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» Unsupervised learning: PCA, Kernel PCA, graph embedding...



Kernels for structured data

Objective
Given a dataset of graphs (Gy,- -, G,) can we build machine learning
models to do:

> Supervised learning: each graph associated to y; € V.
» Unsupervised learning: PCA, Kernel PCA, graph embedding...

Application of RKHS for graphs
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Objective
Given a dataset of graphs (Gy,- -, G,) can we build machine learning
models to do:

> Supervised learning: each graph associated to y; € V.
» Unsupervised learning: PCA, Kernel PCA, graph embedding...

Application of RKHS for graphs

Let X = { set of all graphs } can we build interesting kernels
kK: XXX —>R?7?

> For G,G’ € X,k(G, G') is a notion of “similarity” between graphs.
» Gram matrix K = (k(Gj, Gj)
» Then do stuff...

)iyetnr

Some notations
A graph G = (V, E). Labeling function if attributes/labels {g: VUE — S
(S discrete or continuous C RV)



What is a good graph kernel ?

Properties of the graph kernel

> Handle graphs that are directed (or undirected) ?
» Handle node or edge labels or attributes that are present in the graphs?
> Efficient to compute ? Complexity w.r.t. |V|,|E|,dim ?

> |s there a particular relevant substructure (e.g. tree patterns) that
would preclude the choice of a particular kernel?
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The kernel jungle

Surveys: K. Borgwardt et al. 2020; Nikolentzos, Siglidis, and Vazirgiannis
2021

Node | Node
h Ke 1 Exp. T mplexity
Srephlet Graph Kerne P2 | Labels | Attributes ype Complexity
Quantum walk Vertex Histogram v v x ‘R-convolution O(n)
Subtree pattern Edge Histogram v v X R-convolution O(m)
AN Random Walk xt v v R-convolution o(n?)
Subtree x v v Reconvolution | O(n?4¢4” h)
Node histogram
Cyclic Pattern v v x intersection | O((c + 2)n +2m)
e Shortest Path X v v R-convolution O(n*)
GraphHopper Graphlet v X x ‘R-convolution O(nk)
Message passing Weiseiler-Lehman Subtree v v x Reconvolution O(hm)
— Neighborhood Hash v v X intersection O(hm)
L Neighborhood Subgraph Pairwise Distance | v v x Reconvolution | O(n?mlog(m))
Direct product graph Lovész o v x x Reconvolution | O(n(s + 22) + 5%)
Marginalized random walk SVM-9 v X x R-convolution | O(n(s +n?) + s?)
T — Ordered Decomposition DAGs v v X R-convolution O(nlogn)
\ Pyramid Match x v X assignment O(ndL)
(Neighbosrhosd hash \N Weisfeiler-Lehman Optimal Assignment x v x assignment O(hm)
Neighbourhood subgraph pairwise distance \~~ Subgraph Matching x v v R-convolution O(knk+1)
N GraphHopper x v v R-convolution O(n')
— D Graph Invariant Kernels x v v R-convolution O(n%)
=SSN Propagation v v v R-convolution O(hm)
Multiscale Laplacian x v v R-convolution O@h)
Graph edit distance
Propagation framework
Subgraph matching
Graph invariant framework
Hash graph kernels
Weighted decomposition
Core based kernel framework
Maltiscale Laplacian
Random walk
Al odge-pairs.
Edge histogram
=] F = DA




Bag of structures

A majority of graph kernels are instances of the convolution kernels Haussler
et al. 1999.
Principle

» Compare graphs by first dividing them into substructures of various

granularity.

» E.g. vertices, subgraphs, all shortest paths of a graph.

» Defining base kernels at the fine granularity and combine them.

» Of the form Iﬁ:(G, G/) = ZrER,r’ER’ Hsubstructur&(ra r/)-



Bag of structures

A majority of graph kernels are instances of the convolution kernels Haussler
et al. 1999.
Principle

» Compare graphs by first dividing them into substructures of various

granularity.

» E.g. vertices, subgraphs, all shortest paths of a graph.

» Defining base kernels at the fine granularity and combine them.

» Of the form Iﬁ:(G, G/) = Zr€R7r/eR/ Hsubstructur&(ra r/)-

Advantages & limitations
> Intuitive definitions + relatively good results.
» Sometimes computational limitations.
» Expressiveness limitations.
» “Diagonal dominance problem” Yanardag and Vishwanathan 2015.



All node-pairs kernel

A first idea
» Given G = (V,E),G' = (V',E'),
» Suppose the labels of the nodes of both graphs are in S.

» Consider a kernel on the nodes
Fnode : S XS — R

» The all node-pairs kernel is defined by

Iﬁ:(G, G/) = Z Z nnode(gG(V)agG/(vl))
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All node-pairs kernel

A first idea
» Given G = (V,E),G' = (V',E'),
» Suppose the labels of the nodes of both graphs are in S.

» Consider a kernel on the nodes
Fnode : S XS — R

» The all node-pairs kernel is defined by

IﬁJ(G7 G/) = Z Z nnode(gG(V)agG/(vl))

veVveVv’

Remarks
> Runtime in O(|V| x |V'| x dim(S)).
» Can handle discrete/continuous labels.

» Does not take into account the structures of the graphs.



Node histogram kernel

A baseline kernel (1/2) Node histogram kernel

» Suppose the labels are discrete over a

G G’
finite alphabet & m
Y = {017' o aU|Z|}

26G)=G l)T ¢(G')=(2 2)T
» The node histogram kernel is defined as

kNH(G, G') = (®(G), d(G")) .

where

q)(G) = (Z léc(v):alv ) Z llc(v):am) .

veVv veV

» Simply corresponds to an unnormalised
histogram that counts the occurrence of
each node label in the graph.
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A baseline kernel (1/2) Node histogram kernel
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Node histogram kernel

A baseline kernel (1/2) Node histogram kernel

» Suppose the labels are discrete over a

G G’
finite alphabet & m
Y = {017' o aU|Z|}

26G)=G l)T ¢(G')=(2 2)T
» The node histogram kernel is defined as

Remarks
knH(G, G') = (D(G), d(G)).
NH( )= (@(6).%(C)) » Can be computed in
where o(lV|+ V).
» Does not take into

®(G) = (Z lfc(V):Ul’ B Z lfc(v):am) : account the structures of

vev vev the graphs.
» Simply corresponds to an unnormalised » Of the form
histogram that counts the occurrence of knn(G, G') =
each node label in the graph. > Loy v

veV v ev’



Edge histogram kernel

A baseline kernel (2/2)

» Suppose the edges labels
are discrete over a finite

alphabet
Z:{Ul,"' O'IZI}

> The edge histogram kernel is G =3 i)T ®G) =2 E)T
defined as

Edge histogram kernel

ken(G, G') = (9(G), d(G)).

where o(G) =
(ZeEE lé(e):ala e 7ZeeE li(e):a‘m ) .



Edge histogram kernel

A baseline kernel (2/2)

» Suppose the edges labels
are discrete over a finite

alphabet
Z:{Ul,"' UIZI}

» The edge histogram kernel is ®(G) = (3 4)T (6) = 2 3_
defined as

Edge histogram kernel

HEH(Ga G/) _ <¢'(G)7 ¢(G/)> ) Remarks
» Can be computed in O(|E| + |E]').

where ¢(G) = » Does not take into account the
(Xece Lee)=ors "+ s 2 ecE lf(e):am ). labels of the nodes.

» Can be combined with the previous
one as

KZ(G7 G/) = F\?EH(G, G/) X HNH(G, Gl)



The shortest-path kernel

K. M. Borgwardt and Kriegel 2005 - G
» Compute all pair-to-pair o
shortest-paths in G, G’ with ([ )
Floyd-Warshall. ® vy
» The kernel is defined as dvy,v) =2

HSP G G Z Z V17V2)7d(V{7Vé))‘

(vi,w)eV (v{,vy)eV’

where d(v1, v2) is the shortest-path
distance between vy, v».

» ko is a kernel that compares the
lengths of the two shortest-paths.

» ko(x,y) = x x y (linear kernel) or
ko(x,y) = 1=, (dirac).



The shortest-path kernel

. M. Borgwardt and Kriegel 2005 - G
» Compute all pair-to-pair o
shortest-paths in G, G’ with ([ )
Floyd-Warshall. ® v,
» The kernel is defined as dvy,v) =2
ksp(G, G') Z Z d(vi, v2),d(vi,v3)).
(vi,»)eV (v{,v5)eVv’
v v Remarks
where d(v1, v2) is the shortest-path » Complexity Floyd-Warshall
distance between vy, v». on G,O(|V[?).
» ko is a kernel that compares the » Variants with
lengths of the two shortest-paths. Bellman—Ford’s, Dijkstra’s
» ko(x,y) = x x y (linear kernel) or algorithms.
Ko(x, y) = L=y (dirac). > General complexity for ksp
O(IVPIV'P).

» Many variants with
attributes.



GraphHopper kernel

Undirected graphs with edge weights and node attributes.

» Even for real-valued/vector attributes Feragen et al. 2013.

» Kernel is defined as

kGH(G,G') = Z Z ko(p, p’) where Pg: set of all shortest-paths.
pEPG p'EPGI



GraphHopper kernel

Undirected graphs with edge weights and node attributes.

» Even for real-valued/vector attributes Feragen et al. 2013.

» Kernel is defined as

keH(G, G') Z Z ko(p, p') where Pg: set of all shortest-paths.
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if | length|p| = |p’
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GraphHopper kernel

Undirected graphs with edge weights and node attributes.

» Even for real-valued/vector attributes Feragen et al. 2013.
> Interestingly averaged overall worst-case complexity O(| V||V'| dim(S)).
> Kernel is defined as

keH(G, G') Z Z ko(p, p') where Pg: set of all shortest-paths.
pPEPG p EPG/

if | length|p| = |p’
> Base kernel ko(p, p’) = {Z Z1 finode(Pjs p7) i equal length|p| = [p'|

otherwise

k(p,p) = Knode(EI ’EI) + Knode(lj’ﬂ)+ KnOde(EI’EI)
g i
o [ 1



The Graphlet kernel

Principle Shervashidze, Vishwanathan,
et al. 2009

» Count substructures in graphs.
» Graphlet = subgraph with k vertices.

» G:={g1, - ,9n,} set of
k-graphlets (asymptotically
Ny ~ 26) /).

» Kernel x(G, G') = (®(G), d(G"))

®(G) o (I{gi € G}, . [{am, € G}) "

All subgraphs of size 4

HRRIROINIF T e e oo o

Different size 4 graphlets found in G



The Graphlet kernel

Principle Shervashidze, Vishwanathan, Remarks
et al. 2009 » Ignores all labels.
» Count substructures in graphs. » Computational bottleneck:
» Graphlet = subgraph with k vertices. enumeration of all graphlets.
> G:={g1, - ,gn,} set of » Complexity in O(|V[¥) time.
k-graphlets (asymptotically > Typically k € {3,4,5}.
Ny ~ 2(5)//(!)- » Counting all possible
> Kernel (G, G') = ($(G), d(G")) subgraphs is NP-hard
Gartner, Flach, and Wrobel
®(G) o< (I{gi € G}.-+ . [{am € G})T  2003.

All subgraphs of size 4

HRRIROINIF T e e oo o

Different size 4 graphlets found in G



The graph isomorphism problem

Checking if two graphs are “identical”
Two graphs G = (V, E), G’ = (V’, E’) are isomorphic (G = G') if there
exists a bijection ¥ : V — V’ such that

(u,v) € E <= (V(u),¥(v)) € E.
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Weisfeiler-Lehman test of isomorphism Leman and Weisfeiler 1968

On the board
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Multi-set vs set

Key differences
Without being too formal.

>

>

v

A set X = {a, b} is equal to Y = {b, a} because x € X <— x €Y.
order is irrelevant.

A set Z = {a,a, b} is also equal to X: the same element can appear
more than once.

A multi-set denoted with {{---}} is a “set” where elements can
appear more that once.

The order is still irrelevant.
For example {{a, a, b} }.

Formal definition: a multiset is a couple (X, m) where X is a set and a
m : X — N counts the multiplicity of each element.



Weisfeiler—Lehman kernel

A very popular graph kernel based on Shervashidze, Schweitzer,
et al. 2011

» Originally handle graphs with discrete labels.

> Uses iterative label refinement.

» Concepts from the Weisfeiler-Lehman test of isomorphism.



Weisfeiler—Lehman kernel

A very popular graph kernel based on Shervashidze, Schweitzer,
et al. 2011

» Originally handle graphs with discrete labels.
> Uses iterative label refinement.

» Concepts from the Weisfeiler-Lehman test of isomorphism.

Graphs relabeling /refinement
» Recursively refine the node labels by applying local transformations
a, = AGGREGATE ({{e(g"‘)(v/); Ve N(v)}})
and /0" (v) = COMBINE (z(g"’)(v), av> .
» This general idea can give rise to a multitude of distinct graph kernels:
> (i) the specific form of COMBINE, AGGREGATE.

» (i) which kernels are used to compare the resulting modified graphs.

> (iii) how the graph at multiple scales are aggregated into a single value.



Weisfeiler—Lehman kernel

Step 0: G Step 1: « Enrich » the labels with nelghbors

o nm G
.&- N\ m‘
DIIIJ o (o] 0]

26) =3 l)T ®(G)= E)T



Weisfeiler—Lehman kernel

Step 0: Step 1: « Enrich » the labels with nelghbors

N, e, WY

6= l)T (G) = (3 E)T

Step 3: __ Hash Step 4: ->Step 0 ...

E -> Terminates
\ after
h iterations

DG)=(5111001110200)7 ®G)= (23§0110001011)T
[T} o000 oo eoo0

??????????



Weisfeiler—Lehman kernel

The Weisfeiler—Lehman kernel
» The function AGGREGATE sorts in alphabetic order.

» The function COMBINE hashes to compress the tuple into a single
integer-valued label.

> Produces a sequence of graphs (G, - - , Gp).
» The Weisfeiler-Lehman kernel is

h
K}WL(G, GI) = ZHO(Giv G,/),

i=0

for a base kernel kq.



Weisfeiler—Lehman kernel

The Weisfeiler—Lehman kernel
» The function AGGREGATE sorts in alphabetic order.

» The function COMBINE hashes to compress the tuple into a single
integer-valued label.

> Produces a sequence of graphs (G, - - , Gp).
» The Weisfeiler-Lehman kernel is

h
K}WL(G, GI) = Z HO(Giv GI/) )
i=0
for a base kernel kq.

» Most common kg subtree kernel: ®(G) = number of occurrences of
each label in the alphabet of all compressed labels at each step.

> Complexity: for one graph O(|E| x h).
» Runtime scales only linearly with the number of edges !



Optimal assignment kernel

General setting (Kriege, Giscard, and Wilson 2016)

> Different than “bag of structure” kernels.
> Let X, Y C Q with | X]| =1Y].

koa(X,Y) = Berg(a)éy);( ro(x, B(y)) where B(X, Y) = all bijections.

> &k is a valid PSD kernel if kg : Q x Q — R is strong:

ko(x,y) > min{ko(x, z), ko(z,y)} Y(x,y,z).

> Assign the parts of one objects to the parts of the other s.t. the total
similarity is maximum possible.



Optimal assignment kernel

General setting (Kriege, Giscard, and Wilson 2016)
> Different than “bag of structure” kernels.

> Let X, Y C Qwith |X| =|Y].

koa(X,Y) = Berg(a)éy);( ro(x, B(y)) where B(X, Y) = all bijections.

> &k is a valid PSD kernel if kg : Q x Q — R is strong:

ko(x,y) > min{ko(x, z), ko(z,y)} Y(x,y,z).

> Assign the parts of one objects to the parts of the other s.t. the total
similarity is maximum possible.

Weisfeiler-Lehman optimal assignment kernel
» ;€ [h], 7i(v) denotes the color of vertex v at step i of the WL process.
> The base kernel is ro(v, v') = 310 1, (y)=r(v/y + padding.
» Can also be computed in O(hm).



Continuous alternative to Weisfeiler—-Lehman

Hash graph kernel Morris et al. 2016

> Let k be a graph kernel (such as WL).
> 9 ={b1,h2---} a family of hash functions.
» h; : R = N is a hash function.

> h;(G): the discretised graph resulting from applying b; to continuous
attributes of the graph.

» The kernel is defined as

rhck(G, G') =9 Z hi(G"))-

i€H



Continuous alternative to Weisfeiler—-Lehman

Hash graph kernel Morris et al. 2016

> Let k be a graph kernel (such as WL).
> 9 ={b1,h2---} a family of hash functions.
» h; : R = N is a hash function.

> h;(G): the discretised graph resulting from applying b; to continuous
attributes of the graph.

» The kernel is defined as

rHek (G, G') =79 Z ):6i(G")).

i€H

Example of hash functions
» Locality-sensitive hashing schemes Datar et al. 2004.
> Idea: if x,y are “close” then P[h1(x) = ha(y)] is “high” and conversely.
» More collusion for nearby points.
> eg h(x) = | Z2FE | a~ b~ unif([0, r])
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Conclusion

» Graph kernels are very simple but powerful way of using all the ML
machinery on graphs.

» The big question is to choose the “right” kernel.
» No straight answer, it depends on the task.

» In practice: always use simple graph kernels as baselines.
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