
Machine learning for graphs and with
graphs

Graph kernels

Titouan Vayer & Pierre Borgnat
email: titouan.vayer@inria.fr, pierre.borgnat@ens-lyon.fr

September 23, 2024

Table of contents

Kernels in Machine Learning
A bit of kernels theory
Back to machine learning: the representer theorem

Kernels for structured data
Basics of graphs-kernels
Focus on Weisfeler-Lehman Kernel
Conclusion

Acknowledgments

Some slides adapted from those of Jean-Philippe Vert and Rémi Flamary.

What is a kernel ?

Measuring similarities between objects
I Two “objects” x, y in an abstract

space X .

I A kernel aims at measuring “how
similar” is x from y.

I e.g. X = Rd , kernel(x, y) = hx, yi or
cosine similarity.

ML with kernels
I ML methods based on pairwise comparisons.

I By imposing constraints on the kernel (positive definite), we obtain a
general framework for learning from data (RKHS).

I + without making any assumptions regarding the type of data
(vectors, strings, graphs, images, ...)

A principle method for ERM
minf2?

1

n

Pn

i=1
`(yi , f (xi)) ! look for f in specific space (RKHS)

What is a kernel ?

Measuring similarities between objects
I Two “objects” x, y in an abstract

space X .

I A kernel aims at measuring “how
similar” is x from y.

I e.g. X = Rd , kernel(x, y) = hx, yi or
cosine similarity.

ML with kernels
I ML methods based on pairwise comparisons.

I By imposing constraints on the kernel (positive definite), we obtain a
general framework for learning from data (RKHS).

I + without making any assumptions regarding the type of data
(vectors, strings, graphs, images, ...)

A principle method for ERM
minf2?

1

n

Pn

i=1
`(yi , f (xi)) ! look for f in specific space (RKHS)

What is a kernel ?

Measuring similarities between objects
I Two “objects” x, y in an abstract

space X .

I A kernel aims at measuring “how
similar” is x from y.

I e.g. X = Rd , kernel(x, y) = hx, yi or
cosine similarity.

ML with kernels
I ML methods based on pairwise comparisons.

I By imposing constraints on the kernel (positive definite), we obtain a
general framework for learning from data (RKHS).

I + without making any assumptions regarding the type of data
(vectors, strings, graphs, images, ...)

A principle method for ERM
minf2?

1

n

Pn

i=1
`(yi , f (xi)) ! look for f in specific space (RKHS)

A feature map � : X ! H

From feature map to functions: motivating example
I Feature map can be used to define functions from X to R.

� : R2
! R3 = H

x =


x1

x2

�
7! �(x) =

2

4
x1

x2

x1x2

3

5 and f (x) = a·x1+b·x2+c ·x1x2 (R2
! R)

I Consider ✓ = (a, b, c)> 2 R3 then f (x) = h✓,�(x)i.

I Evaluation of f at x is an inner product in feature space.

Go into higher dimensions to
linearly separate the classes !

A feature map � : X ! H

From feature map to functions: motivating example
I Feature map can be used to define functions from X to R.

� : R2
! R3 = H

x =


x1

x2

�
7! �(x) =

2

4
x1

x2

x1x2

3

5 and f (x) = a·x1+b·x2+c ·x1x2 (R2
! R)

I Consider ✓ = (a, b, c)> 2 R3 then f (x) = h✓,�(x)i.

I Evaluation of f at x is an inner product in feature space.

Go into higher dimensions to
linearly separate the classes !

Table of contents

Kernels in Machine Learning
A bit of kernels theory
Back to machine learning: the representer theorem

Kernels for structured data
Basics of graphs-kernels
Focus on Weisfeler-Lehman Kernel
Conclusion

The definition

Positive definite (PD) kernel
Let X be some space. A function  : X ⇥ X 7! R is a PD kernel if

I It is symmetric (x, y) = (y, x).

I For any x1, · · · , xn 2 X and c1, · · · , cn 2 R
nX

i,j=1

cicj(xi , xj) � 0 . (1)

Remarks
I (1) equiv. K := ((xi , xj))ij 2 Rn⇥n is a PSD matrix 8x1, · · · , xn 2 X .

I For (x, y) = hx, yi if X = (x1, · · · , xn)> then c>Kc = kX>ck2
2

� 0.

I Works also for (x, y) = h�(x),�(y)i for any �.

I Not entirely obvious (x, y) = exp(�kx � yk2
2
/2�2). (see TD)

The definition

Positive definite (PD) kernel
Let X be some space. A function  : X ⇥ X 7! R is a PD kernel if

I It is symmetric (x, y) = (y, x).

I For any x1, · · · , xn 2 X and c1, · · · , cn 2 R
nX

i,j=1

cicj(xi , xj) � 0 . (1)

Remarks
I (1) equiv. K := ((xi , xj))ij 2 Rn⇥n is a PSD matrix 8x1, · · · , xn 2 X .

I For (x, y) = hx, yi if X = (x1, · · · , xn)> then c>Kc = kX>ck2
2

� 0.

I Works also for (x, y) = h�(x),�(y)i for any �.

I Not entirely obvious (x, y) = exp(�kx � yk2
2
/2�2). (see TD)

Properties of PD kernel

Basic properties (see TD)
Let 1, 2, · · · be fixed PD kernels.

I �1 for any � > 0 is a PD kernel.

I 1 + 2 is a PD kernel.

I (x, y) := lim
n!+1

n(x, y) is a PD kernel (provided it exists).

I (x, y) := 1(x, y)2(x, y) is a PD kernel.

I If f : X ! R then (x, y) := f (x)1(x, y)f (y) is a PD kernel.

Changing the features

Changing the features

Polynomial kernel
Consider � : R2

! R3 defined by �(x = (x1, x2)) = (x2
1
,
p
2x1x2, x22). Then:

(x, y) := h�(x),�(y)iR3 = · · · = (hx, yiR2)2 .

Basic properties show that it defines a PD kernel.

Changing the features

Polynomial kernel
Consider � : R2

! R3 defined by �(x = (x1, x2)) = (x2
1
,
p
2x1x2, x22). Then:

(x, y) := h�(x),�(y)iR3 = · · · = (hx, yiR2)2 .

Basic properties show that it defines a PD kernel.

I More generally (x, y) = hx, yim.

Translation invariant kernels

A generic form of kernel on X = Rd

I For 0 : Rd
! R, kernel defined by

(x, y) = 0(x � y)

I e.g. Gaussian kernel (x, y) = exp(�kx � yk2
2
/(2�2)).

I Recall Fourier transform: bf (!) =
R
Rd f (x)e�ih!,xidx.

I Based on Bochner’s theorem (see Wendland 2004, Theorem 6.11):

 is a PD kernel () 8! 2 Rd , b0(!) � 0

�4 �2 0 2 4

�1.00

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

Functions

exp(�t2)

cos(�t)

sin(2�t)/(2�t)

�10 �5 0 5 10
�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0
Fourier transforms

p
� exp(�w2/4)

1(�2⇡,2⇡)

(1/2)(��⇡ + �⇡)

Main property of PD kernel

Main property: Moore–Aronszajn theorem Aronszajn 1950

A function  : X ⇥ X ! R is a PD kernel if and only if there exists a
Hilbert space H and a mapping � : X ! H such that

8x, y 2 X , (x, y) = h�(x),�(y)iH .

Main property of PD kernel

Main property: Moore–Aronszajn theorem Aronszajn 1950

A function  : X ⇥ X ! R is a PD kernel if and only if there exists a
Hilbert space H and a mapping � : X ! H such that

8x, y 2 X , (x, y) = h�(x),�(y)iH .

Main property of PD kernel

Some reminders
I h·, ·iH : H ⇥ H ! R is a bilinear, symmetric and such that hx, xiH > 0

for any x 6= 0.

I A vector space endowed with an inner product is called pre-Hilbert. It
is endowed with kxkH :=

p
hx, xiH.

I A Hilbert space is a pre-Hilbert space complete for the norm defined by
the inner product.

Proof of the theorem in the discrete case

On the board

Complete proof Steinwart and Christmann 2008, Theorem 4.16.

About the feature space

The feature map � and feature space H

I The feature space may have infinite dimension and is not unique.

I Polynomial kernel in 2D (x, y) = (hx, yi)2:

�(x = (x1, x2)) = (x2
1
, x2

2
, x1x2, x1x2), H = R4

I Another possibility:

�(x = (x1, x2)) = (x2
1
, x2

2
,
p

2x1x2), H = R3

About the feature space

The feature map � and feature space H

I The feature space may have infinite dimension and is not unique.

I Polynomial kernel in 2D (x, y) = (hx, yi)2:

�(x = (x1, x2)) = (x2
1
, x2

2
, x1x2, x1x2), H = R4

I Another possibility:

�(x = (x1, x2)) = (x2
1
, x2

2
,
p

2x1x2), H = R3

About the feature space

The feature map � and feature space H

I The feature space may have infinite dimension and is not unique.
I Gaussian Kernel in 1D (x , y) = exp(�|x � y |

2

2
/(2�2)):

�(x) = e� x
2

2�2

1,

r
1

1!�2
x ,

r
1

2!�4
x2,

r
1

3!�6
x3, · · ·

!>

(Taylor series)

I Or H = L2(R) using (x , y) = 1

�

q
2

⇡

R
+1
�1 exp(� (x�t)

2

�2) exp(� (y�t)
2

�2)dt:

�(x) = t ! 2
1

4

p
�⇡

1

4

exp(� (x � t)2

�2
)

About the feature space

The feature map � and feature space H

I The feature space may have infinite dimension and is not unique.
I Gaussian Kernel in 1D (x , y) = exp(�|x � y |

2

2
/(2�2)):

�(x) = e� x
2

2�2

1,

r
1

1!�2
x ,

r
1

2!�4
x2,

r
1

3!�6
x3, · · ·

!>

(Taylor series)

I Or H = L2(R) using (x , y) = 1

�

q
2

⇡

R
+1
�1 exp(� (x�t)

2

�2) exp(� (y�t)
2

�2)dt:

�(x) = t ! 2
1

4

p
�⇡

1

4

exp(� (x � t)2

�2
)

Reproducing Kernel Hilbert Space (RKHS)

From kernels to functions: first idea
I Given H and � : X ! H0: defines a kernel (x, y) = h�(x),�(y)iH0

I And a space of functions from X to R.

H := {f : 9✓ 2 H0, 8x 2 X , f (x) = h✓,�(x)iH0
} .

I Endowed with the norm

kf kH := inf{k✓kH0
: ✓ 2 H0 with f = h✓,�(·)iH0

} (2)

I It is a Hilbert space of functions called the RKHS of .

I We can stop here... but...

From kernels to functions: second idea
I Given a PSD kernel  : X ⇥ X ! R.
I 1°) Find a “suitable” (�, H) such that (x, y) = h�(x),�(y)iH (recall:

many possible)

I 2°) Build upon it to define a suitable space of functions.

(RKHS)

.

Reproducing Kernel Hilbert Space (RKHS)

From kernels to functions: first idea
I Given H and � : X ! H0: defines a kernel (x, y) = h�(x),�(y)iH0

I And a space of functions from X to R.

H := {f : 9✓ 2 H0, 8x 2 X , f (x) = h✓,�(x)iH0
} .

I Endowed with the norm

kf kH := inf{k✓kH0
: ✓ 2 H0 with f = h✓,�(·)iH0

} (2)

I It is a Hilbert space of functions called the RKHS of .

I We can stop here... but...

From kernels to functions: second idea
I Given a PSD kernel  : X ⇥ X ! R.
I 1°) Find a “suitable” (�, H) such that (x, y) = h�(x),�(y)iH (recall:

many possible)

I 2°) Build upon it to define a suitable space of functions.

(RKHS)

.

Reproducing Kernel Hilbert Space (RKHS)

From kernels to functions: first idea
I Given H and � : X ! H0: defines a kernel (x, y) = h�(x),�(y)iH0

I And a space of functions from X to R.

H := {f : 9✓ 2 H0, 8x 2 X , f (x) = h✓,�(x)iH0
} .

I Endowed with the norm

kf kH := inf{k✓kH0
: ✓ 2 H0 with f = h✓,�(·)iH0

} (2)

I It is a Hilbert space of functions called the RKHS of .

I We can stop here... but...

From kernels to functions: second idea
I Given a PSD kernel  : X ⇥ X ! R.
I 1°) Find a “suitable” (�, H) such that (x, y) = h�(x),�(y)iH (recall:

many possible)

I 2°) Build upon it to define a suitable space of functions.(RKHS).

Reproducing Kernel Hilbert Space (RKHS)

Let  be fixed
I Among all (�, H) mentioned in Aronszjan’s theorem one H, called

RKHS, is of interest to us.

I This is a space of functions from X to R.
I Each data point x 2 X will be represented by a function given by the

canonical feature map

�(x) = (·, x) : X ! R

Example
I Consider X = R we could decide to represent x 2 R as a Gaussian

function centered at x :

�(x) = y ! exp(�(x � y)2/(2�2))

I What is the corresponding space H (if it exists)? What would be the
inner-product?

Reproducing Kernel Hilbert Space (RKHS)

Let  be fixed
I Among all (�, H) mentioned in Aronszjan’s theorem one H, called

RKHS, is of interest to us.

I This is a space of functions from X to R.
I Each data point x 2 X will be represented by a function given by the

canonical feature map

�(x) = (·, x) : X ! R

Example
I Consider X = R we could decide to represent x 2 R as a Gaussian

function centered at x :

�(x) = y ! exp(�(x � y)2/(2�2))

I What is the corresponding space H (if it exists)? What would be the
inner-product?

Reproducing Kernel Hilbert Space (RKHS)

Reproducing kernel and RKHS

Let H be a Hilbert space of functions from X to R with inner product
h·, ·iH.  : X ⇥ X ! R is called a reproducing kernel of H if

I 8x 2 X , (·, x) 2 H

I  satisfies the reproducing property: for any f 2 H,

8x 2 X , f (x) = hf , (·, x)iH .

If a reproducing kernel of H exists, then H is called a RKHS.

Reproducing Kernel Hilbert Space (RKHS)

Reproducing kernel and RKHS

Let H be a Hilbert space of functions from X to R with inner product
h·, ·iH.  : X ⇥ X ! R is called a reproducing kernel of H if

I 8x 2 X , (·, x) 2 H

I  satisfies the reproducing property: for any f 2 H,

8x 2 X , f (x) = hf , (·, x)iH .

If a reproducing kernel of H exists, then H is called a RKHS.

Important properties
I If H is a RKHS, then it has a unique reproducing kernel .

I (the feature map is not unique only the kernel is)

I A function  can be the reproducing kernel of at most one RKHS.

Reproducing Kernel Hilbert Space (RKHS)

Reproducing kernel and RKHS

Let H be a Hilbert space of functions from X to R with inner product
h·, ·iH.  : X ⇥ X ! R is called a reproducing kernel of H if

I 8x 2 X , (·, x) 2 H

I  satisfies the reproducing property: for any f 2 H,

8x 2 X , f (x) = hf , (·, x)iH .

If a reproducing kernel of H exists, then H is called a RKHS.

RKHS and feature spaces

Let H be a RKHS with reproducing kernel . Then H is one feature
space associated to , where the feature map is 8x 2 X ,�(x) = (·, x).

Examples of RKHS

So far these functions are a little bit abstract:

Two questions
I Given a PD kernel  what is the RKHS associated to  ?

I Given a function space, is it a RKHS and what is the reproducing
kernel ?

Battery of examples
I (on the board) The RKHS associated to (x, y) = hx, yi is

H = {f✓ = x ! h✓, xi;✓ 2 Rd
}

endowed with the dot product hf✓1
, f✓2

iH := h✓1,✓2i.

I (homework) What is the RKHS associated to (x, y) = hx, yi2 ?

I The space L2(Rd) is not a RKHS.

Examples of RKHS

So far these functions are a little bit abstract:

Two questions
I Given a PD kernel  what is the RKHS associated to  ?

I Given a function space, is it a RKHS and what is the reproducing
kernel ?

Battery of examples
I (on the board) The RKHS associated to (x, y) = hx, yi is

H = {f✓ = x ! h✓, xi;✓ 2 Rd
}

endowed with the dot product hf✓1
, f✓2

iH := h✓1,✓2i.

I (homework) What is the RKHS associated to (x, y) = hx, yi2 ?

I The space L2(Rd) is not a RKHS.

Examples of RKHS

Battery of examples
I The Paley-Wiener space (bandwidth

limited Fourier transform):

F⇡ := {f 2 L2(R) : supp f̂ 2 [�⇡, ⇡]}

where f̂ is the Fourier transform of f .

I Inverse Fourier transform

f (t) =
1p
2⇡

Z ⇡

�⇡

f̂ (!)e i!td! = hf̂ ,! ! e�i!t

p
2⇡

iL2([�⇡,⇡])

I Plancherel-Parseval theorem

8t 2 R, f (t) = hf̂ ,! ! e�i!t

p
2⇡

iL2([�⇡,⇡]) = hf , sin(⇡(·� t))
⇡(·� t)

iL2(R)

I The kernel (s, t) = sin(⇡(s�t))

⇡(s�t)

Examples of RKHS

Battery of examples
I The Paley-Wiener space (bandwidth

limited Fourier transform):

F⇡ := {f 2 L2(R) : supp f̂ 2 [�⇡, ⇡]}

where f̂ is the Fourier transform of f .
I Inverse Fourier transform

f (t) =
1p
2⇡

Z ⇡

�⇡

f̂ (!)e i!td! = hf̂ ,! ! e�i!t

p
2⇡

iL2([�⇡,⇡])

I Plancherel-Parseval theorem

8t 2 R, f (t) = hf̂ ,! ! e�i!t

p
2⇡

iL2([�⇡,⇡]) = hf , sin(⇡(·� t))
⇡(·� t)

iL2(R)

I The kernel (s, t) = sin(⇡(s�t))

⇡(s�t)

Examples of RKHS

Battery of examples
I The Paley-Wiener space (bandwidth

limited Fourier transform):

F⇡ := {f 2 L2(R) : supp f̂ 2 [�⇡, ⇡]}

where f̂ is the Fourier transform of f .
I Inverse Fourier transform

f (t) =
1p
2⇡

Z ⇡

�⇡

f̂ (!)e i!td! = hf̂ ,! ! e�i!t

p
2⇡

iL2([�⇡,⇡])

I Plancherel-Parseval theorem

8t 2 R, f (t) = hf̂ ,! ! e�i!t

p
2⇡

iL2([�⇡,⇡]) = hf , sin(⇡(·� t))
⇡(·� t)

iL2(R)

I The kernel (s, t) = sin(⇡(s�t))

⇡(s�t)

�10.0 �7.5 �5.0 �2.5 0.0 2.5 5.0 7.5 10.0

s

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

(s, t) = sin(�(s � t))/(�(s � t))

t = �1.0

t = 0.0

t = 1.0

Examples of RKHS

Battery of examples
I Translation invariant PD kernels on Rd (x, y) = 0(x � y) with

0 2 L1(Rd) \ C (Rd) and 8! 2 Rd , b0(!) � 0.

I The corresponding RKHS is

H = {f 2 L2(Rd) \ C (Rd) : f̂ /
p

b0 2 L2(Rd)}

I The inner product is given by:

hf , giH := (2⇡)�d/2

Z

Rd

f̂ (!)ĝ(!)

b0(!)
d! .

I Special case: Matèrn kernel b0(!) / (↵2 + k!k
2

2
)�s , s > d/2

I Sobolev spaces of order s: kf k
2

H
= smoothness of the functions as its

derivatives in L2(Rd).

Examples of RKHS

Battery of examples
I Translation invariant PD kernels on Rd (x, y) = 0(x � y) with

0 2 L1(Rd) \ C (Rd) and 8! 2 Rd , b0(!) � 0.

I The corresponding RKHS is

H = {f 2 L2(Rd) \ C (Rd) : f̂ /
p

b0 2 L2(Rd)}

I The inner product is given by:

hf , giH := (2⇡)�d/2

Z

Rd

f̂ (!)ĝ(!)

b0(!)
d! .

I Special case: Matèrn kernel b0(!) / (↵2 + k!k
2

2
)�s , s > d/2

I Sobolev spaces of order s: kf k
2

H
= smoothness of the functions as its

derivatives in L2(Rd).

Examples of RKHS

Battery of examples
I Translation invariant PD kernels on Rd (x, y) = 0(x � y) with

0 2 L1(Rd) \ C (Rd) and 8! 2 Rd , b0(!) � 0.

I The corresponding RKHS is

H = {f 2 L2(Rd) \ C (Rd) : f̂ /
p

b0 2 L2(Rd)}

I The inner product is given by:

hf , giH := (2⇡)�d/2

Z

Rd

f̂ (!)ĝ(!)

b0(!)
d! .

I Special case: Matèrn kernel b0(!) / (↵2 + k!k
2

2
)�s , s > d/2

I Sobolev spaces of order s: kf k
2

H
= smoothness of the functions as its

derivatives in L2(Rd).

Reproducing Kernel Hilbert Space (RKHS)

Reproducing kernels are PD kernels

A function  : X ⇥ X ! R is a reproducing kernel if and only if it is a
PD kernel.

Remarks
I One direction easy: a reproducing kernel is a PD kernel (on the board).

I The other more work: use Moore–Aronszajn theorem + F + Steinwart
and Christmann 2008, Theorem 4.21.

Important consequence
I Any PSD kernel defines a Hilbert space of functions from X to R.
I These functions satisfy

8x 2 X , f (x) = hf , (·, x)iH .

I Abstract view of H:

H = Span{(·, x); x 2 X} .

Reproducing Kernel Hilbert Space (RKHS)

Reproducing kernels are PD kernels

A function  : X ⇥ X ! R is a reproducing kernel if and only if it is a
PD kernel.

Remarks
I One direction easy: a reproducing kernel is a PD kernel (on the board).

I The other more work: use Moore–Aronszajn theorem + F + Steinwart
and Christmann 2008, Theorem 4.21.

Important consequence
I Any PSD kernel defines a Hilbert space of functions from X to R.
I These functions satisfy

8x 2 X , f (x) = hf , (·, x)iH .

I Abstract view of H:

H = Span{(·, x); x 2 X} .

Reproducing Kernel Hilbert Space (RKHS)

Reproducing kernels are PD kernels

A function  : X ⇥ X ! R is a reproducing kernel if and only if it is a
PD kernel.

Remarks
I One direction easy: a reproducing kernel is a PD kernel (on the board).

I The other more work: use Moore–Aronszajn theorem + F + Steinwart
and Christmann 2008, Theorem 4.21.

Important consequence
I Any PSD kernel defines a Hilbert space of functions from X to R.
I These functions satisfy

8x 2 X , f (x) = hf , (·, x)iH .

I Abstract view of H:

H = Span{(·, x); x 2 X} .

Table of contents

Kernels in Machine Learning
A bit of kernels theory
Back to machine learning: the representer theorem

Kernels for structured data
Basics of graphs-kernels
Focus on Weisfeler-Lehman Kernel
Conclusion

Recap on supervised ML

Samples + labels:

X =

2

6664

x>
1

x>
2

...
x>n

3

7775
y =

2

6664

y1

y2
...
yn

3

7775

Classification Regression

Supervised learning
I The dataset contains the samples (xi , yi)

n

i=1
where xi is the feature

sample and yi 2 Y its label.
I Prediction space Y can be:

I Y = {�1, 1} or Y = {1, . . . ,K} for classification problems.
I Y = R for regression problems (Rp for multi-output regression).

Minimizing the averaged error on the training data
To find f : X ! Y the idea is to minimize:

min
f

1

n

nX

i=1

`(yi , f (xi)) + �Reg(f) (ERM)

Recap on supervised ML

Samples + labels:

X =

2

6664

x>
1

x>
2

...
x>n

3

7775
y =

2

6664

y1

y2
...
yn

3

7775

Classification Regression

Supervised learning
I The dataset contains the samples (xi , yi)

n

i=1
where xi is the feature

sample and yi 2 Y its label.
I Prediction space Y can be:

I Y = {�1, 1} or Y = {1, . . . ,K} for classification problems.
I Y = R for regression problems (Rp for multi-output regression).

Minimizing the averaged error on the training data
To find f : X ! Y the idea is to minimize:

min
f

1

n

nX

i=1

`(yi , f (xi)) + �Reg(f) (ERM)

Supervised learning

Minimizing the averaged error on the training data
To find f : X ! Y the idea is to minimize:

min
f2???

1

n

nX

i=1

`(yi , f (xi)) + �Reg(f) (ERM)

Problems
I How to choose the adequate space of functions for f ?

I How to properly regularize ?

I How to e�ciently minimize the quantity ?

One solution
I When Y ⇢ R we can consider f 2 H where H is a RKHS.

I A natural candidate Reg(f) = kf k
2

H
: the higher the smoother f is.

I How to ensure that this is not so di�cult ?

Supervised learning

Minimizing the averaged error on the training data
To find f : X ! Y the idea is to minimize:

min
f2???

1

n

nX

i=1

`(yi , f (xi)) + �Reg(f) (ERM)

Problems
I How to choose the adequate space of functions for f ?

I How to properly regularize ?

I How to e�ciently minimize the quantity ?

One solution
I When Y ⇢ R we can consider f 2 H where H is a RKHS.

I A natural candidate Reg(f) = kf k
2

H
: the higher the smoother f is.

I How to ensure that this is not so di�cult ?

Interpretation of minimization on a RKHS

I Suppose X = Rd and H a RKHS. Consider ERM

min
f2H

1

n

nX

i=1

`(yi , f (xi)) + �kf k
2

H

I Since f 2 H, then f (x) = hf , (·, x)iH = hf ,�(x)iH.

I Rewriting ERM in RKHS as

min
✓2H

1

n

nX

i=1

`(yi , h✓,�(xi)iH) + �k✓k
2

H

Interpretation of minimization on a RKHS

I Suppose X = Rd and H a RKHS. Consider ERM

min
f2H

1

n

nX

i=1

`(yi , f (xi)) + �kf k
2

H

I Since f 2 H, then f (x) = hf , (·, x)iH = hf ,�(x)iH.

I Rewriting ERM in RKHS as

min
✓2H

1

n

nX

i=1

`(yi , h✓,�(xi)iH) + �k✓k
2

H

Important interpretation
I � : X ! H pushes the points to a potentially very high-dimensional

space (even 1): more powerful representation.

I Then linear classification/regression is made on this high-dim space H

I We can deduce the function in low-dim from the high-dim.

Interpretation of minimization on a RKHS

I Suppose X = Rd and H a RKHS. Consider ERM

min
f2H

1

n

nX

i=1

`(yi , f (xi)) + �kf k
2

H

I Since f 2 H, then f (x) = hf , (·, x)iH = hf ,�(x)iH.
I Rewriting ERM in RKHS as

min
✓2H

1

n

nX

i=1

`(yi , h✓,�(xi)iH) + �k✓k
2

H

Go into higher dimensions to
linearly separate the classes !

Interpretation of minimization on a RKHS

I Suppose X = Rd and H a RKHS. Consider ERM

min
f2H

1

n

nX

i=1

`(yi , f (xi)) + �kf k
2

H

I Since f 2 H, then f (x) = hf , (·, x)iH = hf ,�(x)iH.
I Rewriting ERM in RKHS as

min
✓2H

1

n

nX

i=1

`(yi , h✓,�(xi)iH) + �k✓k
2

H

Go into higher dimensions to
linearly separate the classes !

I But how to implement
�(x) 2 H on a computer
if dimH = 1 ?????

I How to solve ERM in H

????

The representer theorem

Main result

I Let X be any space, D = {x1, · · · , xn} ⇢ X a finite set of points.

I H a RKHS with reproducing kernel  : X ⇥ X ! R.
I Let : Rn+1

! R any function that is strictly increasing with
respect to the last variable.

I Then any solution f
? of the minimization problem

min
f2H

 (f (x1), · · · , f (xn), kf k
2

H
)

can be written as

8x 2 X , f
?(x) =

nX

i=1

✓i(x, xi) for some ✓ 2 Rn .

Important remarks
I Although the RKHS can be of infinite dimension any solution lives in

Span{(·, x1), · · · , (·, xn)} which is a subspace of dimension n.

I Works for any X and = 0 + g with g % !!!

The representer theorem

Main result

I Let X be any space, D = {x1, · · · , xn} ⇢ X a finite set of points.

I H a RKHS with reproducing kernel  : X ⇥ X ! R.
I Let : Rn+1

! R any function that is strictly increasing with
respect to the last variable.

I Then any solution f
? of the minimization problem

min
f2H

 (f (x1), · · · , f (xn), kf k
2

H
)

can be written as

8x 2 X , f
?(x) =

nX

i=1

✓i(x, xi) for some ✓ 2 Rn .

Important remarks
I Although the RKHS can be of infinite dimension any solution lives in

Span{(·, x1), · · · , (·, xn)} which is a subspace of dimension n.

I Works for any X and = 0 + g with g % !!!

Practical use of the representer theorem (1/2)

I When the representer theorem holds we can simply look for f as

8x 2 X , f (x) =
nX

i=1

✓i(x, xi) for some ✓ 2 Rn .

I Define K := ((xi , xj))ij .
I Then , for any j 2 [[n]]

f (xj) =
nX

i=1

✓i(xi , xj)= [K✓]j .

I Also

kf k
2

H
= k

nX

i=1

✓i(·, xi)k
2

H
= h

nX

i=1

✓i(·, xi),
nX

j=1

✓j(·, xj)iH

=
X

ij

✓i✓jh(·, xi), (·, xj)iH =
X

ij

✓i✓j(xi , xj)

= ✓>K✓ .

Practical use of the representer theorem (1/2)

I When the representer theorem holds we can simply look for f as

8x 2 X , f (x) =
nX

i=1

✓i(x, xi) for some ✓ 2 Rn .

I Define K := ((xi , xj))ij .
I Then , for any j 2 [[n]]

f (xj) =
nX

i=1

✓i(xi , xj)= [K✓]j .

I Also

kf k
2

H
= k

nX

i=1

✓i(·, xi)k
2

H
= h

nX

i=1

✓i(·, xi),
nX

j=1

✓j(·, xj)iH

=
X

ij

✓i✓jh(·, xi), (·, xj)iH =
X

ij

✓i✓j(xi , xj)

= ✓>K✓ .

Practical use of the representer theorem (2/2)

I Therefore the problem

min
f2H

 (f (x1), · · · , f (xn), kf k
2

H
)

I is equivalent to

min
✓2Rn

 ([K✓]1, · · · , [K✓]n,✓
>K✓)

I 1°) To tackle it we only need the Gram matrix K: kernel trick !

I 2°) Can be used whatever X ,  !

I 3°) We can solve it on a computer since finite dimensional !

I 4°) It can usually be solved analytically or by numerical methods.

Application to ERM
If we look for f in a RKHS then we need to solve

min
✓2Rn

1

n

nX

i=1

`(yi , [K✓]i) + �✓>K✓

Practical use of the representer theorem (2/2)

I Therefore the problem

min
f2H

 (f (x1), · · · , f (xn), kf k
2

H
)

I is equivalent to

min
✓2Rn

 ([K✓]1, · · · , [K✓]n,✓
>K✓)

I 1°) To tackle it we only need the Gram matrix K: kernel trick !

I 2°) Can be used whatever X ,  !

I 3°) We can solve it on a computer since finite dimensional !

I 4°) It can usually be solved analytically or by numerical methods.

Application to ERM
If we look for f in a RKHS then we need to solve

min
✓2Rn

1

n

nX

i=1

`(yi , [K✓]i) + �✓>K✓

Application to regression

Setting
I xi 2 X (not necessarily Rd !) and yi 2 R, y = (y1, · · · , yn)> 2 Rn

I We consider the square loss `(y , y 0) = (y � y
0)2

I The ERM in the RKHS is

min
f2H

1

n

nX

i=1

(yi � f (xi))
2 + �kf k

2

H
.

Kernel Ridge Regression
The ERM in the RKHS is equivalent to the minimization problem:

min
✓2Rn

1

n
ky � K✓k

2

2
+ �✓>K✓

How can we solve it ? What is the time/memory complexity ?

Solution

Given by ✓? = (K+ �nI)�1y, 8x 2 X , f ?(x) =
Pn

i=1
✓?
i
(x, xi).

Application to regression

Setting
I xi 2 X (not necessarily Rd !) and yi 2 R, y = (y1, · · · , yn)> 2 Rn

I We consider the square loss `(y , y 0) = (y � y
0)2

I The ERM in the RKHS is

min
f2H

1

n

nX

i=1

(yi � f (xi))
2 + �kf k

2

H
.

Kernel Ridge Regression
The ERM in the RKHS is equivalent to the minimization problem:

min
✓2Rn

1

n
ky � K✓k

2

2
+ �✓>K✓

How can we solve it ? What is the time/memory complexity ?

Solution

Given by ✓? = (K+ �nI)�1y, 8x 2 X , f ?(x) =
Pn

i=1
✓?
i
(x, xi).

Application to regression

Setting
I xi 2 X (not necessarily Rd !) and yi 2 R, y = (y1, · · · , yn)> 2 Rn

I We consider the square loss `(y , y 0) = (y � y
0)2

I The ERM in the RKHS is

min
f2H

1

n

nX

i=1

(yi � f (xi))
2 + �kf k

2

H
.

Kernel Ridge Regression
The ERM in the RKHS is equivalent to the minimization problem:

min
✓2Rn

1

n
ky � K✓k

2

2
+ �✓>K✓

How can we solve it ? What is the time/memory complexity ?

Solution

Given by ✓? = (K+ �nI)�1y, 8x 2 X , f ?(x) =
Pn

i=1
✓?
i
(x, xi).

Application to regression

I Gaussian kernel (x , x 0) = exp(�|x � x
0
|
2/(2�2))

I Regularization parameter �

x

y

noisy samples

True func.

� = 1e � 08 � = 0.0001 � = 0.01

� = 0.1 � = 1 � = 10

Kernel ridge regression with Gaussian kernel

Kernel ridge regression vs linear regression

I Take X = Rd and the linear kernel (x, y) = hx, yi.
I Let X = (x1, ·, xn)> 2 Rn⇥d the data. The Gram matrix is K = XX>.
I Then corresponding function is

f
?(x) =

nX

i=1

✓?i (x, xi) = hx,
nX

i=1

✓?i xi i = hx,w?
i.

I We have w? = X>(XX> + �nIn)�1y.

`2 penalized linear regression: ridge regression
The problem

min
w2Rd

1

n

nX

i=1

(yi � w>xi)
2 + �kwk

2

2
has solution w? = (X>X+ �nId)

�1X>y.

Matrix inversion lemma

(X>X+ �nId)
�1X> = X>(XX> + �nIn)

�1

I Both agree !

I Complexity roughly: KRR O(n3), RR O(min{d3, n3}).

Kernel ridge regression vs linear regression

I Take X = Rd and the linear kernel (x, y) = hx, yi.
I Let X = (x1, ·, xn)> 2 Rn⇥d the data. The Gram matrix is K = XX>.
I Then corresponding function is

f
?(x) =

nX

i=1

✓?i (x, xi) = hx,
nX

i=1

✓?i xi i = hx,w?
i.

I We have w? = X>(XX> + �nIn)�1y.

`2 penalized linear regression: ridge regression
The problem

min
w2Rd

1

n

nX

i=1

(yi � w>xi)
2 + �kwk

2

2
has solution w? = (X>X+ �nId)

�1X>y.

Matrix inversion lemma

(X>X+ �nId)
�1X> = X>(XX> + �nIn)

�1

I Both agree !

I Complexity roughly: KRR O(n3), RR O(min{d3, n3}).

Kernel ridge regression vs linear regression

I Take X = Rd and the linear kernel (x, y) = hx, yi.
I Let X = (x1, ·, xn)> 2 Rn⇥d the data. The Gram matrix is K = XX>.
I Then corresponding function is

f
?(x) =

nX

i=1

✓?i (x, xi) = hx,
nX

i=1

✓?i xi i = hx,w?
i.

I We have w? = X>(XX> + �nIn)�1y.

`2 penalized linear regression: ridge regression
The problem

min
w2Rd

1

n

nX

i=1

(yi � w>xi)
2 + �kwk

2

2
has solution w? = (X>X+ �nId)

�1X>y.

Matrix inversion lemma

(X>X+ �nId)
�1X> = X>(XX> + �nIn)

�1

I Both agree !

I Complexity roughly: KRR O(n3), RR O(min{d3, n3}).

Binary classification

)

Objective

(xi , yi)
n

i=1
) f : Rd

! {�1, 1}

I Train a function f (x) = y 2 Y predicting a binary value (Y = {�1, 1}).

I f (x) = 0 defines the boundary on the partition of the feature space.

ERM in RKHS

min
f2H

1

n

nX

i=1

`(yi , f (xi)) + �kf k
2

H
.

Loss functions

A focus on classification problems Y = {�1, 1}

`(yi , f (xi)) = �(yi f (xi)) with � non-increasing.

I yi f (xi) is the margin.

I `(yi , f (xi)) = 1yi f (xi)0 (0/1 loss)

I `(yi , f (xi)) = max{0, 1 � yi f (xi)} (hinge loss: SVM)

I `(yi , f (xi)) = log(1 + e
�yi f (xi)) (logistic loss)

Loss functions

A focus on classification problems Y = {�1, 1}

`(yi , f (xi)) = �(yi f (xi)) with � non-increasing.

I yi f (xi) is the margin.

I `(yi , f (xi)) = 1yi f (xi)0 (0/1 loss)

I `(yi , f (xi)) = max{0, 1 � yi f (xi)} (hinge loss: SVM)

I `(yi , f (xi)) = log(1 + e
�yi f (xi)) (logistic loss)

Loss functions

A focus on classification problems Y = {�1, 1}

`(yi , f (xi)) = �(yi f (xi)) with � non-increasing.

I yi f (xi) is the margin.

I `(yi , f (xi)) = 1yi f (xi)0 (0/1 loss)

I `(yi , f (xi)) = max{0, 1 � yi f (xi)} (hinge loss: SVM)

I `(yi , f (xi)) = log(1 + e
�yi f (xi)) (logistic loss)

Support Vector Machines (SVM)

Definition
I The hinge-loss is the function R ! R+:

�hinge(x) = max(1 � x , 0)

=

(
0 if x � 1

1 � x otherwise

1
yf (x)

0

2

4

6

`(
y,

f
(x

))

Hinge loss

Interpretation of the loss `(y , f (x)) = �hinge(yf (x))

I When yf (x) � 0: sign(y) = sign(f (x)) thus good prediction ! the loss
should be “small”.

I When yf (x) � 1: if y = +1 =) f (x) � 1, if
y = �1 =) f (x)  �1 ! zero loss is a good idea.

I When yf (x)  1 we can do better.

Support Vector Machines (SVM)

Definition
I SVM is the corresponding large-margin classifier, which solves:

min
f2H

1

n

nX

i=1

�hinge(yi f (xi)) + �kf k
2

H
.

Solving for the SVM (details in Steinwart and Christmann 2008)

I Representer theorem: sol. of the form f
?(x) =

Pn

i=1
✓?
i
(x, xi).

I ✓? can be found by solving a quadratic program (QP).

I Again: we only need to know the Gram matrix K = ((xi , xj))ij .

Support Vector Machines (SVM)

Definition
I SVM is the corresponding large-margin classifier, which solves:

min
f2H

1

n

nX

i=1

�hinge(yi f (xi)) + �kf k
2

H
.

Solving for the SVM (details in Steinwart and Christmann 2008)

I Representer theorem: sol. of the form f
?(x) =

Pn

i=1
✓?
i
(x, xi).

I ✓? can be found by solving a quadratic program (QP).

I Again: we only need to know the Gram matrix K = ((xi , xj))ij .

What is SVM doing ?

What is SVM doing ?

What is SVM doing ?

What is SVM doing ?

What is SVM doing ?

What is SVM doing ?

Example

Conclusion

I Kernel theory is very rich, kernels are quite simple but also versatile.

I Defines a very general way of learning classifiers/regressors on any kind
of space.

I Based on the representer theorem: we only need the Gram matrix !

I Di�culties: the choice of the kernel (see TD), also can be expensive.

References I

Aronszajn, Nachman (1950). “Theory of reproducing kernels”. In:
Transactions of the American mathematical society 68.3, pp. 337–404.

Babai, László (2016). “Graph isomorphism in quasipolynomial time”. In:
Proceedings of the forty-eighth annual ACM symposium on Theory of

Computing, pp. 684–697.

Borgwardt, Karsten et al. (2020). “Graph kernels: State-of-the-art and
future challenges”. In: Foundations and Trends® in Machine Learning

13.5-6, pp. 531–712.

Borgwardt, Karsten M and Hans-Peter Kriegel (2005). “Shortest-path
kernels on graphs”. In: Fifth IEEE international conference on data

mining (ICDM’05). IEEE, 8–pp.

Datar, Mayur et al. (2004). “Locality-sensitive hashing scheme based on
p-stable distributions”. In: Proceedings of the twentieth annual

symposium on Computational geometry, pp. 253–262.

Feragen, Aasa et al. (2013). “Scalable kernels for graphs with continuous
attributes”. In: Advances in neural information processing systems 26.

References II

Gärtner, Thomas, Peter Flach, and Stefan Wrobel (2003). “On graph
kernels: Hardness results and e�cient alternatives”. In: Learning Theory

and Kernel Machines: 16th Annual Conference on Learning Theory and

7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA,

August 24-27, 2003. Proceedings. Springer, pp. 129–143.

Haussler, David et al. (1999). Convolution kernels on discrete structures.
Tech. rep. Citeseer.

Kriege, Nils M, Pierre-Louis Giscard, and Richard Wilson (2016). “On valid
optimal assignment kernels and applications to graph classification”. In:
Advances in neural information processing systems 29.

Leman, AA and Boris Weisfeiler (1968). “A reduction of a graph to a
canonical form and an algebra arising during this reduction”. In:
Nauchno-Technicheskaya Informatsiya 2.9, pp. 12–16.

Morris, Christopher et al. (2016). “Faster kernels for graphs with continuous
attributes via hashing”. In: 2016 IEEE 16th International Conference on

Data Mining (ICDM). IEEE, pp. 1095–1100.

References III

Nikolentzos, Giannis, Giannis Siglidis, and Michalis Vazirgiannis (2021).
“Graph kernels: A survey”. In: Journal of Artificial Intelligence Research

72, pp. 943–1027.

Shervashidze, Nino, Pascal Schweitzer, et al. (2011). “Weisfeiler-lehman
graph kernels.”. In: Journal of Machine Learning Research 12.9.

Shervashidze, Nino, SVN Vishwanathan, et al. (2009). “E�cient graphlet
kernels for large graph comparison”. In: Artificial intelligence and

statistics. PMLR, pp. 488–495.

Steinwart, Ingo and Andreas Christmann (2008). Support vector machines.
Springer Science & Business Media.

Wendland, Holger (2004). Scattered data approximation. Vol. 17.
Cambridge university press.

Yanardag, Pinar and SVN Vishwanathan (2015). “Deep graph kernels”. In:
Proceedings of the 21th ACM SIGKDD international conference on

knowledge discovery and data mining, pp. 1365–1374.

	Kernels in Machine Learning
	A bit of kernels theory
	Back to machine learning: the representer theorem

	Kernels for structured data
	Basics of graphs-kernels
	Focus on Weisfeler-Lehman Kernel
	Conclusion

	References

