
Machine learning for graphs and with
graphs

Graph neural networks

Titouan Vayer & Pierre Borgnat
email: titouan.vayer@inria.fr, pierre.borgnat@ens-lyon.fr

October 15, 2024

Table of contents

From neural networks...
The basic ideas
Logistic regression and one layer neural-network
Convolutional neural networks

Graph neural networks
Learning with graphs
What is a GNN ?
A bit of group theory
Invariance and equivariance
Permutation invariance/equivariance
Message-passing neural networks
Examples of GNN
The whole pipeline
Expressivity of GNN
Conclusion

More on unsupervised node embeddings techniques
Unsupervised node embeddings

Table of contents

From neural networks...
The basic ideas
Logistic regression and one layer neural-network
Convolutional neural networks

Graph neural networks
Learning with graphs
What is a GNN ?
A bit of group theory
Invariance and equivariance
Permutation invariance/equivariance
Message-passing neural networks
Examples of GNN
The whole pipeline
Expressivity of GNN
Conclusion

More on unsupervised node embeddings techniques
Unsupervised node embeddings

What is a neural network ?

Neural network is a certain family of functions parametrized by weights.

Built upon a biological analogy Rosenblatt 1958

I First example f (x = (x1, x2)) = activation(✓1x1 + ✓2x2 + ✓3):

What is a neural network ?

Neural network is a certain family of functions parametrized by weights.

Built upon a biological analogy Rosenblatt 1958

I First example f (x = (x1, x2)) = activation(✓1x1 + ✓2x2 + ✓3):

What is a neural network ?

Neural network is a certain family of functions parametrized by weights.

Built upon a biological analogy Rosenblatt 1958

I Second example f (x = (x1, x2)) = activation(✓1x1 + ✓2x2 + ✓3):

What is a neural network ?

Feed-forward neural networks

I Linear neural network:

I Non-linearity:

I Find a neural network that implements the function f (x) = |x |.

What is a neural network ?

Feed-forward neural networks

I Linear neural network:

I Non-linearity:

I Find a neural network that implements the function f (x) = |x |.

What is a neural network ?

Feed-forward neural networks

I Linear neural network:

I Non-linearity:

I Find a neural network that implements the function f (x) = |x |.

What is a neural network ?

Feed-forward neural networks

I Find a neural network that implements the function f (x) = |x |

What is a neural network ?

Feed-forward neural networks

What is a neural network ?

Feed-forward neural networks

I Feed-forward NN are function of the form

f (x) = TK � �K�1 � · · · � �1 � T1(x)

where Tk(z) = W(k)z + b(k)

and �k pointwise activation function.

I All the weights: ✓ = (W(1), · · · ,W(K),b(1), · · ·b(K)).

I Depending on the task the output of a NN is also transformed
g(x) = norm(f (x)).

I E.g. f : Rd
! R and g : Rd

! (0, 1) for binary classification with
norm(u) = 1/(1 + exp(�u)) (logistic/sigmoid function).

What is a neural network ?

A zoo of architectures

Richness of neural network

Neural network in practice

The (very) big picture

Find the weights that minimizes the empirical minimization loss.

I In practice gradient descent very slow.

I We use stochastic gradient descents (and variations) on batches of the
data.

(almost) All optimization in one slide

Principle

I Minimize a smooth function J(✓) using its gradient (or ⇡).

I Initialize a vector ✓(0) and update it at each iteration k as:

✓(k+1) = ✓(k) + µkdk

where µk is a step and dk is a descent direction d>
k rJ(✓(k)) < 0.

I Classical descent directions are :
I Steepest descent: dk = �rJ(✓(k)

) (a.k.a. Gradient descent).

I (Quasi) Newton: dk = �(r2J(✓(k)
))

�1rJ(✓(k)
), r2J is the Hessian.

I Stochastic Gradient Descent : dk = �r̃J(✓(k)
) with approx. gradient.

I For NN: gradient computed with automatic di↵erentiation (TD).

(almost) All optimization in two slides...

Why is this a good idea ? (on the board)

Let J : RD
! R with L-Lipschitz gradient1 and J? := min✓ J(✓) > �1.

Then, provided that 0 < µk < 2
L , the iterations ✓(k+1) = ✓(k)

� µkrJ(✓(k))
satisfy

J(✓(k+1)) < J(✓(k)) (decrease the objective function)

lim
k!+1

rJ(✓(k)) = 0 (critical point)

1it means that 8✓1,✓2 2 Rd , krJ(✓1) �rJ(✓2)k2  Lk✓1 � ✓2k2.

(almost) All optimization in three slides...

Be aware of local minima

I When the functions are not convex, GD and its variants can fall into
bad local minima.

I Neural networks are not convex w.r.t. the optimized parameters !

�3 �2 �1 0 1 2 3
x

0

2

4

6

8

Convex function

g

GD init x = 1.0

GD init x = -2.0

�3 �2 �1 0 1 2 3
x

�0.4

�0.2

0.0

0.2

0.4

Non-convex function

f

GD init x = 1.0

GD init x = -2.0

Table of contents

From neural networks...
The basic ideas
Logistic regression and one layer neural-network
Convolutional neural networks

Graph neural networks
Learning with graphs
What is a GNN ?
A bit of group theory
Invariance and equivariance
Permutation invariance/equivariance
Message-passing neural networks
Examples of GNN
The whole pipeline
Expressivity of GNN
Conclusion

More on unsupervised node embeddings techniques
Unsupervised node embeddings

First simple neural network: logistic regression

I It is a classification method: input (xi)i 2 Rd and (yi)i 2 {+1, �1}.
I Probabilistic model: find a model h✓ s.t. P(y = +1|x) ⇡ h✓(x).
I Bayes decision: f (x) = sign(P(y = +1|x) � P(y = �1|x)) 2 {�1, +1}.

The sigmoid function

�(z) = 1/(1 + exp(�z)).

I Usually used to model
probabilities.

The logistic regression model

The model is P(y = +1|x) = �(✓>x + b).

I ✓ 2 Rd are weights, b 2 R is a bias that
are to be optimized.

I It is a generalized linear model.

I Is is also a one layer neural-network (no
hidden layer).

First simple neural network: logistic regression

I It is a classification method: input (xi)i 2 Rd and (yi)i 2 {+1, �1}.
I Probabilistic model: find a model h✓ s.t. P(y = +1|x) ⇡ h✓(x).
I Bayes decision: f (x) = sign(P(y = +1|x) � P(y = �1|x)) 2 {�1, +1}.

The sigmoid function

�(z) = 1/(1 + exp(�z)).

I Usually used to model
probabilities.

The logistic regression model

The model is P(y = +1|x) = �(✓>x + b).

I ✓ 2 Rd are weights, b 2 R is a bias that
are to be optimized.

I It is a generalized linear model.

I Is is also a one layer neural-network (no
hidden layer).

First simple neural network: logistic regression

I It is a classification method: input (xi)i 2 Rd and (yi)i 2 {+1, �1}.
I Probabilistic model: find a model h✓ s.t. P(y = +1|x) ⇡ h✓(x).
I Bayes decision: f (x) = sign(P(y = +1|x) � P(y = �1|x)) 2 {�1, +1}.

The sigmoid function

�(z) = 1/(1 + exp(�z)).

I Usually used to model
probabilities.

The logistic regression model

The model is P(y = +1|x) = �(✓>x + b).

I ✓ 2 Rd are weights, b 2 R is a bias that
are to be optimized.

I It is a generalized linear model.

I Is is also a one layer neural-network (no
hidden layer).

First simple neural network: logistic regression

One property

P(y = �1|x) = 1 � P(y = 1|x) = 1 � �(✓>x + b) = �(�(✓>x + b))

Maximum likelihood estimation

Find ✓ 2 Rd , b 2 R that maximize the (conditional) log-likelihood (board)

X

i :yi=1

log P(yi = 1|xi) +
X

i :yi=�1

log P(yi = �1|xi)

=
X

i :yi=1

log �(✓>xi + b) +
X

i :yi=�1

log �(�(✓>x + b))

=
nX

i=1

log �(yi (✓
>xi + b)) .

Minimizing the logistic loss

min
✓,b

nX

i=1

log
h
1 + exp

⇣
�yi (✓

>xi + b)
⌘i

.

I Convex problem, can be solved with (Quasi) Newton’s method.

First simple neural network: logistic regression

One property

P(y = �1|x) = 1 � P(y = 1|x) = 1 � �(✓>x + b) = �(�(✓>x + b))

Maximum likelihood estimation

Find ✓ 2 Rd , b 2 R that maximize the (conditional) log-likelihood (board)

X

i :yi=1

log P(yi = 1|xi) +
X

i :yi=�1

log P(yi = �1|xi)

=
X

i :yi=1

log �(✓>xi + b) +
X

i :yi=�1

log �(�(✓>x + b))

=
nX

i=1

log �(yi (✓
>xi + b)) .

Minimizing the logistic loss

min
✓,b

nX

i=1

log
h
1 + exp

⇣
�yi (✓

>xi + b)
⌘i

.

I Convex problem, can be solved with (Quasi) Newton’s method.

First simple neural network: logistic regression

One property

P(y = �1|x) = 1 � P(y = 1|x) = 1 � �(✓>x + b) = �(�(✓>x + b))

Maximum likelihood estimation

Find ✓ 2 Rd , b 2 R that maximize the (conditional) log-likelihood (board)

X

i :yi=1

log P(yi = 1|xi) +
X

i :yi=�1

log P(yi = �1|xi)

=
X

i :yi=1

log �(✓>xi + b) +
X

i :yi=�1

log �(�(✓>x + b))

=
nX

i=1

log �(yi (✓
>xi + b)) .

Minimizing the logistic loss

min
✓,b

nX

i=1

log
h
1 + exp

⇣
�yi (✓

>xi + b)
⌘i

.

I Convex problem, can be solved with (Quasi) Newton’s method.

First simple neural network: logistic regression

Remember your losses

With f : Rd
! R, many losses can be written

as `(yi , f (xi)) = �(yi f (xi)) with � #.

I `(yi , f (xi)) = 1yi f (xi)0.

I `(yi , f (xi)) = max{0, 1 � yi f (xi)}.

I `(yi , f (xi)) = log(1 + e�yi f (xi)).

And so ?

I Logistic regression = fitting f (x) = ✓>x + b with the logistic loss.

I The decision/prediction of the label is sign(f (x)).

I So it is a linear decision boundary (linear classification).

First simple neural network: logistic regression

Remember your losses

With f : Rd
! R, many losses can be written

as `(yi , f (xi)) = �(yi f (xi)) with � #.

I `(yi , f (xi)) = 1yi f (xi)0.

I `(yi , f (xi)) = max{0, 1 � yi f (xi)}.

I `(yi , f (xi)) = log(1 + e�yi f (xi)).

And so ?

I Logistic regression = fitting f (x) = ✓>x + b with the logistic loss.

I The decision/prediction of the label is sign(f (x)).

I So it is a linear decision boundary (linear classification).

First simple neural network: logistic regression

Remember your losses

With f : Rd
! R, many losses can be written

as `(yi , f (xi)) = �(yi f (xi)) with � #.

I `(yi , f (xi)) = 1yi f (xi)0.

I `(yi , f (xi)) = max{0, 1 � yi f (xi)}.

I `(yi , f (xi)) = log(1 + e�yi f (xi)).

And so ?

I Logistic regression = fitting f (x) = ✓>x + b with the logistic loss.

I The decision/prediction of the label is sign(f (x)).

I So it is a linear decision boundary (linear classification).

Table of contents

From neural networks...
The basic ideas
Logistic regression and one layer neural-network
Convolutional neural networks

Graph neural networks
Learning with graphs
What is a GNN ?
A bit of group theory
Invariance and equivariance
Permutation invariance/equivariance
Message-passing neural networks
Examples of GNN
The whole pipeline
Expressivity of GNN
Conclusion

More on unsupervised node embeddings techniques
Unsupervised node embeddings

Convolutional neural networks

I The core block for deep learning on images.

I Induces an implicit bias on the architecture.

What could happen with a fully-connected architecture?

Convolutional neural networks

I The core block for deep learning on images.
I Induces an implicit bias on the architecture.

What could happen with a fully-connected architecture?

I We want a function that doesn’t change if we only translate the image.
We want a translation invariant function.

I Convolution: particular structure on the weights that induce
translation equivariance.

Convolutional neural networks

Convolution/correlation of functions

Let f , h 2 L2(R). The convolution f ⇤ h 2 L2(R) is defined as

f ⇤ h(x) =

Z +1

�1
f (t)h(x � t)dt and f ? h(x) =

Z +1

�1
f (t)h(t + x)dt

I Translate a filter h and then take the inner product with2 f :

f ? h(x) = h⌧�xh, f iL2(R) .

I It weights the local contributions of f by a filter.

I It is translation equivariant.

(⌧x f) ⇤ h = ⌧x(f ⇤ h)

I If we translate the input, the output will be equally translated.

2⌧x f = t ! f (t � x)

Convolutional neural networks

Convolution/correlation of functions

Let f , h 2 L2(R). The convolution f ⇤ h 2 L2(R) is defined as

f ⇤ h(x) =

Z +1

�1
f (t)h(x � t)dt and f ? h(x) =

Z +1

�1
f (t)h(t + x)dt

I Translate a filter h and then take the inner product with2 f :

f ? h(x) = h⌧�xh, f iL2(R) .

I It weights the local contributions of f by a filter.

I It is translation equivariant.

(⌧x f) ⇤ h = ⌧x(f ⇤ h)

I If we translate the input, the output will be equally translated.

2⌧x f = t ! f (t � x)

Convolutional neural networks

Convolutional neural networks

In practice convolutions are applied on discrete signals.

Discrete convolutions in 1D

Question: size of the output ?

Convolutional neural networks

In practice convolutions are applied on discrete signals.

Discrete convolutions in 1D

I Padding strategies can be used to have output of the same size.

I Also stride can be used to move the filter from more than one pixel.

Convolution as matrix multiplication

Let f = (f1, · · · , fW), h = (h1, · · · , hw�1). In practice

8i 2 [[W � w + 1]], (f ⇤ h)i =
wX

j=1

fi�1+jhj =
i�1+wX

n=i

fnhn�i+1 (1)

Same as a matrix multiplication with a (W �w + 1) ⇥W Toeplitz matrix

f ⇤ h =

0

BBBBB@

h1 h2 · · · hw 0 0 · · · 0
0 h1 h2 · · · hw 0 · · · 0
0 0 h1 h2 · · · hw · · · 0
...

...
...

. . .
. . .

. . .
...

...
0 · · · · · · 0 h1 h2 · · · hw

1

CCCCCA

2

666664

f1
f2
f3
...
fW

3

777775
(2)

Convolution is just a specific linear layer

Conv(x) = Wx with shared weights in the W matrix.

Convolution as matrix multiplication

Let f = (f1, · · · , fW), h = (h1, · · · , hw�1). In practice

8i 2 [[W � w + 1]], (f ⇤ h)i =
wX

j=1

fi�1+jhj =
i�1+wX

n=i

fnhn�i+1 (1)

Same as a matrix multiplication with a (W �w + 1) ⇥W Toeplitz matrix

f ⇤ h =

0

BBBBB@

h1 h2 · · · hw 0 0 · · · 0
0 h1 h2 · · · hw 0 · · · 0
0 0 h1 h2 · · · hw · · · 0
...

...
...

. . .
. . .

. . .
...

...
0 · · · · · · 0 h1 h2 · · · hw

1

CCCCCA

2

666664

f1
f2
f3
...
fW

3

777775
(2)

Convolution is just a specific linear layer

Conv(x) = Wx with shared weights in the W matrix.

Convolution as matrix multiplication

Let f = (f1, · · · , fW), h = (h1, · · · , hw�1). In practice

8i 2 [[W � w + 1]], (f ⇤ h)i =
wX

j=1

fi�1+jhj =
i�1+wX

n=i

fnhn�i+1 (1)

Same as a matrix multiplication with a (W �w + 1) ⇥W Toeplitz matrix

f ⇤ h =

0

BBBBB@

h1 h2 · · · hw 0 0 · · · 0
0 h1 h2 · · · hw 0 · · · 0
0 0 h1 h2 · · · hw · · · 0
...

...
...

. . .
. . .

. . .
...

...
0 · · · · · · 0 h1 h2 · · · hw

1

CCCCCA

2

666664

f1
f2
f3
...
fW

3

777775
(2)

Convolution is just a specific linear layer

Conv(x) = Wx with shared weights in the W matrix.

Convolutional neural networks

Discrete convolutions not in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

https://github.com/vdumoulin/conv_arithmetic

Convolutional neural networks

Discrete convolutions not in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

https://github.com/vdumoulin/conv_arithmetic

Convolutional neural networks

Discrete convolutions not in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

Figure: From Franccois Fleuret https://fleuret.org/dlc/

https://github.com/vdumoulin/conv_arithmetic
https://fleuret.org/dlc/

Convolutional neural networks

Discrete convolutions not in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

Figure: From Franccois Fleuret https://fleuret.org/dlc/

https://github.com/vdumoulin/conv_arithmetic
https://fleuret.org/dlc/

Convolutional neural networks

Figure: LeNet from LeCun et al. 1998

Figure: Schematic view

Principle and intuition (Zeiler and Fergus 2014)

I Define multiple convolutions, learn the corresponding filter weights.

I Recognize local patterns in images.

I Find intermediate features that are “general” and “adaptive” due to
the translation equivariance bias
https://fabianfuchsml.github.io/equivariance1of2/.

I Revealing local features that are shared across the data domain.

https://fabianfuchsml.github.io/equivariance1of2/

Conclusion

I Deep learning: in almost everything when there are images.

I Very versatile: learn complex functions.

I Prior also helps ! (translation equivariance).

I Side note: still struggles on tabular data (Grinsztajn, Oyallon, and
Varoquaux 2022).

Graph neural networks ?

I How do we extend neural networks to graphs?

I Careful to node ordering: must be invariant to relabelling of the nodes
(graph isomorphism).

Conclusion

I Deep learning: in almost everything when there are images.

I Very versatile: learn complex functions.

I Prior also helps ! (translation equivariance).

I Side note: still struggles on tabular data (Grinsztajn, Oyallon, and
Varoquaux 2022).

Graph neural networks ?

I How do we extend neural networks to graphs?

I Careful to node ordering: must be invariant to relabelling of the nodes
(graph isomorphism).

