
Machine learning for graphs and with
graphs

Graph kernels

Titouan Vayer & Pierre Borgnat
email: titouan.vayer@inria.fr, pierre.borgnat@ens-lyon.fr

September 23, 2024

Table of contents

Kernels in Machine Learning
A bit of kernels theory
Back to machine learning: the representer theorem

Kernels for structured data
Basics of graphs-kernels
Focus on Weisfeler-Lehman Kernel
Conclusion

Kernels for structured data

Objective
Given a dataset of graphs (G1, · · · ,Gn) can we build machine learning
models to do:

I Supervised learning: each graph associated to yi 2 Y.

I Unsupervised learning: PCA, Kernel PCA, graph embedding...

Application of RKHS for graphs
Let X = { set of all graphs } can we build interesting kernels
 : X ⇥ X ! R ?

I For G ,G 0
2 X , (G ,G 0) is a notion of “similarity” between graphs.

I Gram matrix K = ((Gi ,Gj))(i,j)2[[n]]
2 .

I Then do stu↵...

Some notations
A graph G = (V ,E). Labeling function if attributes/labels `G : V [E ! S

(S discrete or continuous ⇢ RN)

Kernels for structured data

Objective
Given a dataset of graphs (G1, · · · ,Gn) can we build machine learning
models to do:

I Supervised learning: each graph associated to yi 2 Y.

I Unsupervised learning: PCA, Kernel PCA, graph embedding...

Application of RKHS for graphs
Let X = { set of all graphs } can we build interesting kernels
 : X ⇥ X ! R ?

I For G ,G 0
2 X , (G ,G 0) is a notion of “similarity” between graphs.

I Gram matrix K = ((Gi ,Gj))(i,j)2[[n]]
2 .

I Then do stu↵...

Some notations
A graph G = (V ,E). Labeling function if attributes/labels `G : V [E ! S

(S discrete or continuous ⇢ RN)

Kernels for structured data

Objective
Given a dataset of graphs (G1, · · · ,Gn) can we build machine learning
models to do:

I Supervised learning: each graph associated to yi 2 Y.

I Unsupervised learning: PCA, Kernel PCA, graph embedding...

Application of RKHS for graphs
Let X = { set of all graphs } can we build interesting kernels
 : X ⇥ X ! R ?

I For G ,G 0
2 X , (G ,G 0) is a notion of “similarity” between graphs.

I Gram matrix K = ((Gi ,Gj))(i,j)2[[n]]
2 .

I Then do stu↵...

Some notations
A graph G = (V ,E). Labeling function if attributes/labels `G : V [E ! S

(S discrete or continuous ⇢ RN)

What is a good graph kernel ?

Properties of the graph kernel
I Handle graphs that are directed (or undirected) ?

I Handle node or edge labels or attributes that are present in the graphs?

I E�cient to compute ? Complexity w.r.t. |V |, |E |, dim ?

I Is there a particular relevant substructure (e.g. tree patterns) that
would preclude the choice of a particular kernel?

The kernel jungle

Surveys: K. Borgwardt et al. 2020; Nikolentzos, Siglidis, and Vazirgiannis
2021

Edge
attributes

Node
labels

Node
attributes

Edge
labels

All node-pairs

Node histogram

All edge-pairs

Edge histogram

Shortest-path

GraphHopper

Subtree pattern

Cyclic pattern

Graph edit distance

Graphlet

Direct product graph

Marginalized random walk

Random walk

!uantum walk

"eis#eiler-$ehman

Neighbourhood hash

Neighbourhood subgraph pairwise distance

Hadamard code

%ropagation #ramework

Message passing

Multiscale $aplacian

Subgraph matching

Graph in&ariant #ramework

Hash graph kernels

"eighted decomposition

'ptimal assignment

Deep graph kernels

Core based kernel #ramework

Figure 3.2: An overview of the kernels and which node and edge information is used by the kernel. Labels refer
to categorical features on the nodes or edges, whereas attributes refer to continuous features on the on nodes or
edges. The kernels are coloured according to their higher level categorisation (blue: bag of structures, yellow:
information propagation, pink: extensions), and are spaced according to the information that is included. The
graphlet kernel and quantum walk kernel do not incorporate any node or edge labels or attributes.

24

Nikolentzos, Siglidis, & Vazirgiannis

Graph Kernel Exp. �
Node Node

Type Complexity
Labels Attributes

Vertex Histogram � � � R-convolution O(n)

Edge Histogram � � � R-convolution O(m)

Random Walk �† � � R-convolution O(n3)

Subtree � � � R-convolution O(n24deg�
h)

Cyclic Pattern � � � intersection O((c + 2)n + 2m)

Shortest Path �† � � R-convolution O(n4)

Graphlet � � � R-convolution O(nk)

Weisfeiler-Lehman Subtree � � � R-convolution O(hm)

Neighborhood Hash � � � intersection O(hm)

Neighborhood Subgraph Pairwise Distance � � � R-convolution O(n2m log(m))

Lovász � � � � R-convolution O(n(s + nm
�) + s2)

SVM-� � � � R-convolution O(n(s + n2) + s2)

Ordered Decomposition DAGs � � � R-convolution O(n log n)

Pyramid Match � � � assignment O(ndL)

Weisfeiler-Lehman Optimal Assignment � � � assignment O(hm)

Subgraph Matching � � � R-convolution O(knk+1)

GraphHopper � � � R-convolution O(n4)

Graph Invariant Kernels � � � R-convolution O(n6)

Propagation � � � R-convolution O(hm)

Multiscale Laplacian � � � R-convolution O(n5h)

Table 2: Summary of selected graph kernels regarding computation by explicit feature
mapping (Exp. �), support for node-labeled and node-attributed graphs, type, and compu-
tational complexity. A dagger (†) implies that the kernel admits an explicit feature mapping
for certain types of graphs. The complexity refers to the worst-case theoretical complexity
for evaluating the kernel between two graphs. In practice, and for certain kinds of graphs,
some graph kernels (e. g., the shortest-path kernel) can be evaluated much more e�ciently.
The Table uses notation that has not been introduced yet: k: size of largest subgraph
considered, c: upper bound on the number of cycles, h: maximum distance between root of
neighborhood subgraph/subtree pattern and its nodes, s: number of sampled subgraphs, �:
additive error associated with semidefinite programming solvers, d: dimensionality of node
representations, L: number of levels.

walk kernel till the very popular Weisfeiler-Lehman subtree kernel. We next present some
approaches that were inspired from the neighborhood aggregation schmeme of the Weisfeiler-
Lehman subtree kernel, and then kernels that do not fall into either of the previous two
categories. The subequent subsections are devoted to assignment kernels, and to kernels
that can handle continuous node attributes. The final subsections deals with frameworks
and approaches that can be applied on top of existing graph kernels. An overview of the
graph kernels that are presented in this survey and their properties is given in Table 2.

4.5 Early Days of Graph Kernels

While early studies on kernel functions and kernel methods focused almost exclusively on
input data represented as vectors, it soon became clear that these methods could handle
more complex structured objects such as strings, trees and graphs. One of the most popular
methods for defining kernels between such objects is to decompose the objects into their

956

Bag of structures

A majority of graph kernels are instances of the convolution kernels Haussler
et al. 1999.

Principle
I Compare graphs by first dividing them into substructures of various

granularity.

I E.g. vertices, subgraphs, all shortest paths of a graph.

I Defining base kernels at the fine granularity and combine them.

I Of the form (G ,G 0) =
P

r2R,r 02R0 substructure(r , r 0).

Advantages & limitations
I Intuitive definitions + relatively good results.

I Sometimes computational limitations.

I Expressiveness limitations.

I “Diagonal dominance problem” Yanardag and Vishwanathan 2015.

Bag of structures

A majority of graph kernels are instances of the convolution kernels Haussler
et al. 1999.

Principle
I Compare graphs by first dividing them into substructures of various

granularity.

I E.g. vertices, subgraphs, all shortest paths of a graph.

I Defining base kernels at the fine granularity and combine them.

I Of the form (G ,G 0) =
P

r2R,r 02R0 substructure(r , r 0).

Advantages & limitations
I Intuitive definitions + relatively good results.

I Sometimes computational limitations.

I Expressiveness limitations.

I “Diagonal dominance problem” Yanardag and Vishwanathan 2015.

All node-pairs kernel

A first idea
I Given G = (V ,E),G 0 = (V 0,E 0),

I Suppose the labels of the nodes of both graphs are in S .

I Consider a kernel on the nodes

node : S ⇥ S ! R

I The all node-pairs kernel is defined by

(G ,G 0) =
X

v2V

X

v 02V 0

node(`G (v), `G 0(v 0))

Remarks
I Runtime in O(|V | ⇥ |V

0
| ⇥ dim(S)).

I Can handle discrete/continuous labels.

I Does not take into account the structures of the graphs.

All node-pairs kernel

A first idea
I Given G = (V ,E),G 0 = (V 0,E 0),

I Suppose the labels of the nodes of both graphs are in S .

I Consider a kernel on the nodes

node : S ⇥ S ! R

I The all node-pairs kernel is defined by

(G ,G 0) =
X

v2V

X

v 02V 0

node(`G (v), `G 0(v 0))

Remarks
I Runtime in O(|V | ⇥ |V

0
| ⇥ dim(S)).

I Can handle discrete/continuous labels.

I Does not take into account the structures of the graphs.

Node histogram kernel

A baseline kernel (1/2)

I Suppose the labels are discrete over a
finite alphabet

⌃ = {�1, · · · , �|⌃|}

I The node histogram kernel is defined as

NH(G ,G 0) = h�(G),�(G 0)i .

where

�(G) = (
X

v2V

1`G (v)=�1
, · · · ,

X

v2V

1`G (v)=�|⌃|) .

I Simply corresponds to an unnormalised
histogram that counts the occurrence of
each node label in the graph.

Remarks
I Can be computed in

O(|V | + |V |
0).

I Does not take into
account the structures of
the graphs.

I Of the form
NH(G ,G 0) =P
v2V ,v 02V 0

1`G (v)=`
G0 (v 0).

Node histogram kernel

A baseline kernel (1/2)

I Suppose the labels are discrete over a
finite alphabet

⌃ = {�1, · · · , �|⌃|}

I The node histogram kernel is defined as

NH(G ,G 0) = h�(G),�(G 0)i .

where

�(G) = (
X

v2V

1`G (v)=�1
, · · · ,

X

v2V

1`G (v)=�|⌃|) .

I Simply corresponds to an unnormalised
histogram that counts the occurrence of
each node label in the graph.

Remarks
I Can be computed in

O(|V | + |V |
0).

I Does not take into
account the structures of
the graphs.

I Of the form
NH(G ,G 0) =P
v2V ,v 02V 0

1`G (v)=`
G0 (v 0).

Node histogram kernel

A baseline kernel (1/2)

I Suppose the labels are discrete over a
finite alphabet

⌃ = {�1, · · · , �|⌃|}

I The node histogram kernel is defined as

NH(G ,G 0) = h�(G),�(G 0)i .

where

�(G) = (
X

v2V

1`G (v)=�1
, · · · ,

X

v2V

1`G (v)=�|⌃|) .

I Simply corresponds to an unnormalised
histogram that counts the occurrence of
each node label in the graph.

Remarks
I Can be computed in

O(|V | + |V |
0).

I Does not take into
account the structures of
the graphs.

I Of the form
NH(G ,G 0) =P
v2V ,v 02V 0

1`G (v)=`
G0 (v 0).

Edge histogram kernel

A baseline kernel (2/2)

I Suppose the edges labels
are discrete over a finite
alphabet

⌃ = {�1, · · · , �|⌃|}

I The edge histogram kernel is
defined as

EH(G ,G 0) = h�(G),�(G 0)i .

where �(G) =
(
P

e2E
1`(e)=�1

, · · · ,
P

e2E
1`(e)=�|⌃|) .

Remarks
I Can be computed in O(|E | + |E |

0).

I Does not take into account the
labels of the nodes.

I Can be combined with the previous
one as

(G ,G 0) = EH(G ,G 0)⇥ NH(G ,G 0)

Edge histogram kernel

A baseline kernel (2/2)

I Suppose the edges labels
are discrete over a finite
alphabet

⌃ = {�1, · · · , �|⌃|}

I The edge histogram kernel is
defined as

EH(G ,G 0) = h�(G),�(G 0)i .

where �(G) =
(
P

e2E
1`(e)=�1

, · · · ,
P

e2E
1`(e)=�|⌃|) .

Remarks
I Can be computed in O(|E | + |E |

0).

I Does not take into account the
labels of the nodes.

I Can be combined with the previous
one as

(G ,G 0) = EH(G ,G 0)⇥ NH(G ,G 0)

The shortest-path kernel

K. M. Borgwardt and Kriegel 2005
I Compute all pair-to-pair

shortest-paths in G ,G 0 with
Floyd-Warshall.

I The kernel is defined as

SP(G ,G 0) =
X

(v1,v2)2V

X

(v 0
1
,v 0

2
)2V 0

0(d(v1, v2), d(v
0

1
, v 0

2
)) .

where d(v1, v2) is the shortest-path
distance between v1, v2.

I 0 is a kernel that compares the
lengths of the two shortest-paths.

I 0(x , y) = x ⇥ y (linear kernel) or
0(x , y) = 1x=y (dirac).

Remarks
I Complexity Floyd-Warshall

on G ,O(|V |
3).

I Variants with
Bellman–Ford’s, Dijkstra’s
algorithms.

I General complexity for SP

O(|V |
2
|V

0
|
2).

I Many variants with
attributes.

The shortest-path kernel

K. M. Borgwardt and Kriegel 2005
I Compute all pair-to-pair

shortest-paths in G ,G 0 with
Floyd-Warshall.

I The kernel is defined as

SP(G ,G 0) =
X

(v1,v2)2V

X

(v 0
1
,v 0

2
)2V 0

0(d(v1, v2), d(v
0

1
, v 0

2
)) .

where d(v1, v2) is the shortest-path
distance between v1, v2.

I 0 is a kernel that compares the
lengths of the two shortest-paths.

I 0(x , y) = x ⇥ y (linear kernel) or
0(x , y) = 1x=y (dirac).

Remarks
I Complexity Floyd-Warshall

on G ,O(|V |
3).

I Variants with
Bellman–Ford’s, Dijkstra’s
algorithms.

I General complexity for SP

O(|V |
2
|V

0
|
2).

I Many variants with
attributes.

GraphHopper kernel

Undirected graphs with edge weights and node attributes.
I Even for real-valued/vector attributes Feragen et al. 2013.

I Interestingly averaged overall worst-case complexity O(|V ||V
0
| dim(S)).

I Kernel is defined as

GH(G ,G 0) =
X

p2PG

X

p02P
G0

0(p, p0) where PG : set of all shortest-paths.

I Base kernel 0(p, p0) =

(P|p|

j=1
node(pj , p0j) if equal length|p| = |p

0
|

0 otherwise

GraphHopper kernel

Undirected graphs with edge weights and node attributes.
I Even for real-valued/vector attributes Feragen et al. 2013.

I Interestingly averaged overall worst-case complexity O(|V ||V
0
| dim(S)).

I Kernel is defined as

GH(G ,G 0) =
X

p2PG

X

p02P
G0

0(p, p0) where PG : set of all shortest-paths.

I Base kernel 0(p, p0) =

(P|p|

j=1
node(pj , p0j) if equal length|p| = |p

0
|

0 otherwise

GraphHopper kernel

Undirected graphs with edge weights and node attributes.
I Even for real-valued/vector attributes Feragen et al. 2013.

I Interestingly averaged overall worst-case complexity O(|V ||V
0
| dim(S)).

I Kernel is defined as

GH(G ,G 0) =
X

p2PG

X

p02P
G0

0(p, p0) where PG : set of all shortest-paths.

I Base kernel 0(p, p0) =

(P|p|

j=1
node(pj , p0j) if equal length|p| = |p

0
|

0 otherwise

The Graphlet kernel

Principle Shervashidze, Vishwanathan,

et al. 2009

I Count substructures in graphs.

I Graphlet = subgraph with k vertices.

I G := {g1, · · · , gNk
} set of

k-graphlets (asymptotically

Nk ⇡ 2(
k

2)/k!).

I Kernel (G ,G 0) = h�(G),�(G 0)i

�(G) / (|{gi 2 G}|, · · · , |{gNk
2 G}|)>

Remarks
I Ignores all labels.

I Computational bottleneck:
enumeration of all graphlets.

I Complexity in O(|V |
k) time.

I Typically k 2 {3, 4, 5}.

I Counting all possible
subgraphs is NP-hard
Gärtner, Flach, and Wrobel
2003.

The Graphlet kernel

Principle Shervashidze, Vishwanathan,

et al. 2009

I Count substructures in graphs.

I Graphlet = subgraph with k vertices.

I G := {g1, · · · , gNk
} set of

k-graphlets (asymptotically

Nk ⇡ 2(
k

2)/k!).

I Kernel (G ,G 0) = h�(G),�(G 0)i

�(G) / (|{gi 2 G}|, · · · , |{gNk
2 G}|)>

Remarks
I Ignores all labels.

I Computational bottleneck:
enumeration of all graphlets.

I Complexity in O(|V |
k) time.

I Typically k 2 {3, 4, 5}.

I Counting all possible
subgraphs is NP-hard
Gärtner, Flach, and Wrobel
2003.

The graph isomorphism problem

Checking if two graphs are “identical”
Two graphs G = (V ,E),G 0 = (V 0,E 0) are isomorphic (G ⇠= G

0) if there
exists a bijection : V ! V

0 such that

(u, v) 2 E () ((u), (v)) 2 E
0 .

Remark
I Same graphs up to a permutation.

I Currently no known polynomial-time
algorithms for solving this problem.

I Not known to be NP-complete.

I Quasi-polynomial algorithm Babai
2016.

Weisfeiler-Lehman test of isomorphism Leman and Weisfeiler 1968

On the board

The graph isomorphism problem

Checking if two graphs are “identical”
Two graphs G = (V ,E),G 0 = (V 0,E 0) are isomorphic (G ⇠= G

0) if there
exists a bijection : V ! V

0 such that

(u, v) 2 E () ((u), (v)) 2 E
0 .

Remark
I Same graphs up to a permutation.

I Currently no known polynomial-time
algorithms for solving this problem.

I Not known to be NP-complete.

I Quasi-polynomial algorithm Babai
2016.

Weisfeiler-Lehman test of isomorphism Leman and Weisfeiler 1968

On the board

The graph isomorphism problem

Checking if two graphs are “identical”
Two graphs G = (V ,E),G 0 = (V 0,E 0) are isomorphic (G ⇠= G

0) if there
exists a bijection : V ! V

0 such that

(u, v) 2 E () ((u), (v)) 2 E
0 .

Remark
I Same graphs up to a permutation.

I Currently no known polynomial-time
algorithms for solving this problem.

I Not known to be NP-complete.

I Quasi-polynomial algorithm Babai
2016.

Weisfeiler-Lehman test of isomorphism Leman and Weisfeiler 1968

On the board

Table of contents

Kernels in Machine Learning
A bit of kernels theory
Back to machine learning: the representer theorem

Kernels for structured data
Basics of graphs-kernels
Focus on Weisfeler-Lehman Kernel
Conclusion

Multi-set vs set

Key di↵erences
Without being too formal.

I A set X = {a, b} is equal to Y = {b, a} because x 2 X () x 2 Y :
order is irrelevant.

I A set Z = {a, a, b} is also equal to X : the same element can appear
more than once.

I A multi-set denoted with {{· · · }} is a “set” where elements can
appear more that once.

I The order is still irrelevant.

I For example {{a, a, b}}.

I Formal definition: a multiset is a couple (X ,m) where X is a set and a
m : X ! N counts the multiplicity of each element.

Weisfeiler–Lehman kernel

A very popular graph kernel based on Shervashidze, Schweitzer,
et al. 2011
I Originally handle graphs with discrete labels.

I Uses iterative label refinement.

I Concepts from the Weisfeiler-Lehman test of isomorphism.

Graphs relabeling/refinement

I Recursively refine the node labels by applying local transformations

av = AGGREGATE
⇣
{{`(old)

G
(v 0); v 0

2 N (v)}}

⌘

and `(new)
G

(v) = COMBINE
⇣
`(old)
G

(v), av
⌘

.

I This general idea can give rise to a multitude of distinct graph kernels:

I (i) the specific form of COMBINE,AGGREGATE.

I (ii) which kernels are used to compare the resulting modified graphs.

I (iii) how the graph at multiple scales are aggregated into a single value.

Weisfeiler–Lehman kernel

A very popular graph kernel based on Shervashidze, Schweitzer,
et al. 2011
I Originally handle graphs with discrete labels.

I Uses iterative label refinement.

I Concepts from the Weisfeiler-Lehman test of isomorphism.

Graphs relabeling/refinement

I Recursively refine the node labels by applying local transformations

av = AGGREGATE
⇣
{{`(old)

G
(v 0); v 0

2 N (v)}}

⌘

and `(new)
G

(v) = COMBINE
⇣
`(old)
G

(v), av
⌘

.

I This general idea can give rise to a multitude of distinct graph kernels:

I (i) the specific form of COMBINE,AGGREGATE.

I (ii) which kernels are used to compare the resulting modified graphs.

I (iii) how the graph at multiple scales are aggregated into a single value.

Weisfeiler–Lehman kernel

Weisfeiler–Lehman kernel

Weisfeiler–Lehman kernel

The Weisfeiler–Lehman kernel
I The function AGGREGATE sorts in alphabetic order.

I The function COMBINE hashes to compress the tuple into a single
integer-valued label.

I Produces a sequence of graphs (G0, · · · ,Gh).

I The Weisfeiler–Lehman kernel is

WL(G ,G 0) =
hX

i=0

0(Gi ,G
0

i) ,

for a base kernel 0.

I Most common 0 subtree kernel: �(G) = number of occurrences of
each label in the alphabet of all compressed labels at each step.

I Complexity: for one graph O(|E | ⇥ h).

I Runtime scales only linearly with the number of edges !

Weisfeiler–Lehman kernel

The Weisfeiler–Lehman kernel
I The function AGGREGATE sorts in alphabetic order.

I The function COMBINE hashes to compress the tuple into a single
integer-valued label.

I Produces a sequence of graphs (G0, · · · ,Gh).

I The Weisfeiler–Lehman kernel is

WL(G ,G 0) =
hX

i=0

0(Gi ,G
0

i) ,

for a base kernel 0.

I Most common 0 subtree kernel: �(G) = number of occurrences of
each label in the alphabet of all compressed labels at each step.

I Complexity: for one graph O(|E | ⇥ h).

I Runtime scales only linearly with the number of edges !

Optimal assignment kernel

General setting (Kriege, Giscard, and Wilson 2016)

I Di↵erent than “bag of structure” kernels.

I Let X ,Y ⇢ ⌦ with |X | = |Y |.

OA(X ,Y) = max
B2B(X ,Y)

X

x2X

0(x ,B(y)) where B(X ,Y) = all bijections.

I  is a valid PSD kernel if 0 : ⌦⇥ ⌦ ! R+ is strong:

0(x , y) � min{0(x , z), 0(z , y)} 8(x , y , z).

I Assign the parts of one objects to the parts of the other s.t. the total
similarity is maximum possible.

Weisfeiler-Lehman optimal assignment kernel
I i 2 [[h]], ⌧i (v) denotes the color of vertex v at step i of the WL process.

I The base kernel is 0(v , v 0) =
Ph

i=0
1⌧i (v)=⌧i (v 0) + padding.

I Can also be computed in O(hm).

Optimal assignment kernel

General setting (Kriege, Giscard, and Wilson 2016)

I Di↵erent than “bag of structure” kernels.

I Let X ,Y ⇢ ⌦ with |X | = |Y |.

OA(X ,Y) = max
B2B(X ,Y)

X

x2X

0(x ,B(y)) where B(X ,Y) = all bijections.

I  is a valid PSD kernel if 0 : ⌦⇥ ⌦ ! R+ is strong:

0(x , y) � min{0(x , z), 0(z , y)} 8(x , y , z).

I Assign the parts of one objects to the parts of the other s.t. the total
similarity is maximum possible.

Weisfeiler-Lehman optimal assignment kernel
I i 2 [[h]], ⌧i (v) denotes the color of vertex v at step i of the WL process.

I The base kernel is 0(v , v 0) =
Ph

i=0
1⌧i (v)=⌧i (v 0) + padding.

I Can also be computed in O(hm).

Continuous alternative to Weisfeiler–Lehman

Hash graph kernel Morris et al. 2016
I Let  be a graph kernel (such as WL).

I H = {h1, h2 · · · } a family of hash functions.

I hi : Rd
! N is a hash function.

I hi (G): the discretised graph resulting from applying hi to continuous
attributes of the graph.

I The kernel is defined as

HGK(G ,G 0) =
1

|H|

X

i2H

(hi (G), hi (G
0)) .

Example of hash functions
I Locality-sensitive hashing schemes Datar et al. 2004.

I Idea: if x, y are “close” then P[h1(x) = h2(y)] is “high” and conversely.

I More collusion for nearby points.

I e.g. h(x) = b
hx,ai+b

r
c, a ⇠ µ, b ⇠ unif([0, r])

Continuous alternative to Weisfeiler–Lehman

Hash graph kernel Morris et al. 2016
I Let  be a graph kernel (such as WL).

I H = {h1, h2 · · · } a family of hash functions.

I hi : Rd
! N is a hash function.

I hi (G): the discretised graph resulting from applying hi to continuous
attributes of the graph.

I The kernel is defined as

HGK(G ,G 0) =
1

|H|

X

i2H

(hi (G), hi (G
0)) .

Example of hash functions
I Locality-sensitive hashing schemes Datar et al. 2004.

I Idea: if x, y are “close” then P[h1(x) = h2(y)] is “high” and conversely.

I More collusion for nearby points.

I e.g. h(x) = b
hx,ai+b

r
c, a ⇠ µ, b ⇠ unif([0, r])

Table of contents

Kernels in Machine Learning
A bit of kernels theory
Back to machine learning: the representer theorem

Kernels for structured data
Basics of graphs-kernels
Focus on Weisfeler-Lehman Kernel
Conclusion

Conclusion

I Graph kernels are very simple but powerful way of using all the ML
machinery on graphs.

I The big question is to choose the “right” kernel.

I No straight answer, it depends on the task.

I In practice: always use simple graph kernels as baselines.

References I

Aronszajn, Nachman (1950). “Theory of reproducing kernels”. In:
Transactions of the American mathematical society 68.3, pp. 337–404.

Babai, László (2016). “Graph isomorphism in quasipolynomial time”. In:
Proceedings of the forty-eighth annual ACM symposium on Theory of

Computing, pp. 684–697.

Borgwardt, Karsten et al. (2020). “Graph kernels: State-of-the-art and
future challenges”. In: Foundations and Trends® in Machine Learning

13.5-6, pp. 531–712.

Borgwardt, Karsten M and Hans-Peter Kriegel (2005). “Shortest-path
kernels on graphs”. In: Fifth IEEE international conference on data

mining (ICDM’05). IEEE, 8–pp.

Datar, Mayur et al. (2004). “Locality-sensitive hashing scheme based on
p-stable distributions”. In: Proceedings of the twentieth annual

symposium on Computational geometry, pp. 253–262.

Feragen, Aasa et al. (2013). “Scalable kernels for graphs with continuous
attributes”. In: Advances in neural information processing systems 26.

References II

Gärtner, Thomas, Peter Flach, and Stefan Wrobel (2003). “On graph
kernels: Hardness results and e�cient alternatives”. In: Learning Theory

and Kernel Machines: 16th Annual Conference on Learning Theory and

7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA,

August 24-27, 2003. Proceedings. Springer, pp. 129–143.

Haussler, David et al. (1999). Convolution kernels on discrete structures.
Tech. rep. Citeseer.

Kriege, Nils M, Pierre-Louis Giscard, and Richard Wilson (2016). “On valid
optimal assignment kernels and applications to graph classification”. In:
Advances in neural information processing systems 29.

Leman, AA and Boris Weisfeiler (1968). “A reduction of a graph to a
canonical form and an algebra arising during this reduction”. In:
Nauchno-Technicheskaya Informatsiya 2.9, pp. 12–16.

Morris, Christopher et al. (2016). “Faster kernels for graphs with continuous
attributes via hashing”. In: 2016 IEEE 16th International Conference on

Data Mining (ICDM). IEEE, pp. 1095–1100.

References III

Nikolentzos, Giannis, Giannis Siglidis, and Michalis Vazirgiannis (2021).
“Graph kernels: A survey”. In: Journal of Artificial Intelligence Research

72, pp. 943–1027.

Shervashidze, Nino, Pascal Schweitzer, et al. (2011). “Weisfeiler-lehman
graph kernels.”. In: Journal of Machine Learning Research 12.9.

Shervashidze, Nino, SVN Vishwanathan, et al. (2009). “E�cient graphlet
kernels for large graph comparison”. In: Artificial intelligence and

statistics. PMLR, pp. 488–495.

Steinwart, Ingo and Andreas Christmann (2008). Support vector machines.
Springer Science & Business Media.

Wendland, Holger (2004). Scattered data approximation. Vol. 17.
Cambridge university press.

Yanardag, Pinar and SVN Vishwanathan (2015). “Deep graph kernels”. In:
Proceedings of the 21th ACM SIGKDD international conference on

knowledge discovery and data mining, pp. 1365–1374.

	Kernels in Machine Learning
	A bit of kernels theory
	Back to machine learning: the representer theorem

	Kernels for structured data
	Basics of graphs-kernels
	Focus on Weisfeler-Lehman Kernel
	Conclusion

	References

