ENS Lyon
2023,/2024 Titouan Vayer

HoMEWORK 1 : Kernels for ML

You have three weeks to do this homework: it must be return by Wednesday, October 16.

e You can do it by group of 2/3.
e Send the code to titouan.vayer@inria.fr with the header “Homework 1 Name 1 Name 2 Name 3”.

e For the maths send a scan by mail or give it by hand on 16th october.

- EXERCISE 1: CODING A SUPPORT VECTOR MACHINE ALGORITHM (& 6H). -

This exercise is long: focus on the practical part from question (v), the theoretical part can be done later
on. Let (x;,¥i)ic[n] be a dataset with x; € X, y; € {—1,+1}. Let H be a RKHS with reproducing kernel
Kk: X x X — R. We consider the SVM problem with the Hinge loss
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(i) By using the representer theorem, show that in order to solve (1), it suffices to solve the optimization

problem
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where K = (k(x;,X;))(; j)e[np? 18 the Gram matrix.

The goal now is to reformulate the objective and to find the dual optimization problem of (2). The dual
will be then solved with a simple projected gradient algorithm. Suppose that we define &, --- , &, with
§& >0as

& = max(0,1 — y;[K6J;) . (3)

Then, by definition, for any i € [n],y;[K6]; > 1—¢;. Thus, by introducing slack variables & = (&1, , &),
it is not too complicated to see that (2) is equivalent to
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This is a convex constrained optimization problem that can be solved by solving its dual problem. To find
it we look at the Lagrangian of the problem, which is, for « € R, 3 € R% |

L(0,, a,B) = %Z& +AOTKO - > il — Y Bi(yi[KOl —1+&). (5)
=1 =1

i=1

The variable a accounts for the non-negativity constraint on £ and the B variable accounts for the
constraint Vi € [n], y;[K60]; > 1 — &; (remember your optimization class, you can have a look at Section
8.6 in https://mathurinm.github.io/assets/2022_ens/class.pdf if needed).

(ii) Show that the minimization of the Lagragian with respect to the primal variables 8 € R", & € R"
gives the conditions

1
Vi € [n], 0; = 551%
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Vi € [[n]], O‘i+ﬂizﬁ-
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(iii) Deduce that the dual problem writes
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(iv) We set g(B) = ﬁ ZU K;;8:85y:y; — Y _; Bi- The dual problem is thus equivalent to
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Show that it is a convex optimization problem.

We recall that an optimization problem of the form mingec g(8) where g is convex and C is a convex set can
be tackled with a projected gradient descent algorithm. More precisely, if II¢(y) = argming .o ||x — y||2
denotes the Euclidean projection of y onto C, the algorithm writes

60 S an
for k>0, Bri1 =Ie(Br —1nVg(Br)) .

for a step-size size parameter n > 0. For the set C = {8 € R" : Vi € [n], 8; € [a,b]} we recall that

(9)

¢ (y) = (max(min(y1,b),a), - - , max(min(yy,,b),a)) . (10)

The interpretation is quite simple: if you are above b shrink it to b and if you are below a increase it to a,
otherwise do not change the value.

(v) Based on the previous answer write a function in python that solves the dual problem (8). It must
take as input A, a step-size 7, labels y, a Gram matrix K and a stopping criterion. You can choose
Bo = 0 for simplicity.

Once the optimization problem is solved you get parameters 3*. With the conditions (6) the optimal 8*
is defined by Vi € [n], 8; = % Bry;. From the representer theorem, the optimal f* used for classification
is then f* =>"", 07k(-,x;). A classification rule is just given by sign(f*).

(vi) The goal now is to compare with the scikit-learn implementation. The SVM used in classification
can be found in sklearn.svm.SVC. To compare both we will use the following d = 2 dataset.

from sklearn.model_selection import train_test_split
from sklearn import datasets
X, y = datasets.make_moons(n_samples=500, random_state=42, noise=0.1)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.5, shuffle=True

)

First plot the dataset with matplotlib and change the labels to match {4+1,—1} (by default
the classes are {+1,0}). For the rest of the practical exercise we will use the Gaussian kernel

k(x,y) = exp(—[x — y|I3).

(vii) Based on question (v) create a SVM classifier in python that takes as input a dataset X, labels
y a regularization parameter A, and outputs the optimal SVM classifier sign(f*) where f* =

> i1 07k i)

(viii) Compare the performances on the test set of this classifier to the one of the scikit-learn imple-
mentation. Be careful on the influence of the hyperparameters: you must properly choose A (you
can choose A in a grid so as to minimize the classification error on the training set for example, or
do some proper cross-validation). Also be careful on the train/test split: the 6 must be found by
using the training data only !

(ix) What are the performances when you use a linear kernel instead ? Can you explain why ?

page 2




Remark 1 (The correct implementation). The aim of this exercise to implement a SVM classifier.
However, note that the optimization problem tackled is slightly different than the “traditional” SVM
classifier that considers also a bias term b € R and solves

n
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Despite being quite similar the resulting optimization problem is quite different, and a less direct to solve
(a simple projected gradient descent cannot be used).

- EXERCISE 2: THE QUADRATIC KERNEL (=~ 1H) -

What is the RKHS corresponding to the kernel k(x,y) = (x,y)? ?

- EXERCISE 3 (BONUS): POSITIVE DEFINITENESS OF THE (GAUSSIAN KERNEL (= 1H30) -

The purpose of this exercise is to show that the Gaussian kernel x(x,y) = exp(—||x — y||3/20?) is a
PD kernel for any ¢ > 0. In the following x1, ks, - - are fixed PD kernels.

(x) Show that yk; for any v > 0 is a PD kernel.
(xi) Show that k1 + k2 is a PD kernel.

(xii) Suppose that r(x,y) := lim £, (x,y) exists for any x,y € R?. Show that it defines a PD kernel.

m——+o0

(xiii) Consider two n x n PSD matrices K;, Ky and the matrix K; ® Ky defined by V(i,5) € [n]°, [K1 ©®
Ko)i; = [K1]ij[Kz]i; (this is known as the Hadamard product of two matrices). Show that K; © Kj
is a PSD matrix. Tips: for matrices A,B and D = diag(x) show that we have (DA, BD)r =
x" (A ®B)x.

(xiv) Deduce that k(x,y) := k1(X,y)k2(x,y) is a PD kernel.
(xv) Consider f: X — R then show that x(x,y) := f(x)k1(x,y)f(y) is a PD kernel.

(xvi) From the previous answers prove that x(x,y) := exp(—||x — y||3/20?) is a PD kernel.
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