
ENS Lyon
2023/2024 Titouan Vayer

Homework 1 : Kernels for ML

You have three weeks to do this homework: it must be return by Wednesday, October 16.

• You can do it by group of 2/3.

• Send the code to titouan.vayer@inria.fr with the header “Homework 1 Name 1 Name 2 Name 3”.

• For the maths send a scan by mail or give it by hand on 16th october.

- Exercise 1: Coding a support vector machine algorithm (≈ 6h). -

This exercise is long: focus on the practical part from question (v), the theoretical part can be done later
on. Let (xi, yi)i∈[[n]] be a dataset with xi ∈ X , yi ∈ {−1,+1}. Let H be a RKHS with reproducing kernel
κ : X × X → R. We consider the SVM problem with the Hinge loss

min
f∈H

1

n

n∑
i=1

max(0, 1− yif(xi)) + λ‖f‖2H . (1)

(i) By using the representer theorem, show that in order to solve (1), it suffices to solve the optimization
problem

min
θ∈Rn

1

n

n∑
i=1

max(0, 1− yi[Kθ]i) + λθ>Kθ , (2)

where K = (κ(xi,xj))(i,j)∈[[n]]2 is the Gram matrix.

The goal now is to reformulate the objective and to find the dual optimization problem of (2). The dual
will be then solved with a simple projected gradient algorithm. Suppose that we define ξ1, · · · , ξn with
ξi ≥ 0 as

ξi = max(0, 1− yi[Kθ]i) . (3)

Then, by definition, for any i ∈ [[n]], yi[Kθ]i ≥ 1− ξi. Thus, by introducing slack variables ξ = (ξ1, · · · , ξn),
it is not too complicated to see that (2) is equivalent to

min
θ∈Rn,ξ∈Rn

+

∀i∈[[n]],yi[Kθ]i≥1−ξi

1

n

n∑
i=1

ξi + λθ>Kθ . (4)

This is a convex constrained optimization problem that can be solved by solving its dual problem. To find
it we look at the Lagrangian of the problem, which is, for α ∈ Rn+,β ∈ Rn+,

L(θ, ξ,α,β) =
1

n

n∑
i=1

ξi + λθ>Kθ −
n∑
i=1

αiξi −
n∑
i=1

βi(yi[Kθ]i − 1 + ξi) . (5)

The variable α accounts for the non-negativity constraint on ξ and the β variable accounts for the
constraint ∀i ∈ [[n]], yi[Kθ]i ≥ 1− ξi (remember your optimization class, you can have a look at Section
8.6 in https://mathurinm.github.io/assets/2022_ens/class.pdf if needed).

(ii) Show that the minimization of the Lagragian with respect to the primal variables θ ∈ Rn, ξ ∈ Rn
gives the conditions

∀i ∈ [[n]], θi =
1

2λ
βiyi

∀i ∈ [[n]], αi + βi =
1

n
.

(6)
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(iii) Deduce that the dual problem writes

max
β∈Rn

∀i∈[[n]],βi∈[0, 1n ]

∑
i

βi −
1

4λ

∑
ij

Kijβiβjyiyj . (7)

(iv) We set g(β) = 1
4λ

∑
ij Kijβiβjyiyj −

∑
i βi. The dual problem is thus equivalent to

min
β∈Rn

∀i∈[[n]],βi∈[0, 1n ]

g(β) . (8)

Show that it is a convex optimization problem.

We recall that an optimization problem of the form minβ∈C g(β) where g is convex and C is a convex set can
be tackled with a projected gradient descent algorithm. More precisely, if ΠC(y) = argminx∈C ‖x− y‖2
denotes the Euclidean projection of y onto C, the algorithm writes

β0 ∈ Rn,
for k ≥ 0, βk+1 = ΠC(βk − η∇g(βk)) ,

(9)

for a step-size size parameter η > 0. For the set C = {β ∈ Rn : ∀i ∈ [[n]], βi ∈ [a, b]} we recall that

ΠC(y) =
(

max(min(y1, b), a), · · · ,max(min(yn, b), a)
)
. (10)

The interpretation is quite simple: if you are above b shrink it to b and if you are below a increase it to a,
otherwise do not change the value.

(v) Based on the previous answer write a function in python that solves the dual problem (8). It must
take as input λ, a step-size η, labels y, a Gram matrix K and a stopping criterion. You can choose
β0 = 0 for simplicity.

Once the optimization problem is solved you get parameters β?. With the conditions (6) the optimal θ?

is defined by ∀i ∈ [[n]], θ?i = 1
2λβ

?
i yi. From the representer theorem, the optimal f? used for classification

is then f? =
∑n
i=1 θ

?
i κ(·,xi). A classification rule is just given by sign(f?).

(vi) The goal now is to compare with the scikit-learn implementation. The SVM used in classification
can be found in sklearn.svm.SVC. To compare both we will use the following d = 2 dataset.

from sklearn.model_selection import train_test_split
from sklearn import datasets
X, y = datasets.make_moons(n_samples=500, random_state=42, noise=0.1)
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.5, shuffle=True
)

First plot the dataset with matplotlib and change the labels to match {+1,−1} (by default
the classes are {+1, 0}). For the rest of the practical exercise we will use the Gaussian kernel
κ(x,y) = exp(−‖x− y‖22).

(vii) Based on question (v) create a SVM classifier in python that takes as input a dataset X, labels
y a regularization parameter λ, and outputs the optimal SVM classifier sign(f?) where f? =∑n

i=1 θ
?
i κ(·,xi).

(viii) Compare the performances on the test set of this classifier to the one of the scikit-learn imple-
mentation. Be careful on the influence of the hyperparameters: you must properly choose λ (you
can choose λ in a grid so as to minimize the classification error on the training set for example, or
do some proper cross-validation). Also be careful on the train/test split: the θ?i must be found by
using the training data only !

(ix) What are the performances when you use a linear kernel instead ? Can you explain why ?
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Remark 1 (The correct implementation). The aim of this exercise to implement a SVM classifier.
However, note that the optimization problem tackled is slightly different than the “traditional” SVM
classifier that considers also a bias term b ∈ R and solves

min
f∈H,b∈R

1

n

n∑
i=1

max(0, 1− yi(f(xi) + b)) + λ‖f‖2H . (11)

Despite being quite similar the resulting optimization problem is quite different, and a less direct to solve
(a simple projected gradient descent cannot be used).

- Exercise 2: The quadratic kernel (≈ 1h) -

What is the RKHS corresponding to the kernel κ(x,y) = 〈x,y〉2 ?

- Exercise 3 (bonus): Positive definiteness of the Gaussian kernel (≈ 1h30) -

The purpose of this exercise is to show that the Gaussian kernel κ(x,y) = exp(−‖x− y‖22/2σ2) is a
PD kernel for any σ > 0. In the following κ1, κ2, · · · are fixed PD kernels.

(x) Show that γκ1 for any γ > 0 is a PD kernel.

(xi) Show that κ1 + κ2 is a PD kernel.

(xii) Suppose that κ(x,y) := lim
m→+∞

κm(x,y) exists for any x,y ∈ Rd. Show that it defines a PD kernel.

(xiii) Consider two n× n PSD matrices K1,K2 and the matrix K1 �K2 defined by ∀(i, j) ∈ [[n]]
2
, [K1 �

K2]ij = [K1]ij [K2]ij (this is known as the Hadamard product of two matrices). Show that K1 �K2

is a PSD matrix. Tips: for matrices A,B and D = diag(x) show that we have 〈DA,BD〉F =
x>(A�B)x.

(xiv) Deduce that κ(x,y) := κ1(x,y)κ2(x,y) is a PD kernel.

(xv) Consider f : X → R then show that κ(x,y) := f(x)κ1(x,y)f(y) is a PD kernel.

(xvi) From the previous answers prove that κ(x,y) := exp(−‖x− y‖22/2σ2) is a PD kernel.
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