Machine learning for graphs and with graphs Graph neural networks

Titouan Vayer & Pierre Borgnat email: titouan.vayer@inria.fr, pierre.borgnat@ens-lyon.fr

October 15, 2024

Table of contents

[From neural networks...](#page-2-0)

[The basic ideas](#page-2-0) [Logistic regression and one layer neural-network](#page-17-0) [Convolutional neural networks](#page-27-0)

[Graph neural networks](#page-0-0)

[Learning with graphs](#page-0-0) [What is a GNN ?](#page-0-0) [A bit of group theory](#page-0-0) [Invariance and equivariance](#page-0-0) [Permutation invariance/equivariance](#page-0-0) [Message-passing neural networks](#page-0-0) [Examples of GNN](#page-0-0) [The whole pipeline](#page-0-0) [Expressivity of GNN](#page-0-0) [Conclusion](#page-0-0)

[More on unsupervised node embeddings techniques](#page-0-0)

KORKARA REPASA DA VOCA

[Unsupervised node embeddings](#page-0-0)

[From neural networks...](#page-2-0)

[The basic ideas](#page-2-0)

[Logistic regression and one layer neural-network](#page-17-0) [Convolutional neural networks](#page-27-0)

[Graph neural networks](#page-0-0)

[Learning with graphs](#page-0-0) [What is a GNN ?](#page-0-0) [A bit of group theory](#page-0-0) [Invariance and equivariance](#page-0-0) [Permutation invariance/equivariance](#page-0-0) [Message-passing neural networks](#page-0-0) [Examples of GNN](#page-0-0) [The whole pipeline](#page-0-0) [Expressivity of GNN](#page-0-0) [Conclusion](#page-0-0)

[More on unsupervised node embeddings techniques](#page-0-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할) 19 Q Q

[Unsupervised node embeddings](#page-0-0)

What is a neural network?

Neural network is a certain family of functions parametrized by weights. Built upon a biological analogy Rosenblatt [1958](#page-0-1)

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 2990

What is a neural network ?

Neural network is a certain family of functions parametrized by weights. Built upon a biological analogy Rosenblatt [1958](#page-0-1)

First example $f(\mathbf{x} = (x_1, x_2)) =$ activation $(\theta_1 x_1 + \theta_2 x_2 + \theta_3)$:

What is a neural network ?

Neural network is a certain family of functions parametrized by weights. Built upon a biological analogy Rosenblatt [1958](#page-0-1)

► Second example $f(\mathbf{x} = (x_1, x_2)) =$ activation $(\theta_1 x_1 + \theta_2 x_2 + \theta_3)$:

What is a neural network?

Feed-forward neural networks

 \blacktriangleright Linear neural network:

KORK EXTERNE PROVIDE

What is a neural network ?

Feed-forward neural networks

 \blacktriangleright Linear neural network:

Non-linearity:

KOD KAR KED KED E YOUN

What is a neural network ?

Feed-forward neural networks

 \blacktriangleright Linear neural network:

Non-linearity:

 000

Find a neural network that implements the f[unc](#page-0-0)t[ion](#page-0-0) $f(x) = |x|$ $f(x) = |x|$ [.](#page-0-0)

Feed-forward neural networks

Find a neural network that implements the function $f(x) = |x|$

KORK EXTERNE PROVIDE

hidden neurons (no bias)

What is a neural network ?

Feed-forward neural networks

Feed-forward neural networks

 \blacktriangleright Feed-forward NN are function of the form

$$
f(\mathbf{x}) = T_K \circ \sigma_{K-1} \circ \cdots \circ \sigma_1 \circ T_1(\mathbf{x})
$$

where $T_k(\mathbf{z}) = \mathbf{W}^{(k)} \mathbf{z} + \mathbf{b}^{(k)}$
and σ_k pointwise activation function.

- All the weights: $\boldsymbol{\theta} = (\mathbf{W}^{(1)}, \cdots, \mathbf{W}^{(K)}, \mathbf{b}^{(1)}, \cdots, \mathbf{b}^{(K)}).$
- \triangleright Depending on the task the output of a NN is also transformed $g(\mathbf{x}) = \text{norm}(f(\mathbf{x})).$
- E.g. $f : \mathbb{R}^d \to \mathbb{R}$ and $g : \mathbb{R}^d \to (0,1)$ for binary classification with norm(u) = 1/(1 + exp($-u$)) (logistic/sigmoid function).

KORKAR KERKER SAGA

What is a neural network ?

A zoo of architectures

deep-learning also: generative, recurrent, transformers, attention layer transformers... Richness of neural network

Neural network in practice

The (very) big picture

Find the weights that minimizes the empirical minimization loss.

- In practice gradient descent very slow.
- \triangleright We use stochastic gradient descents (and variations) on batches of the data.

(almost) All optimization in one slide

Principle

- In Minimize a smooth function $J(\theta)$ using its gradient (or \approx).
- Initialize a vector $\theta^{(0)}$ and update it at each iteration *k* as:

$$
\boldsymbol{\theta}^{(k+1)} = \boldsymbol{\theta}^{(k)} + \mu_k \mathbf{d}_k
$$

where μ_k is a step and \mathbf{d}_k is a descent direction $\mathbf{d}_k^\top \nabla J(\boldsymbol{\theta}^{(k)}) < 0.$

- \blacktriangleright Classical descent directions are :
	- Steepest descent: $d_k = -\nabla J(\theta^{(k)})$ (a.k.a. Gradient descent).
	- \blacktriangleright (Quasi) Newton: d_k = −(∇²J(θ ^(k)))⁻¹∇J(θ ^(k)), ∇²J is the Hessian.
	- ▶ Stochastic Gradient Descent : $d_k = -\tilde{\nabla}J(\theta^{(k)})$ with approx. gradient.
- \triangleright For NN: gra[di](#page-0-0)ent computed with **automatic diff[erentiation](#page-0-0)** [\(TD\).](#page-0-0) KO KA KO KERKER KONGK

(almost) All optimization in two slides...

Why is this a good idea ? (on the board)

Let $J: \mathbb{R}^D \to \mathbb{R}$ with *L*-Lipschitz gradient¹ and $J^* := \min_{\theta} J(\theta) > -\infty$. Then, provided that $0 < \mu_k < \frac{2}{L}$, the iterations $\theta^{(k+1)} = \theta^{(k)} - \mu_k \nabla J(\theta^{(k)})$ satisfy

> $J(\boldsymbol{\theta}^{(k+1)}) < J(\boldsymbol{\theta}^{(k)})$ (decrease the objective function) $\lim_{k \to +\infty} \nabla J(\boldsymbol{\theta}^{(k)}) = \mathbf{0}$ (critical point)

 1 it means that $\forall \theta_1, \theta_2 \in \mathbb{R}^d, \ \|\nabla J(\theta_1) - \nabla J(\theta_2)\|_2 \leq L \|\theta_1 - \theta_2\|_2.$ $\forall \theta_1, \theta_2 \in \mathbb{R}^d, \ \|\nabla J(\theta_1) - \nabla J(\theta_2)\|_2 \leq L \|\theta_1 - \theta_2\|_2.$ $\forall \theta_1, \theta_2 \in \mathbb{R}^d, \ \|\nabla J(\theta_1) - \nabla J(\theta_2)\|_2 \leq L \|\theta_1 - \theta_2\|_2.$ $\forall \theta_1, \theta_2 \in \mathbb{R}^d, \ \|\nabla J(\theta_1) - \nabla J(\theta_2)\|_2 \leq L \|\theta_1 - \theta_2\|_2.$

(almost) All optimization in three slides...

Be aware of local minima

- \triangleright When the functions are not convex, GD and its variants can fall into bad local minima.
- \blacktriangleright Neural networks are not convex w.r.t. the optimized parameters !

KORK EXTERNE PROVIDE

[From neural networks...](#page-0-0)

[The basic ideas](#page-0-0) [Logistic regression and one layer neural-network](#page-0-0) [Convolutional neural networks](#page-0-0)

[Graph neural networks](#page-0-0)

[Learning with graphs](#page-0-0) [What is a GNN ?](#page-0-0) [A bit of group theory](#page-0-0) [Invariance and equivariance](#page-0-0) [Permutation invariance/equivariance](#page-0-0) [Message-passing neural networks](#page-0-0) [Examples of GNN](#page-0-0) [The whole pipeline](#page-0-0) [Expressivity of GNN](#page-0-0) [Conclusion](#page-0-0)

[More on unsupervised node embeddings techniques](#page-0-0)

KORKARA REPASA DA VOCA

[Unsupervised node embeddings](#page-0-0)

- It is a classification method: input $(x_i)_i \in \mathbb{R}^d$ and $(y_i)_i \in \{+1, -1\}$.
- **Probabilistic model:** find a model h_{θ} s.t. $\mathbb{P}(y = +1|\mathbf{x}) \approx h_{\theta}(\mathbf{x})$.
- Bayes decision: $f(\mathbf{x}) = \text{sign}(\mathbb{P}(y = +1|\mathbf{x}) \mathbb{P}(y = -1|\mathbf{x})) \in \{-1, +1\}.$

- It is a classification method: input $(x_i)_i \in \mathbb{R}^d$ and $(y_i)_i \in \{+1, -1\}$.
- **Probabilistic model:** find a model h_{θ} s.t. $\mathbb{P}(y = +1|\mathbf{x}) \approx h_{\theta}(\mathbf{x})$.
- Bayes decision: $f(x) = sign(\mathbb{P}(y = +1 | x) \mathbb{P}(y = -1 | x)) \in \{-1, +1\}.$

KOD KAR KED KED E YOUN

The sigmoid function $\sigma(z)=1/(1 + \exp(-z)).$

Usually used to model probabilities.

- It is a **classification method**: input $(x_i)_i \in \mathbb{R}^d$ and $(y_i)_i \in \{+1, -1\}$.
- **Probabilistic model:** find a model h_{θ} s.t. $\mathbb{P}(y = +1|\mathbf{x}) \approx h_{\theta}(\mathbf{x})$.
- Bayes decision: $f(x) = sign(\mathbb{P}(y = +1 | x) \mathbb{P}(y = -1 | x)) \in \{-1, +1\}.$

The sigmoid function $\sigma(z)=1/(1 + \exp(-z)).$

 \blacktriangleright Usually used to model probabilities.

The logistic regression model

The model is $\mathbb{P}(\gamma = +1|\mathbf{x}) = \sigma(\boldsymbol{\theta}^{\top}\mathbf{x} + b)$.

- \blacktriangleright $\theta \in \mathbb{R}^d$ are weights, $b \in \mathbb{R}$ is a bias that are to be optimized.
- \blacktriangleright It is a generalized linear model.
- \blacktriangleright Is is also a one layer neural-network (no hidden layer).

One property

 $\mathbb{P}(y = -1|\mathbf{x}) = 1 - \mathbb{P}(y = 1|\mathbf{x}) = 1 - \sigma(\boldsymbol{\theta}^\top \mathbf{x} + b) = \sigma(-(\boldsymbol{\theta}^\top \mathbf{x} + b))$

One property $\mathbb{P}(y = -1|\mathbf{x}) = 1 - \mathbb{P}(y = 1|\mathbf{x}) = 1 - \sigma(\boldsymbol{\theta}^\top \mathbf{x} + b) = \sigma(-(\boldsymbol{\theta}^\top \mathbf{x} + b))$

Maximum likelihood estimation Find $\theta \in \mathbb{R}^d$, $b \in \mathbb{R}$ that maximize the (conditional) log-likelihood (board)

$$
\sum_{i:y_i=1} \log \mathbb{P}(y_i = 1|\mathbf{x}_i) + \sum_{i:y_i=-1} \log \mathbb{P}(y_i = -1|\mathbf{x}_i)
$$

=
$$
\sum_{i:y_i=1} \log \sigma(\boldsymbol{\theta}^\top \mathbf{x}_i + b) + \sum_{i:y_i=-1} \log \sigma(-(\boldsymbol{\theta}^\top \mathbf{x} + b))
$$

=
$$
\sum_{i=1}^n \log \sigma(y_i(\boldsymbol{\theta}^\top \mathbf{x}_i + b)).
$$

KORKARA REPASA DA VOCA

One property $\mathbb{P}(y = -1|\mathbf{x}) = 1 - \mathbb{P}(y = 1|\mathbf{x}) = 1 - \sigma(\boldsymbol{\theta}^{\top}\mathbf{x} + b) = \sigma(-(\boldsymbol{\theta}^{\top}\mathbf{x} + b))$

Maximum likelihood estimation Find $\theta \in \mathbb{R}^d$, $b \in \mathbb{R}$ that maximize the (conditional) log-likelihood (board)

$$
\sum_{i:y_i=1} \log \mathbb{P}(y_i = 1|\mathbf{x}_i) + \sum_{i:y_i=-1} \log \mathbb{P}(y_i = -1|\mathbf{x}_i)
$$

=
$$
\sum_{i:y_i=1} \log \sigma(\boldsymbol{\theta}^\top \mathbf{x}_i + b) + \sum_{i:y_i=-1} \log \sigma(-(\boldsymbol{\theta}^\top \mathbf{x} + b))
$$

=
$$
\sum_{i=1}^n \log \sigma(y_i(\boldsymbol{\theta}^\top \mathbf{x}_i + b)).
$$

Minimizing the logistic loss

$$
\min_{\boldsymbol{\theta},b} \ \sum_{i=1}^n \log\left[1+\exp\left(-y_i(\boldsymbol{\theta}^\top \mathbf{x}_i + b)\right)\right] \, .
$$

Convex problem, can be solved with $(Quasi)$ $(Quasi)$ [Newton's](#page-0-0) [method.](#page-0-0)
All the solved with $\frac{1}{2}$

Remember your losses

With $f: \mathbb{R}^d \to \mathbb{R}$, many losses can be written as $\ell(y_i, f(\mathbf{x}_i)) = \Phi(y_i f(\mathbf{x}_i))$ with $\Phi \downarrow$.

$$
\blacktriangleright \ell(y_i, f(\mathbf{x}_i)) = \mathbf{1}_{y_i f(\mathbf{x}_i) \leq 0}.
$$

$$
\blacktriangleright \ell(y_i, f(\mathbf{x}_i)) = \max\{0, 1 - y_i f(\mathbf{x}_i)\}.
$$

$$
\blacktriangleright \ell(y_i, f(\mathbf{x}_i)) = \log(1 + e^{-y_i f(\mathbf{x}_i)}).
$$

KORK ERKER ADAM ADA

Remember your losses

With $f: \mathbb{R}^d \to \mathbb{R}$, many losses can be written as $\ell(y_i, f(\mathbf{x}_i)) = \Phi(y_i f(\mathbf{x}_i))$ with $\Phi \downarrow$.

- \blacktriangleright $\ell(y_i, f(\mathbf{x}_i)) = \mathbf{1}_{y_i f(\mathbf{x}_i) \leq 0}.$
- \blacktriangleright $\ell(y_i, f(\mathbf{x}_i)) = \max\{0, 1 y_i f(\mathbf{x}_i)\}.$
- \blacktriangleright $\ell(y_i, f(\mathbf{x}_i)) = \log(1 + e^{-y_i f(\mathbf{x}_i)})$.

KORKARA REPASA DA VOCA

And so ?

- **I** Logistic regression = fitting $f(\mathbf{x}) = \boldsymbol{\theta}^{\top}\mathbf{x} + b$ with the logistic loss.
- If The decision/prediction of the label is sign($f(\mathbf{x})$).
- \triangleright So it is a linear decision boundary (linear classification).

Remember your losses

With $f : \mathbb{R}^d \to \mathbb{R}$, many losses can be written as $\ell(y_i, f(\mathbf{x}_i)) = \Phi(y_i f(\mathbf{x}_i))$ with $\Phi \downarrow$.

$$
\blacktriangleright \ell(y_i, f(\mathbf{x}_i)) = \mathbf{1}_{y_i f(\mathbf{x}_i) \leq 0}.
$$

$$
\blacktriangleright \ell(y_i, f(\mathbf{x}_i)) = \max\{0, 1 - y_i f(\mathbf{x}_i)\}.
$$

 \blacktriangleright $\ell(y_i, f(\mathbf{x}_i)) = \log(1 + e^{-y_i f(\mathbf{x}_i)})$.

And so ?

- **I** Logistic regression = fitting $f(\mathbf{x}) = \boldsymbol{\theta}^{\top}\mathbf{x} + b$ with the logistic loss.
- The decision/prediction of the label is $sign(f(x))$.
- \triangleright So it is a linear decision boundary (linear classification).

Table of contents

[From neural networks...](#page-0-0)

[The basic ideas](#page-0-0) [Logistic regression and one layer neural-network](#page-0-0) [Convolutional neural networks](#page-0-0)

[Graph neural networks](#page-0-0)

[Learning with graphs](#page-0-0) [What is a GNN ?](#page-0-0) [A bit of group theory](#page-0-0) [Invariance and equivariance](#page-0-0) [Permutation invariance/equivariance](#page-0-0) [Message-passing neural networks](#page-0-0) [Examples of GNN](#page-0-0) [The whole pipeline](#page-0-0) [Expressivity of GNN](#page-0-0) [Conclusion](#page-0-0)

[More on unsupervised node embeddings techniques](#page-0-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

[Unsupervised node embeddings](#page-0-0)

- \blacktriangleright The core block for deep learning on images.
- \blacktriangleright Induces an implicit bias on the architecture.
- What could happen with a fully-connected architecture?

KORK ERKER ADA ADA KORA

- \blacktriangleright The core block for deep learning on images.
- \blacktriangleright Induces an implicit bias on the architecture.

What could happen with a fully-connected architecture?

- \triangleright We want a function that doesn't change if we only translate the image. We want a **translation invariant function**.
- \triangleright Convolution: particular structure on the weights that induce translation equivariance.**KORKARA REPASA DA VOCA**

Convolution/correlation of functions

Let $f, h \in L_2(\mathbb{R})$. The convolution $f * h \in L_2(\mathbb{R})$ is defined as

$$
f * h(x) = \int_{-\infty}^{+\infty} f(t)h(x-t)dt \text{ and } f * h(x) = \int_{-\infty}^{+\infty} f(t)h(t+x)dt
$$

Translate a filter h and then take the inner product with² f :

$$
f\star h(x)=\langle \tau_{-x}h,f\rangle_{L_2(\mathbb{R})}.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

It weights the local contributions of f by a filter.

$$
^{2}\tau_{x}f=t\rightarrow f(t-x)
$$

Convolution/correlation of functions

Let $f, h \in L_2(\mathbb{R})$. The convolution $f * h \in L_2(\mathbb{R})$ is defined as

$$
f * h(x) = \int_{-\infty}^{+\infty} f(t)h(x-t)dt \text{ and } f * h(x) = \int_{-\infty}^{+\infty} f(t)h(t+x)dt
$$

Translate a filter h and then take the inner product with² f :

$$
f\star h(x)=\langle \tau_{-x}h,f\rangle_{L_2(\mathbb{R})}.
$$

- It weights the local contributions of f by a filter.
- \blacktriangleright It is translation equivariant.

$$
(\tau_x f)*h = \tau_x (f*h)
$$

KORKARA REPASA DA VOCA

If we translate the input, the output will be equally translated.

$$
^{2}\tau_{x}f=t\rightarrow f(t-x)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

In practice convolutions are applied on discrete signals.

Discrete convolutions in 1D

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Question: size of the output ?

In practice convolutions are applied on discrete signals.

Discrete convolutions in 1D

 \triangleright Padding strategies can be used to have output of the same size.

KOD KAR KED KED E YOUN

 \triangleright Also stride can be used to move the filter from more than one pixel.

Convolution as matrix multiplication

Let $f = (f_1, \dots, f_W), h = (h_1, \dots, h_{w-1})$. In practice

$$
\forall i \in \llbracket W - w + 1 \rrbracket, (f * h)_i = \sum_{j=1}^{w} f_{i-1+j} h_j = \sum_{n=i}^{i-1+w} f_n h_{n-i+1} \tag{1}
$$

Convolution as matrix multiplication

Let $f = (f_1, \dots, f_W), h = (h_1, \dots, h_{w-1})$. In practice

$$
\forall i \in [\![W - w + 1]\!], (f * h)_i = \sum_{j=1}^w f_{i-1+j} h_j = \sum_{n=i}^{i-1+w} f_n h_{n-i+1} \qquad (1)
$$

Same as a matrix multiplication with a $(W - w + 1) \times W$ Toeplitz matrix

$$
f * h = \begin{pmatrix} h_1 & h_2 & \cdots & h_w & 0 & 0 & \cdots & 0 \\ 0 & h_1 & h_2 & \cdots & h_w & 0 & \cdots & 0 \\ 0 & 0 & h_1 & h_2 & \cdots & h_w & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & h_1 & h_2 & \cdots & h_w \end{pmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_W \end{bmatrix}
$$
 (2)

KO K K Ø K K E K K E K V K K K K K K K K K

Convolution as matrix multiplication

Let $f = (f_1, \dots, f_W), h = (h_1, \dots, h_{w-1})$. In practice

$$
\forall i \in [\![W - w + 1]\!], (f * h)_i = \sum_{j=1}^w f_{i-1+j} h_j = \sum_{n=i}^{i-1+w} f_n h_{n-i+1} \qquad (1)
$$

Same as a matrix multiplication with a $(W - w + 1) \times W$ Toeplitz matrix

$$
f * h = \begin{pmatrix} h_1 & h_2 & \cdots & h_w & 0 & 0 & \cdots & 0 \\ 0 & h_1 & h_2 & \cdots & h_w & 0 & \cdots & 0 \\ 0 & 0 & h_1 & h_2 & \cdots & h_w & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & h_1 & h_2 & \cdots & h_w \end{pmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_W \end{bmatrix}
$$
 (2)

KID K 4 D K 4 B X 4 B X 1 B YOU ON ON

Convolution is just a specific linear layer $Conv(x) = Wx$ with shared weights in the W matrix.

Discrete convolutions not in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Discrete convolutions not in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

Discrete convolutions not in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

Figure: From Franccois Fleuret <https://fleuret.org/dlc/>

KORK ERKER ADAM ADA

Discrete convolutions not in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

Figure: From Franccois Fleuret <https://fleuret.org/dlc/>

Figure: LeNet from LeCun et al. [1998](#page-0-2)

Principle and intuition (Zeiler and Fergus [2014\)](#page-0-3)

- \triangleright Define multiple convolutions, learn the corresponding filter weights.
- Recognize local patterns in images.
- ▶ Find intermediate features that are "general" and "adaptive" due to the translation equivariance bias <https://fabianfuchsml.github.io/equivariance1of2/>.

KORKARA REPASA DA VOCA

 \blacktriangleright Revealing local features that are shared across the data domain.

- \triangleright Deep learning: in almost everything when there are images.
- \blacktriangleright Very versatile: learn complex functions.
- \blacktriangleright Prior also helps ! (translation equivariance).
- In Side note: still struggles on tabular data (Grinsztajn, Oyallon, and Varoquaux [2022\)](#page-0-4).

KORKARA REPASA DA VOCA

- \triangleright Deep learning: in almost everything when there are images.
- \blacktriangleright Very versatile: learn complex functions.
- \blacktriangleright Prior also helps ! (translation equivariance).
- \triangleright Side note: still struggles on tabular data (Grinsztajn, Oyallon, and Varoquaux [2022\)](#page-0-4).

Graph neural networks ?

- \blacktriangleright How do we extend neural networks to graphs?
- \triangleright Careful to node ordering: must be invariant to relabelling of the nodes (graph isomorphism).

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @