Machine learning for graphs and with graphs Graph neural networks

Titouan Vayer & Pierre Borgnat email: titouan.vayer@inria.fr, pierre.borgnat@ens-lyon.fr

October 15, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Table of contents

From neural networks...

The basic ideas Logistic regression and one layer neural-network Convolutional neural networks

Graph neural networks

Learning with graphs What is a GNN ? A bit of group theory Invariance and equivariance Permutation invariance/equivariance Message-passing neural networks Examples of GNN The whole pipeline Expressivity of GNN Conclusion

More on unsupervised node embeddings techniques

Unsupervised node embeddings

From neural networks...

The basic ideas

Logistic regression and one layer neural-network Convolutional neural networks

Graph neural networks

Learning with graphs What is a GNN ? A bit of group theory Invariance and equivariance Permutation invariance/equivariance Message-passing neural networks Examples of GNN The whole pipeline Expressivity of GNN Conclusion

More on unsupervised node embeddings techniques

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Unsupervised node embeddings

Neural network is a certain family of functions **parametrized by weights**. Built upon a biological analogy Rosenblatt 1958

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Neural network is a certain family of functions **parametrized by weights**. Built upon a biological analogy Rosenblatt 1958

First example $f(\mathbf{x} = (x_1, x_2)) = \operatorname{activation}(\theta_1 x_1 + \theta_2 x_2 + \theta_3)$:

Neural network is a certain family of functions **parametrized by weights**. Built upon a biological analogy Rosenblatt 1958

Second example $f(\mathbf{x} = (x_1, x_2)) = \operatorname{activation}(\theta_1 x_1 + \theta_2 x_2 + \theta_3)$:

Feed-forward neural networks

Linear neural network:

Feed-forward neural networks

Linear neural network:

Non-linearity:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Feed-forward neural networks

Linear neural network:

Non-linearity:

Find a neural network that implements the function f(x) = |x|.

Feed-forward neural networks

Find a neural network that implements the function f(x) = |x|

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

hidden neurons (no bias)

Feed-forward neural networks

Feed-forward neural networks

Feed-forward NN are function of the form

$$f(\mathbf{x}) = T_K \circ \sigma_{K-1} \circ \cdots \circ \sigma_1 \circ T_1(\mathbf{x})$$

where $T_k(\mathbf{z}) = \mathbf{W}^{(k)}\mathbf{z} + \mathbf{b}^{(k)}$

and σ_k pointwise activation function.

- All the weights: $\boldsymbol{\theta} = (\mathbf{W}^{(1)}, \cdots, \mathbf{W}^{(K)}, \mathbf{b}^{(1)}, \cdots \mathbf{b}^{(K)}).$
- Depending on the task the output of a NN is also transformed g(x) = norm(f(x)).
- ▶ E.g. $f : \mathbb{R}^d \to \mathbb{R}$ and $g : \mathbb{R}^d \to (0, 1)$ for binary classification with norm $(u) = 1/(1 + \exp(-u))$ (logistic/sigmoid function).

A zoo of architectures

deep-learning also: generative, recurrent, transformers, attention layer transformers... Richness of neural network

Neural network in practice

The (very) big picture

Find the weights that minimizes the empirical minimization loss.

- In practice gradient descent very slow.
- We use stochastic gradient descents (and variations) on batches of the data.

(almost) All optimization in one slide

Principle

- Minimize a smooth function $J(\theta)$ using its gradient (or \approx).
- ► Initialize a vector $\theta^{(0)}$ and update it at each iteration k as:

$$\boldsymbol{\theta}^{(k+1)} = \boldsymbol{\theta}^{(k)} + \mu_k \mathbf{d}_k$$

where μ_k is a step and \mathbf{d}_k is a descent direction $\mathbf{d}_k^\top \nabla J(\boldsymbol{\theta}^{(k)}) < 0$.

- Classical descent directions are :
 - **Steepest descent**: $\mathbf{d}_k = -\nabla J(\boldsymbol{\theta}^{(k)})$ (a.k.a. Gradient descent).
 - (Quasi) Newton: $\mathbf{d}_k = -(\nabla^2 J(\boldsymbol{\theta}^{(k)}))^{-1} \nabla J(\boldsymbol{\theta}^{(k)}), \nabla^2 J$ is the Hessian.
 - **Stochastic Gradient Descent** : $\mathbf{d}_k = -\tilde{\nabla} J(\boldsymbol{\theta}^{(k)})$ with approx. gradient.

► For NN: gradient computed with automatic differentiation (TD).

(almost) All optimization in two slides...

Why is this a good idea ? (on the board)

Let $J : \mathbb{R}^D \to \mathbb{R}$ with *L*-Lipschitz gradient¹ and $J^* := \min_{\theta} J(\theta) > -\infty$. Then, provided that $0 < \mu_k < \frac{2}{L}$, the iterations $\theta^{(k+1)} = \theta^{(k)} - \mu_k \nabla J(\theta^{(k)})$ satisfy

$$\begin{split} J(\boldsymbol{\theta}^{(k+1)}) &< J(\boldsymbol{\theta}^{(k)}) \text{ (decrease the objective function)} \\ \lim_{k \to +\infty} \nabla J(\boldsymbol{\theta}^{(k)}) &= \boldsymbol{0} \text{ (critical point)} \end{split}$$

 $^{1}\text{it means that }\forall \theta_{1},\theta_{2}\in \mathbb{R}^{d},\ \|\nabla J(\theta_{1})-\nabla J(\theta_{2})\|_{2}\leq L\|\theta_{1}-\theta_{2}\|_{2}, \text{ for all } t \in \mathbb{R}^{d},\ \|\nabla J(\theta_{1})-\nabla J(\theta_{2})\|_{2}\leq L\|\theta_{1}-\theta_{2}\|_{2}, \text{ for all } t \in \mathbb{R}^{d},\ \|\nabla J(\theta_{1})-\nabla J(\theta_{2})\|_{2}\leq L\|\theta_{1}-\theta_{2}\|_{2}, \text{ for all } t \in \mathbb{R}^{d},\ \|\nabla J(\theta_{1})-\nabla J(\theta_{2})\|_{2}\leq L\|\theta_{1}-\theta_{2}\|_{2}, \text{ for all } t \in \mathbb{R}^{d},\ \|\nabla J(\theta_{1})-\nabla J(\theta_{2})\|_{2}\leq L\|\theta_{1}-\theta_{2}\|_{2}, \text{ for all } t \in \mathbb{R}^{d},\ \|\nabla J(\theta_{1})-\nabla J(\theta_{2})\|_{2}\leq L\|\theta_{1}-\theta_{2}\|_{2}, \text{ for all } t \in \mathbb{R}^{d},\ \|\nabla J(\theta_{1})-\nabla J(\theta_{2})\|_{2}\leq L\|\theta_{1}-\theta_{2}\|_{2}$

(almost) All optimization in three slides...

Be aware of local minima

- When the functions are not convex, GD and its variants can fall into bad local minima.
- ▶ Neural networks are not convex w.r.t. the optimized parameters !

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Table of contents

From neural networks...

The basic ideas Logistic regression and one layer neural-network

Graph neural networks

Learning with graphs What is a GNN ? A bit of group theory Invariance and equivariance Permutation invariance/equivariance Message-passing neural networks Examples of GNN The whole pipeline Expressivity of GNN Conclusion

More on unsupervised node embeddings techniques

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Unsupervised node embeddings

- ▶ It is a classification method: input $(\mathbf{x}_i)_i \in \mathbb{R}^d$ and $(y_i)_i \in \{+1, -1\}$.
- **Probabilistic model**: find a model h_{θ} s.t. $\mathbb{P}(y = +1|\mathbf{x}) \approx h_{\theta}(\mathbf{x})$.
- ► Bayes decision: $f(\mathbf{x}) = sign(\mathbb{P}(y = +1|\mathbf{x}) \mathbb{P}(y = -1|\mathbf{x})) \in \{-1, +1\}.$

- ▶ It is a classification method: input $(\mathbf{x}_i)_i \in \mathbb{R}^d$ and $(y_i)_i \in \{+1, -1\}$.
- **Probabilistic model**: find a model h_{θ} s.t. $\mathbb{P}(y = +1|\mathbf{x}) \approx h_{\theta}(\mathbf{x})$.
- ► Bayes decision: $f(\mathbf{x}) = sign(\mathbb{P}(y = +1|\mathbf{x}) \mathbb{P}(y = -1|\mathbf{x})) \in \{-1, +1\}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The sigmoid function $\sigma(z) = 1/(1 + \exp(-z))$.

 Usually used to model probabilities.

▶ It is a classification method: input $(\mathbf{x}_i)_i \in \mathbb{R}^d$ and $(y_i)_i \in \{+1, -1\}$.

- **Probabilistic model**: find a model h_{θ} s.t. $\mathbb{P}(y = +1|\mathbf{x}) \approx h_{\theta}(\mathbf{x})$.
- ► Bayes decision: $f(\mathbf{x}) = sign(\mathbb{P}(y = +1|\mathbf{x}) \mathbb{P}(y = -1|\mathbf{x})) \in \{-1, +1\}.$

The sigmoid function $\sigma(z) = 1/(1 + \exp(-z)).$

 Usually used to model probabilities.

The logistic regression model

The model is $\mathbb{P}(y = +1 | \mathbf{x}) = \sigma(\boldsymbol{\theta}^{\top} \mathbf{x} + \boldsymbol{b}).$

- ▶ $\theta \in \mathbb{R}^d$ are weights, $b \in \mathbb{R}$ is a bias that are to be optimized.
- It is a generalized linear model.
- Is is also a one layer neural-network (no hidden layer).

One property

 $\mathbb{P}(y = -1|\mathbf{x}) = 1 - \mathbb{P}(y = 1|\mathbf{x}) = 1 - \sigma(\boldsymbol{\theta}^{\top}\mathbf{x} + b) = \sigma(-(\boldsymbol{\theta}^{\top}\mathbf{x} + b))$

One property $\mathbb{P}(y = -1|\mathbf{x}) = 1 - \mathbb{P}(y = 1|\mathbf{x}) = 1 - \sigma(\boldsymbol{\theta}^{\top}\mathbf{x} + b) = \sigma(-(\boldsymbol{\theta}^{\top}\mathbf{x} + b))$

Maximum likelihood estimation Find $\theta \in \mathbb{R}^d$, $b \in \mathbb{R}$ that maximize the (conditional) log-likelihood (board)

$$\sum_{i:y_i=1} \log \mathbb{P}(y_i = 1 | \mathbf{x}_i) + \sum_{i:y_i=-1} \log \mathbb{P}(y_i = -1 | \mathbf{x}_i)$$
$$= \sum_{i:y_i=1} \log \sigma(\boldsymbol{\theta}^\top \mathbf{x}_i + b) + \sum_{i:y_i=-1} \log \sigma(-(\boldsymbol{\theta}^\top \mathbf{x} + b))$$
$$= \sum_{i=1}^n \log \sigma(y_i(\boldsymbol{\theta}^\top \mathbf{x}_i + b)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

One property $\mathbb{P}(y = -1|\mathbf{x}) = 1 - \mathbb{P}(y = 1|\mathbf{x}) = 1 - \sigma(\boldsymbol{\theta}^{\top}\mathbf{x} + b) = \sigma(-(\boldsymbol{\theta}^{\top}\mathbf{x} + b))$

Maximum likelihood estimation Find $\theta \in \mathbb{R}^d, b \in \mathbb{R}$ that maximize the (conditional) log-likelihood (board)

$$\sum_{i:y_i=1} \log \mathbb{P}(y_i = 1 | \mathbf{x}_i) + \sum_{i:y_i=-1} \log \mathbb{P}(y_i = -1 | \mathbf{x}_i)$$
$$= \sum_{i:y_i=1} \log \sigma(\boldsymbol{\theta}^\top \mathbf{x}_i + b) + \sum_{i:y_i=-1} \log \sigma(-(\boldsymbol{\theta}^\top \mathbf{x} + b))$$
$$= \sum_{i=1}^n \log \sigma(y_i(\boldsymbol{\theta}^\top \mathbf{x}_i + b)).$$

Minimizing the logistic loss

$$\min_{\boldsymbol{\theta}, b} \sum_{i=1}^{n} \log \left[1 + \exp \left(-y_i(\boldsymbol{\theta}^{\top} \mathbf{x}_i + b) \right) \right] \,.$$

► Convex problem, can be solved with (Quasi) Newton's method.

Remember your losses

With $f : \mathbb{R}^d \to \mathbb{R}$, many losses can be written as $\ell(y_i, f(\mathbf{x}_i)) = \Phi(y_i f(\mathbf{x}_i))$ with $\Phi \downarrow$.

$$\blacktriangleright \ \ell(y_i, f(\mathbf{x}_i)) = \mathbf{1}_{y_i f(\mathbf{x}_i) \leq 0}.$$

$$\ell(y_i, f(\mathbf{x}_i)) = \max\{0, 1 - y_i f(\mathbf{x}_i)\}.$$

$$\blacktriangleright \ \ell(y_i, f(\mathbf{x}_i)) = \log(1 + e^{-y_i f(\mathbf{x}_i)}).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Remember your losses

With $f : \mathbb{R}^d \to \mathbb{R}$, many losses can be written as $\ell(y_i, f(\mathbf{x}_i)) = \Phi(y_i f(\mathbf{x}_i))$ with $\Phi \downarrow$.

$$\ell(y_i, f(\mathbf{x}_i)) = \mathbf{1}_{y_i f(\mathbf{x}_i) \leq 0}.$$

$$\ell(y_i, f(\mathbf{x}_i)) = \max\{0, 1 - y_i f(\mathbf{x}_i)\}.$$

 $\blacktriangleright \ \ell(y_i, f(\mathbf{x}_i)) = \log(1 + e^{-y_i f(\mathbf{x}_i)}).$

And so ?

- Logistic regression = fitting $f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} + b$ with the logistic loss.
- The decision/prediction of the label is $sign(f(\mathbf{x}))$.
- So it is a linear decision boundary (linear classification).

Remember your losses

With $f : \mathbb{R}^d \to \mathbb{R}$, many losses can be written as $\ell(y_i, f(\mathbf{x}_i)) = \Phi(y_i f(\mathbf{x}_i))$ with $\Phi \downarrow$.

$$\ell(y_i, f(\mathbf{x}_i)) = \mathbf{1}_{y_i f(\mathbf{x}_i) \leq 0}.$$

$$\ell(y_i, f(\mathbf{x}_i)) = \max\{0, 1 - y_i f(\mathbf{x}_i)\}.$$

 $\blacktriangleright \ \ell(y_i, f(\mathbf{x}_i)) = \log(1 + e^{-y_i f(\mathbf{x}_i)}).$

And so ?

- Logistic regression = fitting $f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} + b$ with the logistic loss.
- The decision/prediction of the label is $sign(f(\mathbf{x}))$.
- So it is a linear decision boundary (linear classification).

Table of contents

From neural networks ...

The basic ideas Logistic regression and one layer neural-network Convolutional neural networks

Graph neural networks

Learning with graphs What is a GNN ? A bit of group theory Invariance and equivariance Permutation invariance/equivariance Message-passing neural networks Examples of GNN The whole pipeline Expressivity of GNN Conclusion

More on unsupervised node embeddings techniques

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Unsupervised node embeddings

- The core block for deep learning on images.
- Induces an implicit bias on the architecture.
- What could happen with a fully-connected architecture?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

- The core block for deep learning on images.
- Induces an implicit bias on the architecture.

What could happen with a fully-connected architecture?

- We want a function that doesn't change if we only translate the image. We want a translation invariant function.
- Convolution: particular structure on the weights that induce translation equivariance.

Convolution/correlation of functions

Let $f, h \in L_2(\mathbb{R})$. The convolution $f * h \in L_2(\mathbb{R})$ is defined as

$$f * h(x) = \int_{-\infty}^{+\infty} f(t)h(x-t)dt \text{ and } f * h(x) = \int_{-\infty}^{+\infty} f(t)h(t+x)dt$$

▶ **Translate a filter** *h* and then take the inner product with² *f*:

$$f \star h(x) = \langle \tau_{-x}h, f \rangle_{L_2(\mathbb{R})}.$$

・ロト ・ 目 ・ ・ ヨト ・ ヨト ・ シック

It weights the local contributions of f by a filter.

$$^{2}\tau_{x}f = t \rightarrow f(t-x)$$

Convolution/correlation of functions

Let $f, h \in L_2(\mathbb{R})$. The convolution $f * h \in L_2(\mathbb{R})$ is defined as

$$f * h(x) = \int_{-\infty}^{+\infty} f(t)h(x-t) \mathrm{d}t$$
 and $f * h(x) = \int_{-\infty}^{+\infty} f(t)h(t+x) \mathrm{d}t$

▶ **Translate a filter** *h* and then take the inner product with² *f*:

$$f \star h(x) = \langle \tau_{-x}h, f \rangle_{L_2(\mathbb{R})}.$$

- It weights the local contributions of f by a filter.
- It is translation equivariant.

$$(\tau_x f) * h = \tau_x (f * h)$$

If we translate the input, the output will be equally translated.

$$^{2}\tau_{x}f=t\rightarrow f(t-x)$$

In practice convolutions are applied on discrete signals.

Discrete convolutions in 1D

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Question: size of the output ?

In practice convolutions are applied on discrete signals.

Discrete convolutions in 1D

Padding strategies can be used to have output of the same size.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Also stride can be used to move the filter from more than one pixel.

Convolution as matrix multiplication

Let $f = (f_1, \dots, f_W), h = (h_1, \dots, h_{w-1})$. In practice

$$\forall i \in \llbracket W - w + 1 \rrbracket, (f * h)_i = \sum_{j=1}^w f_{i-1+j} h_j = \sum_{n=i}^{i-1+w} f_n h_{n-i+1}$$
(1)

Convolution as matrix multiplication

Let $f = (f_1, \cdots, f_W), h = (h_1, \cdots, h_{w-1})$. In practice

$$\forall i \in [\![W - w + 1]\!], (f * h)_i = \sum_{j=1}^w f_{i-1+j}h_j = \sum_{n=i}^{i-1+w} f_n h_{n-i+1}$$
(1)

Same as a matrix multiplication with a (W - w + 1) imes W Toeplitz matrix

$$f * h = \begin{pmatrix} h_1 & h_2 & \cdots & h_w & 0 & 0 & \cdots & 0 \\ 0 & h_1 & h_2 & \cdots & h_w & 0 & \cdots & 0 \\ 0 & 0 & h_1 & h_2 & \cdots & h_w & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & h_1 & h_2 & \cdots & h_w \end{pmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_W \end{bmatrix}$$
(2)

Convolution as matrix multiplication

Let $f = (f_1, \cdots, f_W), h = (h_1, \cdots, h_{w-1})$. In practice

$$\forall i \in [\![W - w + 1]\!], (f * h)_i = \sum_{j=1}^w f_{i-1+j}h_j = \sum_{n=i}^{i-1+w} f_n h_{n-i+1}$$
(1)

Same as a matrix multiplication with a $(W - w + 1) \times W$ Toeplitz matrix

$$f * h = \begin{pmatrix} h_1 & h_2 & \cdots & h_w & 0 & 0 & \cdots & 0 \\ 0 & h_1 & h_2 & \cdots & h_w & 0 & \cdots & 0 \\ 0 & 0 & h_1 & h_2 & \cdots & h_w & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & h_1 & h_2 & \cdots & h_w \end{pmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_W \end{bmatrix}$$
(2)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Convolution is just a specific linear layer Conv(x) = Wx with shared weights in the W matrix.

Discrete convolutions **not** in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

Discrete convolutions **not** in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

Discrete convolutions **not** in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

Figure: From Franccois Fleuret https://fleuret.org/dlc/

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Discrete convolutions **not** in 1D

See also https://github.com/vdumoulin/conv_arithmetic.

Figure: From Franccois Fleuret https://fleuret.org/dlc/

Figure: LeNet from LeCun et al. 1998

Principle and intuition (Zeiler and Fergus 2014)

- Define multiple convolutions, learn the corresponding filter weights.
- Recognize local patterns in images.
- Find intermediate features that are "general" and "adaptive" due to the translation equivariance bias https://fabianfuchsml.github.io/equivariance1of2/.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Revealing local features that are shared across the data domain.

- Deep learning: in almost everything when there are images.
- Very versatile: learn complex functions.
- Prior also helps ! (translation equivariance).
- Side note: still struggles on tabular data (Grinsztajn, Oyallon, and Varoquaux 2022).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Deep learning: in almost everything when there are images.
- Very versatile: learn complex functions.
- Prior also helps ! (translation equivariance).
- Side note: still struggles on tabular data (Grinsztajn, Oyallon, and Varoquaux 2022).

Graph neural networks ?

- How do we extend neural networks to graphs?
- Careful to node ordering: must be invariant to relabelling of the nodes (graph isomorphism).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●