappa(\mathbf{x}, \mathbf{y}) := f(\mathbf{x}) \kappa_1(\mathbf{x}, \mathbf{y}) f(\mathbf{y})$ is a PD kernel.

KORKARA REPASA DA VOCA

Changing the features

È 2990 イロト イ押 トイヨ トイヨト

Changing the features

Polynomial kernel Consider $\Phi : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $\Phi(\mathbf{x} = (x_1, x_2)) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$. Then:

$$
\kappa(\mathbf{x},\mathbf{y}):=\langle \Phi(\mathbf{x}),\Phi(\mathbf{y})\rangle_{\mathbb{R}^3}=\cdots=\left(\langle \mathbf{x},\mathbf{y}\rangle_{\mathbb{R}^2}\right)^2.
$$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 2990

Basic properties show that it defines a PD kernel.

Changing the features

Polynomial kernel

Consider $\Phi : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $\Phi(\mathbf{x} = (x_1, x_2)) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$. Then:

$$
\kappa(\mathbf{x},\mathbf{y}):=\langle \Phi(\mathbf{x}),\Phi(\mathbf{y})\rangle_{\mathbb{R}^3}=\cdots=(\langle \mathbf{x},\mathbf{y}\rangle_{\mathbb{R}^2})^2.
$$

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 2990

Basic properties show that it defines a PD kernel.

• More generally
$$
\kappa(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle^m
$$
.

Translation invariant kernels

A generic form of kernel on $\mathcal{X} = \mathbb{R}^d$

For $\kappa_0 : \mathbb{R}^d \to \mathbb{R}$, kernel defined by

$$
\kappa(\mathbf{x},\mathbf{y})=\kappa_0(\mathbf{x}-\mathbf{y})
$$

- **•** e.g. Gaussian kernel $\kappa(\mathbf{x}, \mathbf{y}) = \exp(-\|\mathbf{x} \mathbf{y}\|_2^2/(2\sigma^2)).$
- **P** Recall Fourier transform: $\widehat{f}(\boldsymbol{\omega}) = \int_{\mathbb{R}^d} f(\mathbf{x}) e^{-i\langle \boldsymbol{\omega}, \mathbf{x} \rangle} d\mathbf{x}$.
- ▶ Based on Bochner's theorem (see Wendland [2004,](#page-81-0) Theorem 6.11):
	- κ is a PD kernel $\iff \forall \omega \in \mathbb{R}^d$, $\widehat{\kappa}_0(\omega) > 0$

Þ QQ

Main property of PD kernel

Main property: Moore–Aronszajn theorem Aronszajn [1950](#page-79-0)

A function $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a PD kernel if and only if **there exists a Hilbert space** H and a mapping $\Phi : \mathcal{X} \to \mathcal{H}$ such that

 \forall **x**, **y** \in $\mathcal{X}, \ \kappa$ (**x**, **y**) = $\langle \Phi$ (**x**), Φ (**y**)) γ *H .*

KORKARA REPASA DA VOCA

Main property of PD kernel

Main property: Moore–Aronszajn theorem Aronszajn [1950](#page-79-0)

A function $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a PD kernel if and only if **there exists a Hilbert space** H and a mapping $\Phi : \mathcal{X} \to \mathcal{H}$ such that

$$
\forall \mathbf{x}, \mathbf{y} \in \mathcal{X}, \ \kappa(\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle_{\mathcal{H}}.
$$

Some reminders

- $\blacktriangleright \langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is a bilinear, symmetric and such that $\langle x, x \rangle_{\mathcal{H}} > 0$ for any $x \neq 0$.
- \triangleright A vector space endowed with an inner product is called pre-Hilbert. It is endowed with $\|\mathbf{x}\|_{\mathcal{H}} := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle_{\mathcal{H}}}$.
- \triangleright A Hilbert space is a pre-Hilbert space complete for the norm defined by the inner product.

Proof of the theorem in the discrete case

On the board

KORKARA REPASA DA VOCA

Complete proof Steinwart and Christmann [2008,](#page-81-1) Theorem 4.16.

The feature map Φ and feature space $\mathcal H$

- \blacktriangleright The feature space may have infinite dimension and is not unique.
- \blacktriangleright Polynomial kernel in 2*D* $\kappa(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle)^2$:

$$
\Phi(\mathbf{x}=(x_1,x_2))=(x_1^2,x_2^2,x_1x_2,x_1x_2),\ \mathcal{H}=\mathbb{R}^4
$$

KORKARA REPASA DA VOCA

The feature map Φ and feature space $\mathcal H$

 \blacktriangleright The feature space may have infinite dimension and is not unique. \blacktriangleright Polynomial kernel in 2*D* $\kappa(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle)^2$:

$$
\Phi(\mathbf{x}=(x_1,x_2))=(x_1^2,x_2^2,x_1x_2,x_1x_2),\ \mathcal{H}=\mathbb{R}^4
$$

Another possibility:

$$
\Phi(\textbf{x}=(x_1,x_2))=(x_1^2,x_2^2,\sqrt{2}x_1x_2),\,\,\mathcal{H}=\mathbb{R}^3
$$

KORK EXTERNE PROVIDE

The feature map Φ and feature space $\mathcal H$

- \blacktriangleright The feature space may have infinite dimension and is not unique.
- ▶ Gaussian Kernel in 1*D* $\kappa(x, y) = \exp(-|x y|^2/2(2\sigma^2))$:

$$
\Phi(x) = e^{-\frac{x^2}{2\sigma^2}} \left(1, \sqrt{\frac{1}{1!\sigma^2}}x, \sqrt{\frac{1}{2!\sigma^4}}x^2, \sqrt{\frac{1}{3!\sigma^6}}x^3, \cdots \right)^\top \text{(Taylor series)}
$$

KORKARA REPASA DA VOCA

The feature map Φ and feature space $\mathcal H$

 \blacktriangleright The feature space may have infinite dimension and is not unique. ▶ Gaussian Kernel in 1*D* $\kappa(x, y) = \exp(-|x - y|^2/2(2\sigma^2))$:

$$
\Phi(x) = e^{-\frac{x^2}{2\sigma^2}} \left(1, \sqrt{\frac{1}{1!\sigma^2}}x, \sqrt{\frac{1}{2!\sigma^4}}x^2, \sqrt{\frac{1}{3!\sigma^6}}x^3, \cdots \right)^\top \text{(Taylor series)}
$$

▶ Or $\mathcal{H} = L_2(\mathbb{R})$ using $\kappa(x, y) = \frac{1}{\sigma} \sqrt{\frac{2}{\pi}} \int_{-\infty}^{+\infty} \exp(-\frac{(x-t)^2}{\sigma^2}) \exp(-\frac{(y-t)^2}{\sigma^2}) dt$

$$
\Phi(x) = t \to \frac{2^{\frac{1}{4}}}{\sqrt{\sigma}\pi^{\frac{1}{4}}} \exp\left(-\frac{(x-t)^2}{\sigma^2}\right)
$$

KORKARA REPASA DA VOCA

From kernels to functions: first idea

- **If Given** *H* and $\Phi : \mathcal{X} \to \mathcal{H}_0$: defines a kernel $\kappa(\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle_{\mathcal{H}_0}$
- And a space of functions from X to \mathbb{R} .

$$
\mathcal{H} := \{f : \exists \boldsymbol{\theta} \in \mathcal{H}_0, \forall \mathbf{x} \in \mathcal{X}, f(\mathbf{x}) = \langle \boldsymbol{\theta}, \Phi(\mathbf{x}) \rangle_{\mathcal{H}_0} \}.
$$

 \blacktriangleright Endowed with the norm

$$
||f||_{\mathcal{H}} := \inf \{ ||\boldsymbol{\theta}||_{\mathcal{H}_0} : \boldsymbol{\theta} \in \mathcal{H}_0 \text{ with } f = \langle \boldsymbol{\theta}, \Phi(\cdot) \rangle_{\mathcal{H}_0} \}
$$
(2)

KORKARA REPASA DA VOCA

It is a Hilbert space of functions called the RKHS of κ .

 \blacktriangleright We can stop here... but...

From kernels to functions: first idea

- **If Given** H and $\Phi : \mathcal{X} \to \mathcal{H}_0$: defines a kernel $\kappa(\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle_{\mathcal{H}_0}$
- And a space of functions from X to \mathbb{R} .

$$
\mathcal{H} := \{f : \exists \boldsymbol{\theta} \in \mathcal{H}_0, \forall \mathbf{x} \in \mathcal{X}, f(\mathbf{x}) = \langle \boldsymbol{\theta}, \Phi(\mathbf{x}) \rangle_{\mathcal{H}_0} \}.
$$

 \blacktriangleright Endowed with the norm

$$
||f||_{\mathcal{H}} := \inf \{ ||\boldsymbol{\theta}||_{\mathcal{H}_0} : \boldsymbol{\theta} \in \mathcal{H}_0 \text{ with } f = \langle \boldsymbol{\theta}, \Phi(\cdot) \rangle_{\mathcal{H}_0} \}
$$
(2)

It is a Hilbert space of functions called the RKHS of κ .

 \blacktriangleright We can stop here... but...

From kernels to functions: second idea

- **In Given a PSD kernel** $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ **.**
- ▶ 1[°]) Find a "suitable" (Φ , \mathcal{H}) such that κ ($\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle_{\mathcal{H}}$ (recall: many possible)
- \triangleright 2°) Build upon it to define a suitable space of functions. .
KD → K@ → K 클 → K 클 → L 클 → M Q Q

From kernels to functions: first idea

- **If Given** H and $\Phi : \mathcal{X} \to \mathcal{H}_0$: defines a kernel $\kappa(\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle_{\mathcal{H}_0}$
- And a space of functions from X to \mathbb{R} .

$$
\mathcal{H} := \{f : \exists \boldsymbol{\theta} \in \mathcal{H}_0, \forall \mathbf{x} \in \mathcal{X}, f(\mathbf{x}) = \langle \boldsymbol{\theta}, \Phi(\mathbf{x}) \rangle_{\mathcal{H}_0} \}.
$$

 \blacktriangleright Endowed with the norm

$$
||f||_{\mathcal{H}} := \inf \{ ||\boldsymbol{\theta}||_{\mathcal{H}_0} : \boldsymbol{\theta} \in \mathcal{H}_0 \text{ with } f = \langle \boldsymbol{\theta}, \Phi(\cdot) \rangle_{\mathcal{H}_0} \}
$$
(2)

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

It is a Hilbert space of functions called the RKHS of κ .

 \blacktriangleright We can stop here... but...

From kernels to functions: second idea

- **In Given a PSD kernel** $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ **.**
- ▶ 1[°]) Find a "suitable" (Φ , \mathcal{H}) such that κ ($\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle_{\mathcal{H}}$ (recall: many possible)
- \triangleright 2°) Build upon it to define a suitable space of functions. (**RKHS**).

Let κ be fixed

- Among all (Φ, \mathcal{H}) mentioned in Aronszjan's theorem one \mathcal{H} , called RKHS, is of interest to us.
- If This is a space of functions from X to \mathbb{R} .
- **IGER Each data point** $\mathbf{x} \in \mathcal{X}$ **will be represented by a function given by the** canonical feature map

$$
\Phi(\mathbf{x}) = \kappa(\cdot, \mathbf{x}) : \mathcal{X} \to \mathbb{R}
$$

KORKARA REPASA DA VOCA

Let κ be fixed

- \blacktriangleright Among all (Φ , \mathcal{H}) mentioned in Aronszjan's theorem one \mathcal{H} , called RKHS, is of interest to us.
- If This is a space of functions from X to \mathbb{R} .
- **IGER Each data point** $\mathbf{x} \in \mathcal{X}$ **will be represented by a function given by the** canonical feature map

$$
\Phi(\mathbf{x}) = \kappa(\cdot, \mathbf{x}) : \mathcal{X} \to \mathbb{R}
$$

Example

 \triangleright Consider $\mathcal{X} = \mathbb{R}$ we could decide to represent $x \in \mathbb{R}$ as a Gaussian function centered at *x*:

$$
\Phi(x) = y \rightarrow \exp(-(x-y)^2/(2\sigma^2))
$$

KORKARA REPASA DA VOCA

If What is the corresponding space H (if it exists)? What would be the inner-product?

Reproducing kernel and RKHS

Let H be a **Hilbert space** of functions from X to $\mathbb R$ with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$. $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **reproducing kernel** of \mathcal{H} if

 $\forall x \in \mathcal{X}, \kappa(\cdot, x) \in \mathcal{H}$

 \triangleright κ satisfies the reproducing property: for any $f \in \mathcal{H}$,

$$
\forall \mathbf{x} \in \mathcal{X}, \ f(\mathbf{x}) = \langle f, \kappa(\cdot, \mathbf{x}) \rangle_{\mathcal{H}}.
$$

KORKARA REPASA DA VOCA

If a reproducing kernel of *H* exists, then *H* is called a RKHS.

Reproducing kernel and RKHS

Let H be a **Hilbert space** of functions from X to $\mathbb R$ with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$. $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **reproducing kernel** of H if

 $\forall x \in \mathcal{X}, \kappa(\cdot, x) \in \mathcal{H}$

 \triangleright κ satisfies the reproducing property: for any $f \in \mathcal{H}$,

$$
\forall \mathbf{x} \in \mathcal{X}, \ f(\mathbf{x}) = \langle f, \kappa(\cdot, \mathbf{x}) \rangle_{\mathcal{H}}.
$$

If a reproducing kernel of *H* exists, then *H* is called a RKHS.

Important properties

- If H is a RKHS, then it has a unique reproducing kernel κ .
- \blacktriangleright (the feature map is not unique only the kernel is)
- A function κ can be the reproducing kernel of at most one RKHS.

Reproducing kernel and RKHS

Let $\mathcal H$ be a **Hilbert space** of functions from $\mathcal X$ to $\mathbb R$ with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$. $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **reproducing kernel** of H if

 $\forall x \in \mathcal{X}, \kappa(\cdot, x) \in \mathcal{H}$

 \triangleright κ satisfies the reproducing property: for any $f \in \mathcal{H}$,

$$
\forall \mathbf{x} \in \mathcal{X}, \ f(\mathbf{x}) = \langle f, \kappa(\cdot, \mathbf{x}) \rangle_{\mathcal{H}}.
$$

If a reproducing kernel of *H* exists, then *H* is called a RKHS.

RKHS and feature spaces

Let H be a RKHS with reproducing kernel κ . Then H is **one** feature space associated to κ , where the feature map is $\forall x \in \mathcal{X}, \Phi(x) = \kappa(\cdot, x)$.

So far these functions are a little bit abstract:

Two questions

- Given a PD kernel κ what is the RKHS associated to κ ?
- \triangleright Given a function space, is it a RKHS and what is the reproducing kernel ?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

So far these functions are a little bit abstract:

Two questions

- **In Given a PD kernel** κ **what is the RKHS associated to** κ **?**
- \triangleright Given a function space, is it a RKHS and what is the reproducing kernel ?

Battery of examples

 \triangleright (on the board) The RKHS associated to $\kappa(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$ is

$$
\mathcal{H} = \{f_{\boldsymbol{\theta}} = \mathbf{x} \rightarrow \langle \boldsymbol{\theta}, \mathbf{x} \rangle; \boldsymbol{\theta} \in \mathbb{R}^d\}
$$

KORKAR KERKER SAGA

endowed with the dot product $\langle f_{\theta_1}, f_{\theta_2} \rangle_{\mathcal{H}} := \langle \theta_1, \theta_2 \rangle$.

I (homework) What is the RKHS associated to $\kappa(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle^2$?

The space $L_2(\mathbb{R}^d)$ is not a RKHS.

Battery of examples

 \blacktriangleright The Paley-Wiener space (bandwidth limited Fourier transform):

$$
\mathcal{F}_{\pi} := \{f \in L_2(\mathbb{R}) : \mathsf{supp}\,\hat{f} \in [-\pi,\pi]\}
$$

where \hat{f} is the Fourier transform of f .

Battery of examples

 \blacktriangleright The Paley-Wiener space (bandwidth limited Fourier transform):

$$
\mathcal{F}_{\pi} := \{ f \in L_2(\mathbb{R}) : \operatorname{supp} \hat{f} \in [-\pi, \pi] \}
$$

where \hat{f} is the Fourier transform of f .

 \blacktriangleright Inverse Fourier transform

$$
f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \hat{f}(\omega) e^{i\omega t} d\omega = \langle \hat{f}, \omega \to \frac{e^{-i\omega t}}{\sqrt{2\pi}} \rangle_{L_2([-\pi,\pi])}
$$

 \blacktriangleright Plancherel-Parseval theorem

$$
\forall t \in \mathbb{R}, \ f(t) = \langle \hat{f}, \omega \to \frac{e^{-i\omega t}}{\sqrt{2\pi}} \rangle_{L_2([- \pi, \pi])} = \langle f, \frac{\sin(\pi(\cdot - t))}{\pi(\cdot - t)} \rangle_{L_2(\mathbb{R})}
$$

The kernel $\kappa(s, t) = \frac{\sin(\pi(s-t))}{\pi(s-t)}$

Examples of RKHS

Battery of examples

 \blacktriangleright The Paley-Wiener space (bandwidth limited Fourier transform):

$$
\mathcal{F}_{\pi} := \{ f \in L_2(\mathbb{R}) : \operatorname{supp} \hat{f} \in [-\pi, \pi] \}
$$

where \hat{f} is the Fourier transform of f . \blacktriangleright Inverse Fourier transform

KORKARA KERKER SAGA

$$
f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \hat{f}(\omega) e^{i\omega t} d\omega = \langle \hat{f}, \omega \to \frac{e^{-i\omega t}}{\sqrt{2\pi}} \rangle_{L_2([- \pi, \pi])}
$$

Plancherel-Parseval theorem

$$
\forall t \in \mathbb{R}, \ f(t) = \langle \hat{f}, \omega \to \frac{e^{-i\omega t}}{\sqrt{2\pi}} \rangle_{L_2([- \pi, \pi])} = \langle f, \frac{\sin(\pi(\cdot - t))}{\pi(\cdot - t)} \rangle_{L_2(\mathbb{R})}
$$

The kernel $\kappa(s, t) = \frac{\sin(\pi(s-t))}{\pi(s-t)}$
Battery of examples

F Translation invariant PD kernels on \mathbb{R}^d $\kappa(\mathbf{x}, \mathbf{y}) = \kappa_0(\mathbf{x} - \mathbf{y})$ with $\kappa_0 \in L_1(\mathbb{R}^d) \cap C(\mathbb{R}^d)$ and $\forall \omega \in \mathbb{R}^d$, $\widehat{\kappa_0}(\omega) \geq 0$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Battery of examples

- **F** Translation invariant PD kernels on \mathbb{R}^d $\kappa(\mathbf{x}, \mathbf{y}) = \kappa_0(\mathbf{x} \mathbf{y})$ with $\kappa_0 \in L_1(\mathbb{R}^d) \cap C(\mathbb{R}^d)$ and $\forall \omega \in \mathbb{R}^d$, $\widehat{\kappa_0}(\omega) > 0$.
- \blacktriangleright The corresponding RKHS is

$$
\mathcal{H} = \{f \in L_2(\mathbb{R}^d) \cap C(\mathbb{R}^d) : \hat{f}/\sqrt{\hat{\kappa_0}} \in L_2(\mathbb{R}^d)\}
$$

 \blacktriangleright The inner product is given by:

$$
\langle f, g \rangle_{\mathcal{H}} := (2\pi)^{-d/2} \int_{\mathbb{R}^d} \frac{\hat{f}(\omega) \overline{\hat{g}(\omega)}}{\hat{\kappa_0}(\omega)} \mathrm{d}\omega \,.
$$

Battery of examples

- **I** Translation invariant PD kernels on \mathbb{R}^d $\kappa(\mathbf{x}, \mathbf{y}) = \kappa_0(\mathbf{x} \mathbf{y})$ with $\kappa_0 \in L_1(\mathbb{R}^d) \cap C(\mathbb{R}^d)$ and $\forall \omega \in \mathbb{R}^d$, $\widehat{\kappa_0}(\omega) \geq 0$.
- \blacktriangleright The corresponding RKHS is

$$
\mathcal{H} = \{f \in L_2(\mathbb{R}^d) \cap C(\mathbb{R}^d) : \hat{f}/\sqrt{\hat{\kappa_0}} \in L_2(\mathbb{R}^d)\}
$$

 \blacktriangleright The inner product is given by:

$$
\langle f, g \rangle_{\mathcal{H}} := (2\pi)^{-d/2} \int_{\mathbb{R}^d} \frac{\hat{f}(\omega) \overline{\hat{g}(\omega)}}{\hat{\kappa_0}(\omega)} \mathrm{d}\omega \,.
$$

- ▶ Special case: Matèrn kernel $\widehat{\kappa_0}(\omega) \propto (\alpha^2 + ||\omega||_2^2)^{-s}, s > d/2$
- Sobolev spaces of order *s*: $||f||^2_{\mathcal{H}} =$ smoothness of the functions as its derivatives in $L_2(\mathbb{R}^d)$.

Reproducing Kernel Hilbert Space (RKHS)

Reproducing kernels are PD kernels

A function $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a reproducing kernel if and only if it is a PD kernel.

KORK ERKER ADAM ADA

Reproducing Kernel Hilbert Space (RKHS)

Reproducing kernels are PD kernels

A function $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a reproducing kernel if and only if it is a PD kernel.

Remarks

- \triangleright One direction easy: a reproducing kernel is a PD kernel (on the board).
- **If** The other more work: use Moore–Aronszajn theorem $+ F +$ Steinwart and Christmann [2008,](#page-81-0) Theorem 4.21.

Reproducing Kernel Hilbert Space (RKHS)

Reproducing kernels are PD kernels

A function $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a reproducing kernel if and only if it is a PD kernel.

Remarks

- \triangleright One direction easy: a reproducing kernel is a PD kernel (on the board).
- **If** The other more work: use Moore–Aronszajn theorem $+$ \mathcal{F} + Steinwart and Christmann [2008,](#page-81-0) Theorem 4.21.

Important consequence

- Any PSD kernel defines a Hilbert space of functions from $\mathcal X$ to $\mathbb R$.
- \blacktriangleright These functions satisfy

$$
\forall \mathbf{x} \in \mathcal{X}, \ f(\mathbf{x}) = \langle f, \kappa(\cdot, \mathbf{x}) \rangle_{\mathcal{H}}.
$$

 \blacktriangleright Abstract view of H :

$$
\mathcal{H} = \overline{\text{Span}\{\kappa(\cdot,\mathbf{x}); \mathbf{x} \in \mathcal{X}\}}.
$$

[Kernels in Machine Learning](#page-3-0)

[A bit of kernels theory](#page-8-0) [Back to machine learning: the representer theorem](#page-42-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할) 19 Q Q

[Kernels for structured data](#page-0-0)

[Basics of graphs-kernels](#page-0-0) [Focus on Weisfeler-Lehman Kernel](#page-0-0) [Conclusion](#page-0-0)

Recap on supervised ML

Supervised learning

- \blacktriangleright The dataset contains the samples $(\mathbf{x}_i, y_i)_{i=1}^n$ where \mathbf{x}_i is the feature sample and $y_i \in \mathcal{Y}$ its label.
- \blacktriangleright Prediction space $\mathcal Y$ can be:
	- $\triangleright \ \mathcal{Y} = \{-1, 1\}$ or $\mathcal{Y} = \{1, \ldots, K\}$ for classification problems.
	- $\triangleright \; \mathcal{Y} = \mathbb{R}$ for regression problems (\mathbb{R}^p for multi-output regression).

Recap on supervised ML

Supervised learning

- \blacktriangleright The dataset contains the samples $(\mathbf{x}_i, y_i)_{i=1}^n$ where \mathbf{x}_i is the feature sample and $y_i \in \mathcal{Y}$ its label.
- \blacktriangleright Prediction space $\mathcal Y$ can be:
	- $\triangleright \ \mathcal{Y} = \{-1, 1\}$ or $\mathcal{Y} = \{1, \ldots, K\}$ for classification problems.
	- $\triangleright \; \mathcal{Y} = \mathbb{R}$ for regression problems (\mathbb{R}^p for multi-output regression).

Minimizing the averaged error on the training data

To find $f: \mathcal{X} \to \mathcal{Y}$ the idea is to minimize:

$$
\min_{f} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(\mathbf{x}_i)) + \lambda \operatorname{Reg}(f)
$$
 (ERM)

Minimizing the averaged error on the training data

To find $f : \mathcal{X} \to \mathcal{Y}$ the idea is to minimize:

$$
\min_{f \in \{1\}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(\mathbf{x}_i)) + \lambda \text{Reg}(f) \tag{ERM}
$$

KORKARA REPASA DA VOCA

Problems

- If How to choose the adequate space of functions for *f* ?
- \blacktriangleright How to properly regularize ?
- \blacktriangleright How to efficiently minimize the quantity ?

Minimizing the averaged error on the training data

To find $f: \mathcal{X} \to \mathcal{Y}$ the idea is to minimize:

$$
\min_{f \in \{1\}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(\mathbf{x}_i)) + \lambda \text{Reg}(f) \tag{ERM}
$$

Problems

- If How to choose the adequate space of functions for *f* ?
- \blacktriangleright How to properly regularize ?
- \blacktriangleright How to efficiently minimize the quantity ?

One solution

- \triangleright When $\mathcal{Y} \subset \mathbb{R}$ we can consider $f \in \mathcal{H}$ where \mathcal{H} is a RKHS.
- A natural candidate Reg $(f) = ||f||^2_{\mathcal{H}}$: the higher the smoother *f* is.
- \blacktriangleright How to ensure that this is not so difficult ?

 \blacktriangleright Suppose $\mathcal{X} = \mathbb{R}^d$ and \mathcal{H} a RKHS. Consider ERM

$$
\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(\mathbf{x}_i)) + \lambda \|f\|_{\mathcal{H}}^2
$$

$$
\triangleright \text{ Since } f \in \mathcal{H}, \text{ then } f(\mathbf{x}) = \langle f, \kappa(\cdot, \mathbf{x}) \rangle_{\mathcal{H}} = \langle f, \Phi(\mathbf{x}) \rangle_{\mathcal{H}}.
$$

 \blacktriangleright Rewriting ERM in RKHS as

$$
\min_{\boldsymbol{\theta} \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle \boldsymbol{\theta}, \Phi(\mathbf{x}_i) \rangle_{\mathcal{H}}) + \lambda ||\boldsymbol{\theta}||_{\mathcal{H}}^2
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Interpretation of minimization on a RKHS

If Suppose $\mathcal{X} = \mathbb{R}^d$ and \mathcal{H} a RKHS. Consider ERM

$$
\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(\mathbf{x}_i)) + \lambda \|f\|_{\mathcal{H}}^2
$$

- \blacktriangleright Since $f \in \mathcal{H}$, then $f(\mathbf{x}) = \langle f, \kappa(\cdot, \mathbf{x}) \rangle_{\mathcal{H}} = \langle f, \Phi(\mathbf{x}) \rangle_{\mathcal{H}}$.
- \blacktriangleright Rewriting ERM in RKHS as

$$
\min_{\boldsymbol{\theta} \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle \boldsymbol{\theta}, \Phi(\mathbf{x}_i) \rangle_{\mathcal{H}}) + \lambda ||\boldsymbol{\theta}||_{\mathcal{H}}^2
$$

Important interpretation

- $\triangleright \Phi : \mathcal{X} \to \mathcal{H}$ pushes the points to a potentially very high-dimensional space (even ∞): more powerful representation.
- \triangleright Then linear classification/regression is made on this high-dim space \mathcal{H}
- We can deduce the function in low-dim from the high-dim.

Interpretation of minimization on a RKHS

IF Suppose $\mathcal{X} = \mathbb{R}^d$ and \mathcal{H} a RKHS. Consider ERM

$$
\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(\mathbf{x}_i)) + \lambda ||f||_{\mathcal{H}}^2
$$

 \blacktriangleright Since $f \in \mathcal{H}$, then $f(\mathbf{x}) = \langle f, \kappa(\cdot, \mathbf{x}) \rangle_{\mathcal{H}} = \langle f, \Phi(\mathbf{x}) \rangle_{\mathcal{H}}$.

Rewriting ERM in RKHS as

$$
\min_{\boldsymbol{\theta} \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle \boldsymbol{\theta}, \Phi(\mathbf{x}_i) \rangle_{\mathcal{H}}) + \lambda \|\boldsymbol{\theta}\|_{\mathcal{H}}^2
$$

Go into higher dimensions to linearly separate the classes !

Interpretation of minimization on a RKHS

IF Suppose $\mathcal{X} = \mathbb{R}^d$ and \mathcal{H} a RKHS. Consider ERM

$$
\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(\mathbf{x}_i)) + \lambda ||f||_{\mathcal{H}}^2
$$

 \blacktriangleright Since $f \in \mathcal{H}$, then $f(\mathbf{x}) = \langle f, \kappa(\cdot, \mathbf{x}) \rangle_{\mathcal{H}} = \langle f, \Phi(\mathbf{x}) \rangle_{\mathcal{H}}$. Rewriting ERM in RKHS as

$$
\min_{\boldsymbol{\theta} \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle \boldsymbol{\theta}, \Phi(\mathbf{x}_i) \rangle_{\mathcal{H}}) + \lambda \|\boldsymbol{\theta}\|_{\mathcal{H}}^2
$$

Go into higher dimensions to linearly separate the classes !

- \blacktriangleright But how to implement $\Phi(\mathbf{x}) \in \mathcal{H}$ on a computer if dim $H = \infty$?????
- \blacktriangleright How to solve ERM in $\mathcal H$????

The representer theorem

Main result

- ▶ Let *X* be any space, $\mathcal{D} = {\mathbf{x}_1, \dots, \mathbf{x}_n} \subset \mathcal{X}$ a finite set of points.
- \blacktriangleright *H* a RKHS with reproducing kernel $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.
- In Let $\Psi : \mathbb{R}^{n+1} \to \mathbb{R}$ any function that is strictly increasing with respect to the last variable.
- \blacktriangleright Then any solution f^* of the minimization problem

$$
\min_{f \in \mathcal{H}} \Psi(f(\mathbf{x}_1), \cdots, f(\mathbf{x}_n), ||f||_{\mathcal{H}}^2)
$$

can be written as

$$
\forall \mathbf{x} \in \mathcal{X}, \ f^*(\mathbf{x}) = \sum_{i=1}^n \theta_i \kappa(\mathbf{x}, \mathbf{x}_i) \text{ for some } \theta \in \mathbb{R}^n.
$$

KORK EXTERNE PROVIDE

The representer theorem

Main result

- ▶ Let *X* be any space, $\mathcal{D} = {\mathbf{x}_1, \dots, \mathbf{x}_n} \subset \mathcal{X}$ a finite set of points.
- \blacktriangleright *H* a RKHS with reproducing kernel $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.
- In Let $\Psi : \mathbb{R}^{n+1} \to \mathbb{R}$ any function that is strictly increasing with respect to the last variable.
- \blacktriangleright Then any solution f^* of the minimization problem

$$
\min_{f \in \mathcal{H}} \Psi(f(\mathbf{x}_1), \cdots, f(\mathbf{x}_n), ||f||^2_{\mathcal{H}})
$$

can be written as

$$
\forall \mathbf{x} \in \mathcal{X}, \ f^*(\mathbf{x}) = \sum_{i=1}^n \theta_i \kappa(\mathbf{x}, \mathbf{x}_i) \text{ for some } \theta \in \mathbb{R}^n.
$$

Important remarks

- \triangleright Although the RKHS can be of infinite dimension any solution lives in Span $\{\kappa(\cdot, \mathbf{x}_1), \cdots, \kappa(\cdot, \mathbf{x}_n)\}\)$ which is a subspace of dimension *n*.
- I Works for any X and $\Psi = \Psi_0 + g$ with $g \nearrow$ [!!!](#page-51-0)

Practical use of the representer theorem (1/2)

 \triangleright When the representer theorem holds we can simply look for f as

$$
\forall \mathbf{x} \in \mathcal{X}, \ f(\mathbf{x}) = \sum_{i=1}^n \theta_i \kappa(\mathbf{x}, \mathbf{x}_i) \text{ for some } \theta \in \mathbb{R}^n.
$$

 \blacktriangleright Define $\mathbf{K} := (\kappa(\mathbf{x}_i, \mathbf{x}_j))_{ii}$. **I** Then , for any $j \in \llbracket n \rrbracket$

$$
f(\mathbf{x}_j) = \sum_{i=1}^n \theta_i \kappa(\mathbf{x}_i, \mathbf{x}_j) = [\mathbf{K}\boldsymbol{\theta}]_j.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Practical use of the representer theorem (1/2)

 \triangleright When the representer theorem holds we can simply look for f as

$$
\forall \mathbf{x} \in \mathcal{X}, \ f(\mathbf{x}) = \sum_{i=1}^n \theta_i \kappa(\mathbf{x}, \mathbf{x}_i) \text{ for some } \theta \in \mathbb{R}^n.
$$

 \blacktriangleright Define $\mathbf{K} := (\kappa(\mathbf{x}_i, \mathbf{x}_j))_{ii}$. **I** Then , for any $j \in \llbracket n \rrbracket$

$$
f(\mathbf{x}_j) = \sum_{i=1}^n \theta_i \kappa(\mathbf{x}_i, \mathbf{x}_j) = [\mathbf{K}\theta]_j.
$$

 \blacktriangleright Also

$$
||f||_{\mathcal{H}}^2 = ||\sum_{i=1}^n \theta_i \kappa(\cdot, \mathbf{x}_i)||_{\mathcal{H}}^2 = \langle \sum_{i=1}^n \theta_i \kappa(\cdot, \mathbf{x}_i), \sum_{j=1}^n \theta_j \kappa(\cdot, \mathbf{x}_j) \rangle_{\mathcal{H}}
$$

=
$$
\sum_{ij} \theta_i \theta_j \langle \kappa(\cdot, \mathbf{x}_i), \kappa(\cdot, \mathbf{x}_j) \rangle_{\mathcal{H}} = \sum_{ij} \theta_i \theta_j \kappa(\mathbf{x}_i, \mathbf{x}_j)
$$

=
$$
\theta^\top \mathbf{K} \theta.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Practical use of the representer theorem (2/2)

 \blacktriangleright Therefore the problem

$$
\min_{f \in \mathcal{H}} \Psi(f(\mathbf{x}_1), \cdots, f(\mathbf{x}_n), \|f\|_{\mathcal{H}}^2)
$$

 \blacktriangleright is equivalent to

$$
\min_{\boldsymbol{\theta} \in \mathbb{R}^n} \Psi([\mathsf{K}\boldsymbol{\theta}]_1,\cdots,[\mathsf{K}\boldsymbol{\theta}]_n,\boldsymbol{\theta}^\top \mathsf{K}\boldsymbol{\theta})
$$

- \blacktriangleright 1°) To tackle it we only need the Gram matrix **K**: **kernel trick** !
- \triangleright 2°) Can be used whatever \mathcal{X}, κ !
- \triangleright 3°) We can solve it on a computer since finite dimensional !
- \triangleright 4°) It can usually be solved analytically or by numerical methods.

Practical use of the representer theorem (2/2)

 \blacktriangleright Therefore the problem

$$
\min_{f \in \mathcal{H}} \Psi(f(\mathbf{x}_1), \cdots, f(\mathbf{x}_n), \|f\|_{\mathcal{H}}^2)
$$

 \blacktriangleright is equivalent to

$$
\min_{\boldsymbol{\theta}\in\mathbb{R}^n}\Psi([\mathsf{K}\boldsymbol{\theta}]_1,\cdots,[\mathsf{K}\boldsymbol{\theta}]_n,\boldsymbol{\theta}^\top\mathsf{K}\boldsymbol{\theta})
$$

- \blacktriangleright 1°) To tackle it we only need the Gram matrix **K**: **kernel trick** !
- \triangleright 2°) Can be used whatever \mathcal{X}, κ !
- \triangleright 3°) We can solve it on a computer since finite dimensional !
- \triangleright 4°) It can usually be solved analytically or by numerical methods.

Application to ERM

If we look for *f* in a RKHS then we need to solve

$$
\min_{\boldsymbol{\theta} \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{y}_i, [\mathbf{K}\boldsymbol{\theta}]_i) + \lambda \boldsymbol{\theta}^\top \mathbf{K}\boldsymbol{\theta}
$$

Setting

- \blacktriangleright $\mathbf{x}_i \in \mathcal{X}$ (not necessarily \mathbb{R}^d !) and $y_i \in \mathbb{R}, \mathbf{y} = (y_1, \dots, y_n)^\top \in \mathbb{R}^n$
- \blacktriangleright We consider the square loss $\ell(y, y') = (y y')^2$
- \blacktriangleright The ERM in the RKHS is

$$
\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n (y_i - f(\mathbf{x}_i))^2 + \lambda ||f||_{\mathcal{H}}^2.
$$

Setting

- \blacktriangleright $\mathbf{x}_i \in \mathcal{X}$ (not necessarily \mathbb{R}^d !) and $y_i \in \mathbb{R}, \mathbf{y} = (y_1, \dots, y_n)^\top \in \mathbb{R}^n$
- \blacktriangleright We consider the square loss $\ell(y, y') = (y y')^2$
- \blacktriangleright The FRM in the RKHS is

$$
\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n (y_i - f(\mathbf{x}_i))^2 + \lambda ||f||_{\mathcal{H}}^2.
$$

Kernel Ridge Regression

The ERM in the RKHS is equivalent to the minimization problem:

$$
\min_{\boldsymbol{\theta} \in \mathbb{R}^n} \frac{1}{n} \|\mathbf{y} - \mathbf{K}\boldsymbol{\theta}\|_2^2 + \lambda \boldsymbol{\theta}^\top \mathbf{K}\boldsymbol{\theta}
$$

KORKARA REPASA DA VOCA

How can we solve it ? What is the time/memory complexity ?

Setting

- \blacktriangleright $\mathbf{x}_i \in \mathcal{X}$ (not necessarily \mathbb{R}^d !) and $y_i \in \mathbb{R}, \mathbf{y} = (y_1, \dots, y_n)^\top \in \mathbb{R}^n$
- \blacktriangleright We consider the square loss $\ell(y, y') = (y y')^2$
- \blacktriangleright The FRM in the RKHS is

$$
\min_{f\in\mathcal{H}}\frac{1}{n}\sum_{i=1}^n(y_i-f(\mathbf{x}_i))^2+\lambda||f||_{\mathcal{H}}^2.
$$

Kernel Ridge Regression

The ERM in the RKHS is equivalent to the minimization problem:

$$
\min_{\boldsymbol{\theta} \in \mathbb{R}^n} \frac{1}{n} \|\mathbf{y} - \mathbf{K}\boldsymbol{\theta}\|_2^2 + \lambda \boldsymbol{\theta}^\top \mathbf{K}\boldsymbol{\theta}
$$

How can we solve it ? What is the time/memory complexity ?

Solution

Given by
$$
\theta^* = (\mathbf{K} + \lambda n \mathbf{I})^{-1} \mathbf{y}
$$
, $\forall \mathbf{x} \in \mathcal{X}$, $f^*(\mathbf{x}) = \sum_{i=1}^n \theta_i^* \kappa(\mathbf{x}, \mathbf{x}_i)$.

 \blacktriangleright Gaussian kernel $\kappa(x, x') = \exp(-|x - x'|^2/(2\sigma^2))$

Regularization parameter λ

Kernel ridge regression vs linear regression

- **F** Take $\mathcal{X} = \mathbb{R}^d$ and the linear kernel $\kappa(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$.
- In Let $X = (x_1, \cdot, x_n)^\top \in \mathbb{R}^{n \times d}$ the data. The Gram matrix is $K = XX^\top$.

 \blacktriangleright Then corresponding function is

$$
f^{\star}(\mathbf{x}) = \sum_{i=1}^{n} \theta_i^{\star} \kappa(\mathbf{x}, \mathbf{x}_i) = \langle \mathbf{x}, \sum_{i=1}^{n} \theta_i^{\star} \mathbf{x}_i \rangle = \langle \mathbf{x}, \mathbf{w}^{\star} \rangle.
$$

 \blacktriangleright We have $\mathbf{w}^* = \mathbf{X}^\top (\mathbf{X} \mathbf{X}^\top + \lambda n \mathbf{I}_n)^{-1} \mathbf{y}$.

Kernel ridge regression vs linear regression

- **F** Take $\mathcal{X} = \mathbb{R}^d$ and the linear kernel $\kappa(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$.
- In Let $X = (x_1, \cdot, x_n)^T \in \mathbb{R}^{n \times d}$ the data. The Gram matrix is $K = XX$ ^T.

 \blacktriangleright Then corresponding function is

$$
f^{\star}(\mathbf{x}) = \sum_{i=1}^{n} \theta_i^{\star} \kappa(\mathbf{x}, \mathbf{x}_i) = \langle \mathbf{x}, \sum_{i=1}^{n} \theta_i^{\star} \mathbf{x}_i \rangle = \langle \mathbf{x}, \mathbf{w}^{\star} \rangle.
$$

$$
\blacktriangleright \text{ We have } \mathbf{w}^* = \mathbf{X}^\top (\mathbf{X} \mathbf{X}^\top + \lambda n \mathbf{I}_n)^{-1} \mathbf{y}.
$$

 ℓ_2 penalized linear regression: ridge regression The problem

$$
\min_{\mathbf{w}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n(y_i-\mathbf{w}^\top\mathbf{x}_i)^2+\lambda\|\mathbf{w}\|_2^2\text{ has solution }\mathbf{w}^*=(\mathbf{X}^\top\mathbf{X}+\lambda n\mathbf{I}_d)^{-1}\mathbf{X}^\top\mathbf{y}.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Kernel ridge regression vs linear regression

- **If** Take $\mathcal{X} = \mathbb{R}^d$ and the linear kernel $\kappa(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$.
- In Let $X = (x_1, \cdot, x_n)^T \in \mathbb{R}^{n \times d}$ the data. The Gram matrix is $K = XX$ ^T.

 \blacktriangleright Then corresponding function is

$$
f^{\star}(\mathbf{x}) = \sum_{i=1}^{n} \theta_i^{\star} \kappa(\mathbf{x}, \mathbf{x}_i) = \langle \mathbf{x}, \sum_{i=1}^{n} \theta_i^{\star} \mathbf{x}_i \rangle = \langle \mathbf{x}, \mathbf{w}^{\star} \rangle.
$$

$$
\blacktriangleright \text{ We have } \mathbf{w}^* = \mathbf{X}^\top (\mathbf{X} \mathbf{X}^\top + \lambda n \mathbf{I}_n)^{-1} \mathbf{y}.
$$

 ℓ_2 penalized linear regression: ridge regression The problem

$$
\min_{\mathbf{w}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n(y_i-\mathbf{w}^\top\mathbf{x}_i)^2+\lambda\|\mathbf{w}\|_2^2\text{ has solution }\mathbf{w}^*=(\mathbf{X}^\top\mathbf{X}+\lambda n\mathbf{I}_d)^{-1}\mathbf{X}^\top\mathbf{y}.
$$

Matrix inversion lemma

$$
(\mathbf{X}^\top \mathbf{X} + \lambda n \mathbf{I}_d)^{-1} \mathbf{X}^\top = \mathbf{X}^\top (\mathbf{X} \mathbf{X}^\top + \lambda n \mathbf{I}_n)^{-1}
$$

Both agree !

I Complexity roughly: KRR $O(n^3)$ $O(n^3)$ $O(n^3)$, RR $O(\min\{d^3, p^3\})$ $O(\min\{d^3, p^3\})$ $O(\min\{d^3, p^3\})$ $O(\min\{d^3, p^3\})$ $O(\min\{d^3, p^3\})$.

Binary classification

Objective

$$
(\mathbf{x}_i, y_i)_{i=1}^n \quad \Rightarrow \quad f: \mathbb{R}^d \to \{-1, 1\}
$$

Train a function $f(\mathbf{x}) = y \in \mathcal{Y}$ predicting a binary value $(\mathcal{Y} = \{-1, 1\})$. \blacktriangleright $f(\mathbf{x}) = 0$ defines the boundary on the partition of the feature space.

ERM in RKHS

$$
\min_{f\in\mathcal{H}}\frac{1}{n}\sum_{i=1}^n\ell(y_i,f(\mathbf{x}_i))+\lambda||f||_{\mathcal{H}}^2.
$$

KORK EXTERNE PROVIDE

Loss functions

A focus on classification problems $\mathcal{Y} = \{-1, 1\}$

 $\ell(y_i, f(\mathbf{x}_i)) = \Phi(y_i f(\mathbf{x}_i))$ with Φ non-increasing.

KO K K Ø K K E K K E K V K K K K K K K K K

Loss functions

A focus on classification problems $\mathcal{Y} = \{-1, 1\}$

 $\ell(y_i, f(\mathbf{x}_i)) = \Phi(y_i f(\mathbf{x}_i))$ with Φ non-increasing.

 \blacktriangleright *y_i* $f(\mathbf{x}_i)$ is the margin.

$$
\blacktriangleright \ell(y_i, f(\mathbf{x}_i)) = \mathbf{1}_{y_i f(\mathbf{x}_i) \leq 0} (0/1 \text{ loss})
$$

 $\blacktriangleright \ell(y_i, f(\mathbf{x}_i)) = \max\{0, 1 - y_i f(\mathbf{x}_i)\}$ (hinge loss: **SVM**)

$$
\blacktriangleright \ell(y_i, f(\mathbf{x}_i)) = \log(1 + e^{-y_i f(\mathbf{x}_i)})
$$
 (logistic loss)

Loss functions

A focus on classification problems $\mathcal{Y} = \{-1, 1\}$

 $\ell(y_i, f(\mathbf{x}_i)) = \Phi(y_i f(\mathbf{x}_i))$ with Φ non-increasing.

Support Vector Machines (SVM)

Definition

 \blacktriangleright The hinge-loss is the function $\mathbb{R} \to \mathbb{R}_+$:

$$
\Phi_{\text{hinge}}(x) = \max(1 - x, 0)
$$

$$
= \begin{cases} 0 & \text{if } x \ge 1 \\ 1 - x & \text{otherwise} \end{cases}
$$

Interpretation of the loss $\ell(y, f(x)) = \Phi_{\text{hinge}}(yf(x))$

 \triangleright When $\mathsf{y} f(x) \geq 0$: sign $(\mathsf{y}) = \mathsf{sign}(f(x))$ thus good prediction \rightarrow the loss should be "small".

When
$$
xf(x) \ge 1
$$
: if $y = +1 \implies f(x) \ge 1$, if
\n $y = -1 \implies f(x) \le -1 \to \text{zero loss is a good idea.}$

$$
\blacktriangleright \text{ When } yf(x) \leq 1 \text{ we can do better.}
$$

Definition

 \triangleright SVM is the corresponding large-margin classifier, which solves:

$$
\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \Phi_{\text{hinge}}(y_i f(\mathbf{x}_i)) + \lambda \|f\|_{\mathcal{H}}^2.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Definition

 \triangleright SVM is the corresponding large-margin classifier, which solves:

$$
\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \Phi_{\text{hinge}}(y_i f(\mathbf{x}_i)) + \lambda \|f\|_{\mathcal{H}}^2.
$$

KORKAR KERKER SAGA

Solving for the SVM (details in Steinwart and Christmann [2008\)](#page-81-0)

- ▶ Representer theorem: sol. of the form $f^*(\mathbf{x}) = \sum_{i=1}^n \theta_i^* \kappa(\mathbf{x}, \mathbf{x}_i)$.
- \triangleright θ^* can be found by solving a quadratic program (QP).
- **If** Again: we only need to know the Gram matrix $\mathbf{K} = (\kappa(\mathbf{x}_i, \mathbf{x}_i))_{ii}$.

What is SVM doing ?

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ │ 큰 │ ◆ 9 Q ⊙

4 ロ) 4 何) 4 ミ) 4 3) È 299

SVM finds the hyperplane that maximizes the margin

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$ 2990

- \triangleright Kernel theory is very rich, kernels are quite simple but also versatile.
- **I** Defines a very general way of learning classifiers/regressors on any kind of space.
- Based on the representer theorem: we only need the Gram matrix !
- \triangleright Difficulties: the choice of the kernel (see TD), also can be expensive.

KORKARA REPASA DA VOCA

References I

- Aronszajn, Nachman (1950). "Theory of reproducing kernels". In: *Transactions of the American mathematical society* 68.3, pp. 337–404.
- 5 Babai, László (2016). "Graph isomorphism in quasipolynomial time". In: *Proceedings of the forty-eighth annual ACM symposium on Theory of Computing*, pp. 684–697.
- Borgwardt, Karsten et al. (2020). "Graph kernels: State-of-the-art and 螶 future challenges". In: *Foundations and Trends® in Machine Learning* 13.5-6, pp. 531–712.
- Borgwardt, Karsten M and Hans-Peter Kriegel (2005). "Shortest-path ã kernels on graphs". In: *Fifth IEEE international conference on data mining (ICDM'05)*. IEEE, 8–pp.
- Datar, Mayur et al. (2004). "Locality-sensitive hashing scheme based on 螶 p-stable distributions". In: *Proceedings of the twentieth annual symposium on Computational geometry*, pp. 253–262.
	- Feragen, Aasa et al. (2013). "Scalable kernels for graphs with continuous attributes". In: *Advances in neural information processing systems* 26.

References II

Gärtner, Thomas, Peter Flach, and Stefan Wrobel (2003). "On graph kernels: Hardness results and efficient alternatives". In: *Learning Theory and Kernel Machines: 16th Annual Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003. Proceedings*. Springer, pp. 129–143.

- 螶 Haussler, David et al. (1999). *Convolution kernels on discrete structures*. Tech. rep. Citeseer.
- 舙 Kriege, Nils M, Pierre-Louis Giscard, and Richard Wilson (2016). "On valid optimal assignment kernels and applications to graph classification". In: *Advances in neural information processing systems* 29.
- Leman, AA and Boris Weisfeiler (1968). "A reduction of a graph to a ã canonical form and an algebra arising during this reduction". In: *Nauchno-Technicheskaya Informatsiya* 2.9, pp. 12–16.
- Morris, Christopher et al. (2016). "Faster kernels for graphs with continuous ā attributes via hashing". In: *2016 IEEE 16th International Conference on Data Mining (ICDM)*. IEEE, pp. 1095–1100.

References III

螶 Nikolentzos, Giannis, Giannis Siglidis, and Michalis Vazirgiannis (2021). "Graph kernels: A survey". In: *Journal of Artificial Intelligence Research* 72, pp. 943–1027.

- Shervashidze, Nino, Pascal Schweitzer, et al. (2011). "Weisfeiler-lehman graph kernels.". In: *Journal of Machine Learning Research* 12.9.
- Shervashidze, Nino, SVN Vishwanathan, et al. (2009). "Efficient graphlet kernels for large graph comparison". In: *Artificial intelligence and statistics*. PMLR, pp. 488–495.
- 螶 Steinwart, Ingo and Andreas Christmann (2008). *Support vector machines*. Springer Science & Business Media.
- 舙 Wendland, Holger (2004). *Scattered data approximation*. Vol. 17. Cambridge university press.
- 譶 Yanardag, Pinar and SVN Vishwanathan (2015). "Deep graph kernels". In: *Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 1365–1374.