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What is a neural network ?

Neural network is a certain family of functions parametrized by weights.

Built upon a biological analogy Rosenblatt 1958

I First example f (x = (x1, x2)) = activation(✓1x1 + ✓2x2 + ✓3):
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What is a neural network ?

Feed-forward neural networks

I Feed-forward NN are function of the form

f (x) = TK � �K�1 � · · · � �1 � T1(x)

where Tk(z) = W(k)z + b(k)

and �k pointwise activation function.

I All the weights: ✓ = (W(1), · · · ,W(K),b(1), · · ·b(K)).

I Depending on the task the output of a NN is also transformed
g(x) = norm(f (x)).

I E.g. f : Rd
! R and g : Rd

! (0, 1) for binary classification with
norm(u) = 1/(1 + exp(�u)) (logistic/sigmoid function).



What is a neural network ?

A zoo of architectures

Richness of neural network



Neural network in practice

The (very) big picture

Find the weights that minimizes the empirical minimization loss.

I In practice gradient descent very slow.

I We use stochastic gradient descents (and variations) on batches of the
data.



(almost) All optimization in one slide

Principle

I Minimize a smooth function J(✓) using its gradient (or ⇡).

I Initialize a vector ✓(0) and update it at each iteration k as:

✓(k+1) = ✓(k) + µkdk

where µk is a step and dk is a descent direction d>
k rJ(✓(k)) < 0.

I Classical descent directions are :
I Steepest descent: dk = �rJ(✓(k)

) (a.k.a. Gradient descent).

I (Quasi) Newton: dk = �(r2J(✓(k)
))

�1rJ(✓(k)
), r2J is the Hessian.

I Stochastic Gradient Descent : dk = �r̃J(✓(k)
) with approx. gradient.

I For NN: gradient computed with automatic di↵erentiation (TD).



(almost) All optimization in two slides...

Why is this a good idea ? (on the board)

Let J : RD
! R with L-Lipschitz gradient1 and J? := min✓ J(✓) > �1.

Then, provided that 0 < µk < 2
L , the iterations ✓(k+1) = ✓(k)

� µkrJ(✓(k))
satisfy

J(✓(k+1)) < J(✓(k)) (decrease the objective function)

lim
k!+1

rJ(✓(k)) = 0 (critical point)

1it means that 8✓1,✓2 2 Rd , krJ(✓1) �rJ(✓2)k2  Lk✓1 � ✓2k2.



(almost) All optimization in three slides...

Be aware of local minima

I When the functions are not convex, GD and its variants can fall into
bad local minima.

I Neural networks are not convex w.r.t. the optimized parameters !
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First simple neural network: logistic regression

I It is a classification method: input (xi )i 2 Rd and (yi )i 2 {+1, �1}.
I Probabilistic model: find a model h✓ s.t. P(y = +1|x) ⇡ h✓(x).
I Bayes decision: f (x) = sign(P(y = +1|x) � P(y = �1|x)) 2 {�1, +1}.

The sigmoid function

�(z) = 1/(1 + exp(�z)).

I Usually used to model
probabilities.

The logistic regression model

The model is P(y = +1|x) = �(✓>x + b).

I ✓ 2 Rd are weights, b 2 R is a bias that
are to be optimized.

I It is a generalized linear model.

I Is is also a one layer neural-network (no
hidden layer).
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First simple neural network: logistic regression

One property

P(y = �1|x) = 1 � P(y = 1|x) = 1 � �(✓>x + b) = �(�(✓>x + b))

Maximum likelihood estimation

Find ✓ 2 Rd , b 2 R that maximize the (conditional) log-likelihood (board)

X

i :yi=1

log P(yi = 1|xi ) +
X

i :yi=�1

log P(yi = �1|xi )

=
X

i :yi=1

log �(✓>xi + b) +
X

i :yi=�1

log �(�(✓>x + b))

=
nX

i=1

log �(yi (✓
>xi + b)) .

Minimizing the logistic loss

min
✓,b

nX

i=1

log
h
1 + exp

⇣
�yi (✓

>xi + b)
⌘i

.

I Convex problem, can be solved with (Quasi) Newton’s method.
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First simple neural network: logistic regression

Remember your losses

With f : Rd
! R, many losses can be written

as `(yi , f (xi )) = �(yi f (xi )) with � #.

I `(yi , f (xi )) = 1yi f (xi )0.

I `(yi , f (xi )) = max{0, 1 � yi f (xi )}.

I `(yi , f (xi )) = log(1 + e�yi f (xi )).

And so ?

I Logistic regression = fitting f (x) = ✓>x + b with the logistic loss.

I The decision/prediction of the label is sign(f (x)).

I So it is a linear decision boundary (linear classification).
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Convolutional neural networks

I The core block for deep learning on images.

I Induces an implicit bias on the architecture.

What could happen with a fully-connected architecture?



Convolutional neural networks

I The core block for deep learning on images.
I Induces an implicit bias on the architecture.

What could happen with a fully-connected architecture?

I We want a function that doesn’t change if we only translate the image.
We want a translation invariant function.

I Convolution: particular structure on the weights that induce
translation equivariance.



Convolutional neural networks

Convolution/correlation of functions

Let f , h 2 L2(R). The convolution f ⇤ h 2 L2(R) is defined as

f ⇤ h(x) =

Z +1

�1
f (t)h(x � t)dt and f ? h(x) =

Z +1

�1
f (t)h(t + x)dt

I Translate a filter h and then take the inner product with2 f :

f ? h(x) = h⌧�xh, f iL2(R) .

I It weights the local contributions of f by a filter.

I It is translation equivariant.

(⌧x f ) ⇤ h = ⌧x(f ⇤ h)

I If we translate the input, the output will be equally translated.

2⌧x f = t ! f (t � x)
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Convolutional neural networks

In practice convolutions are applied on discrete signals.

Discrete convolutions in 1D

Question: size of the output ?



Convolutional neural networks

In practice convolutions are applied on discrete signals.

Discrete convolutions in 1D

I Padding strategies can be used to have output of the same size.

I Also stride can be used to move the filter from more than one pixel.



Convolution as matrix multiplication

Let f = (f1, · · · , fW ), h = (h1, · · · , hw�1). In practice

8i 2 [[W � w + 1]], (f ⇤ h)i =
wX

j=1

fi�1+jhj =
i�1+wX

n=i

fnhn�i+1 (1)

Same as a matrix multiplication with a (W �w + 1) ⇥W Toeplitz matrix

f ⇤ h =

0

BBBBB@

h1 h2 · · · hw 0 0 · · · 0
0 h1 h2 · · · hw 0 · · · 0
0 0 h1 h2 · · · hw · · · 0
...

...
...

. . .
. . .

. . .
...

...
0 · · · · · · 0 h1 h2 · · · hw

1

CCCCCA

2

666664

f1
f2
f3
...
fW

3

777775
(2)

Convolution is just a specific linear layer

Conv(x) = Wx with shared weights in the W matrix.
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See also https://github.com/vdumoulin/conv_arithmetic.
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Convolutional neural networks

Figure: LeNet from LeCun et al. 1998

Figure: Schematic view

Principle and intuition (Zeiler and Fergus 2014)

I Define multiple convolutions, learn the corresponding filter weights.

I Recognize local patterns in images.

I Find intermediate features that are “general” and “adaptive” due to
the translation equivariance bias
https://fabianfuchsml.github.io/equivariance1of2/.

I Revealing local features that are shared across the data domain.

https://fabianfuchsml.github.io/equivariance1of2/


Conclusion

I Deep learning: in almost everything when there are images.

I Very versatile: learn complex functions.

I Prior also helps ! (translation equivariance).

I Side note: still struggles on tabular data (Grinsztajn, Oyallon, and
Varoquaux 2022).

Graph neural networks ?

I How do we extend neural networks to graphs?

I Careful to node ordering: must be invariant to relabelling of the nodes
(graph isomorphism).
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Graph neural networks ?

I How do we extend neural networks to graphs?

I Careful to node ordering: must be invariant to relabelling of the nodes
(graph isomorphism).


