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CR09: Machine learning for graphs and with
graphs

From theory ...

1. Basics of machine learning

2. The graph framework

3. Community detection/ graph
clustering

4. Graph signal processing

5. Kernels for graphs

6. Graph neural networks

7. Optimal transport for graphs

8. Learning graphs from
(unstructured) data

Full description:
https://tvayer.github.io/courses/

coursegraph.html

... to practice
We will use Python and various librairies

Some references for machine learning
Shai Shalev-Shwartz and Shai Ben-David (2014).

Understanding Machine Learning - From Theory to

Algorithms.

Francis Bach (2022). Learning Theory from First

Principles.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman

(2001). The Elements of Statistical Learning.

https://tvayer.github.io/courses/coursegraph.html
https://tvayer.github.io/courses/coursegraph.html


Evaluation

I 50 % oral presentation on a selected research article.

I 50 % code associated to the article applied on real data.

I Bonus.



Python installations

I The practical sessions of the course will require to run jupyter
notebooks.

I We recommend that you install python through the Anaconda
distribution (python 3.7, 3.8 or 3.9 is preferrable) available at
https://www.anaconda.com/products/distribution

You should check that you are able to create and open a jupyter notebook,
and inside, run the following imports:

1 import matplotlib

2 import numpy

3 import sklearn

4 import pytorch

5 import pandas

6 import scipy

If any of these packages is missing, it can be installed with ‘conda install
numpy‘, the command being run in a terminal or in Anaconda prompt for
Windows user.

https://www.anaconda.com/products/distribution


Basics of machine learning

What is machine learning ?

Data in machine learning

From training data to prediction
Loss functions
Empirical risk minimization

Model selection and validation
Split your dataset !

The problems with structured data
Motivating examples
A primer on graph theory
Why “classical ML” struggles with stuctured data



What is machine learning ?

Some applications

1. Energy networks, disease
propagation

2. Image analysis (medical
application, web)

3. Protein folding Jumper et al.
2021

4. Generative models https:

//stablediffusionweb.com/

5. Natural language processing
https:

//chat.openai.com/chat

6. For art https://www.youtube.
com/watch?v=MwtVkPKx3RA

https://stablediffusionweb.com/
https://stablediffusionweb.com/
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What is machine learning ?

The objective of machine learning
Teach a machine to process automatically a some data in order to solve a
given problem.

Unsupervised learning: understanding the data

I Clustering & probability density
estimation

I Dimensionality reduction

8/65

Clustering

)

Objective

{xi}n
i=1 ) {ŷi}n

i=1

I Organize training examples in groups: Find the labels ŷi 2 Y = {1, . . . , K}.

I Optional : find a clustering function f̂(x) 2 Y that can cluster new samples.

Parameters

I K number of classes.

I Similarity measure between
samples.

I Minimal distance between
clusters.

Methods

I K-means.

I Gaussian mixtures.

I Spectral clustering.

I Hierarchical clustering.
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Some images and slides have been obtained by the courtesy of Rémi Flamary
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What is machine learning ?

Supervised classification examples

I e.g. to identify the numbers on images from a 16× 16 gray level image
(image classification)

I SPAM, fraud detection, disease classification ...



What is machine learning ?

Clustering example

I Analyse n sequences (individuals)
of d genetical responses

I Groups of similar samples ? Gene
with similar expressions ?



Plan

What is machine learning ?

Data in machine learning

From training data to prediction
Loss functions
Empirical risk minimization

Model selection and validation
Split your dataset !

The problems with structured data
Motivating examples
A primer on graph theory
Why “classical ML” struggles with stuctured data



Store a data point

Vectorial representation

One “sample”, “data point”, “individual”:

x = (x1, · · · , xd)> ∈ Rd

I d is the dimension, xi is the ith information i of
x

I Can describe information about an individual

I For an image x: each pixel of an image

I Descriptors of a cell, word embedding ...



Unsupervised dataset

X =


x>1
x>2
...

x>n

 =

x11 x12 . . . x1d

...
...

...
...

xn1 xn2 . . . xnd



Unsupervised learning

I The dataset contains the samples (xi )
n
i=1 where n is the number of

samples of size d .

I d and n define the dimensionality of the learning problem.

I Data stored as a matrix X ∈ Rn×d that contains the training samples
as rows.



Supervised dataset

Samples + labels:

X =


x>1
x>2
...

x>n

 y =


y1

y2

...
yn



Classification Regression

Supervised learning

I The dataset contains the samples (xi , yi )
n
i=1 where xi is the feature

sample and yi ∈ Y its label.

I The values to predict (label) can be concatenated in a vector y ∈ Yn

I Prediction space Y can be:
I Y = {−1, 1} or Y = {1, . . . ,K} for classification problems.
I Y = R for regression problems (Rp for multi-output regression).

I Semi-supervised learning: few labeled points are available, but a large
number of unlabeled points are given.
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From training data to prediction

Training data

I We have access to n samples (x1, y1), · · · , (xn, yn) ∼ p

I p ∈ P(X × Y) is the data distribution

I p is unknown ! We only have access to samples.

I For unsupervised problem we only have x1, · · · , xn ∼ p and p ∈ P(X )

Objective

I We have a task to solve: classification, regression, clustering ...

I Most ML problems formulate as finding some function f that
“best” solves our task

I f is called an hypothesis and is implemented by a computer

I Most of the time f depends on some parameter θ ∈ Θ
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Regression

⇒

Objective

(xi , yi )
n
i=1 ⇒ f : Rd → R

I Train a function f (x) = y ∈ Y predicting a continuous value (Y = R).

I Can be extended to multi-value prediction (Y = Rp).

Hyperparameters

I Type of function (linear,
kernel, neural network).

I Performance measure.

I Regularization.

Methods
I Least Square (LS).

I Ridge regression, Lasso.

I Kernel regression.

I Deep learning.
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Binary classification

⇒

Objective

(xi , yi )
n
i=1 ⇒ f : Rd → {−1, 1}

I Train a function f (x) = y ∈ Y predicting a binary value (Y = {−1, 1}).

I f (x) = 0 defines the boundary on the partition of the feature space.

Hyperparameters

I Type of function (linear,
kernel, neural network).

I Performance measure.

I Regularization.

Methods
I Bayesian classifier (LDA, QDA)

I Linear and kernel discrimination
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I Deep learning.
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Multiclass classification

⇒

Objective

(xi , yi )
n
i=1 ⇒ f : Rd → {1, . . . ,K}

I Train a function f (x) = y ∈ Y predicting an integer value
(Y = {1, . . . ,K}).

I In practice K continuous score functions fk are estimated and the
prediction is

f (x) = arg max
k

fk(x)

I Softmax can be used instead of argmax to get probability estimates.



The big picture of (parametrized) ML

But how to find this function ?

The goal in the learning step will be to find the parameters θ̂ (hence the
function) that minimizes a measure of error on the data



Loss functions

Supervised case
A loss function is ` : Y × Y → R so that:

` (true value , predicted value) = how good is my prediction

Regression problems

I E.g. yi ∈ R `(yi , f (xi )) = (yi − f (xi ))2 (square loss)

I E.g. yi ∈ Rp `(yi , f (xi )) = ‖yi − f (xi )‖2
2 (square loss)

I E.g. yi ∈ Rp `(yi , f (xi )) = ‖yi − f (xi )‖qq (`q loss)

Classification problems

I E.g. yi ∈ {−1, 1} `(yi , f (xi )) = 1yi 6=f (xi ) (0/1 loss)
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2 (square loss)

I E.g. yi ∈ Rp `(yi , f (xi )) = ‖yi − f (xi )‖qq (`q loss)

Classification problems

I E.g. yi ∈ {−1, 1} `(yi , f (xi )) = 1yi 6=f (xi ) (0/1 loss)



Loss functions

A focus on classification problems Y = {−1, 1}

`(yi , f (xi )) = Φ(yi f (xi )) with Φ non-increasing.

I yi f (xi ) is the margin (on the board).

I `(yi , f (xi )) = 1yi f (xi )≤0 (0/1 loss)

I `(yi , f (xi )) = max{0, 1− yi f (xi )} (hinge loss: SVM)

I `(yi , f (xi )) = log(1 + e−yi f (xi )) (logistic loss)
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Empirical risk minimization

Train by minimizing the train error
To find f the idea is to minimize the averaged error on the training
samples:

min
f

1

n

n∑
i=1

`(yi , f (xi )) (ERM)

I It is called empirical risk minimization (ERM)

I Given the loss, finds the “best” f on the training data

I Same idea applies for unsupervised problem (minimizing reconstruction
error)

Once solved how do I know if my model is good
?
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Underfitting and overfitting

Acc. 0.89/0.89 train/test Acc. 0.93/0.92 train/test Acc. 0.98/0.88 train/test

Complexity of a model

I Under-fitting when the model is too
simple.

I Over-fitting occurs when the model is
too complex

I Training data performance is not a good
proxy for testing performance.

I We want to predict well on new data!

I Parameter and model validation. 0 5 10 15 20 25 30
Complexity of the model
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Empirical risk minimization

Train by minimizing the train error
To find f the idea is to minimize the averaged error on the training
samples:

min
f

1

n

n∑
i=1

`(yi , f (xi )) + λReg(f ) (ERM)

I It is called empirical risk minimization (ERM)

I Given the loss, finds the “best” f on the training data

I Teacher/student analogy

I Same idea applies for unsupervised problem

... but we want generalization !

I We want f to be good outside the training samples

I Add regularization ! (limit the complexity of f )
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Model selection and validation

Bias-complexity tradeoff

generalization error = estimation error + approximation error

Select a model that is not too complex but not too simple !

General principle

I Estimate the generalization error on data not seen during training

I Is a rough estimate of the test error

I Select the model with the lowest “approximate” test error
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Select a model that is not too complex but not too simple !

General principle

I Estimate the generalization error on data not seen during training
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Splitting the data

Full dataset

Test setTraining set

Test setTraining set Validation set

Principle of Hold-Out cross-validation

I Split the training data in a training and validation sets (non
overlapping).

I Train different models (different methods and/or hyperparameters) on
the train data.

I Evaluate performance on the validation data and select the
method/parameters with best performance.

I Validation set acts as a proxy of test data

I But only one split is a poor proxy !



Different ways to split the data

Data splitting for cross-validation Arlot and Celisse 2010

I The training data is split in non-overlapping training/validation sets.

I Hold-Out uses a unique split.

I More robust cross-validation approaches actually investigate several
splits of the data and compute the average performance:
I K-fold (split in K sets and use one split as test for all k)
I Random sampling (aka Shuffle split) draws several random splittings.

I Scikit-learn implementation : sklearn.model_selection.cross_validate

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html
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Motivating examples

I Traffic forecasting (e.g. ETA
estimation): GNN for Google
Maps Derrow-Pinion et al. 2021.

I Chemistry and Drug Design:
space of chemically synthesisable
molecules is very large
(estimated around 1060).

I Drug Repositioning: action of
drugs and their interactions →
graph Barabási, Gulbahce, and
Loscalzo 2011.

I Protein biology Jumper et al.
2021.

I Recommender Systems and
Social Networks.

I Healthcare.

I and more...

12.1. Tra�c Centrality as a Graph-Theoretic Measure 491

and enhance the connectivity of the London underground network in a
mathematically tractable and physically meaningful manner.

12.1 Tra�c Centrality as a Graph-Theoretic Measure

The underground network can be modelled as an undirected N -vertex
graph, denoted by G = {V, E}, with V as the set of N vertices (stations)
and E the set of edges (underground lines) connecting the vertices (sta-
tions) (Dees et al., 2019). The connectivity of the network is encoded
within the (undirected) adjacency matrix, A œ RN◊N . Figure 12.1 illus-
trates the proposed graph model of the London underground network,
with each vertex representing a station, and each edge designating the
underground line connecting two adjacent stations. Notice that stan-
dard data analytics domains are ill-equipped to deal with this class of
problems.

Figure 12.1: Graph model of the London underground network in Zones 1–3.
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What is a graph ?

Definition
A graph G = (V ,E ) is defined as a set of vertices V , which are connected
by a set of edges E ⊂ V × V .

I Example of undirected graph

Adjacency matrix
The adjacency A ∈ R|V |×|V | is defined as

[A]ij =

{
1 if (vi , vj) ∈ E (often noted as vi ∼ vj)

0 otherwise



What is a graph ?

Definition
A graph G = (V ,E ) is defined as a set of vertices V , which are connected
by a set of edges E ⊂ V × V .

I Example of undirected graph

Adjacency matrix
The adjacency A ∈ R|V |×|V | is defined as

[A]ij =

{
1 if (vi , vj) ∈ E (often noted as vi ∼ vj)

0 otherwise



What is a graph ?

Definition
A graph G = (V ,E ) is defined as a set of vertices V , which are connected
by a set of edges E ⊂ V × V .

Isomorphic graphs
The definition depends on the ordering of the nodes.



What is a graph ?

Definition
A graph G = (V ,E ) is defined as a set of vertices V , which are connected
by a set of edges E ⊂ V × V .

Some special structures



What is a graph ?

I Example of directed graph



What is a graph ?

I Example of directed graph with self-loops.



What is a graph ?

Weighted graph
A weighted graph G = (V ,E ) associates non-negative weights to each
edge.

I Example of weighted graph



What is a graph ?

Degree of a node
The degree of a node vi is

di = |{v ∈ V : v ∼ vi}| =

|V |∑
j=1

Aij

The degree matrix is D = diag(d1, · · · , d|V |).



What is a graph ?

Degree of a node
The degree of a node vi is

di = |{v ∈ V : v ∼ vi}| =

|V |∑
j=1

Aij

The degree matrix is D = diag(d1, · · · , d|V |).



What is a graph ?

Degree of a node
The degree of a node vi in a weighted graph is

di =

|V |∑
j=1

Wij



What is a graph ?

Laplacian matrix
The Laplacian matrix of a undirected graph is defined as

L = D−W where D is the degree matrix

Properties

On the board



What is a graph ?

Shortest-path matrix
The shortest-path between v , v ′ ∈ V is the path that connects v , v ′ such
that the sum of the weights of its constituent edges is minimized.

I Dijkstra’s algorithm computes all the shortest paths from a single node
in O(|E |+ |V | log(|V |)).

I All-pairs shortest paths with Floyd–Warshall algorithm in O(|V |3).



What is a graph ?

Attributed graphs
Most graphs encountered in ML also have attributes.



ML vs structured data

Problems

I Can we encode a graph G as a vector ∈ Rd to use standard ML
methods ?

I Can we build ML methods with the raw representation of G ? How to
adapt ML methods that work on vectors ?

I How can we handle the combinatoric nature of graphs ?

I ML outputs should be permutation invariant ? equivariant ?

I When data = vectors in one graph how can we take into account the
structure of the graph ?

I When data = vectors can we find an (interesting) graph that represent
these data ?
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