
ENS Lyon
2023/2024 Titouan Vayer

TD no 1 : Graph neural network

- Exercise 1: Hands-on with Pytorch and automatic differentiation -

The aim of this exercise is to familiarize you with PyTorch (which will be at the core of python libraries
for GNN). We will need to import the following libraries.

import numpy as np
import torch
import torch.nn as nn
import matplotlib.pyplot as plt

The first hands-on is just tu understand the concept of automatic differentiation (explanations on
the board). Consider a function f(x) = 1

2x
3 − 3x2 + 1. To compute the gradient of f you can run the

following code in PyTorch.

x = torch.Tensor([2]) # at which point x you need the gradient
x.requires_grad = True # tell PyTorch it needs to compute the gradients wrt x
loss = f(x) # computing the function value = forward pass
loss.backward() # backward pass, to prepare the computation of the gradient

(i) Run the code at check that it is correct.

We will then train very simple models with PyTorch to get familiar with it.

(ii) Create samples ∀i ∈ [[n]], yi = f(xi) + εi where εi ∼ N (0, σ2) and x1, · · · , xn are equally spaced
between −10, 10. Plot the functions f along with the sample points.

(iii) We will train a neural network to estimation the true function f from the noisy samples. A
feed-forward neural-network can be constructed this way

class NeuralNetworkRegressor(nn.Module):
def __init__(self, d1 = 10):

super(NeuralNetworkRegressor, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(

nn.Linear(1, d1),
nn.ReLU(),
nn.Linear(d1, d1),
nn.ReLU(),
nn.Linear(d1, d1),
nn.ReLU(),
nn.Linear(d1, 1),

)

def forward(self, x): # implements a forward pass
x = self.flatten(x)
pred = self.linear_relu_stack(x)
return pred

What is the number of parameters of this neural-network ?

page 1

(iv) To train the model we will need a loss and a optimization method.
We will use the PyTorch optimizer with predefined learning rate with
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) and the MSE
loss with loss_fn = nn.MSELoss(). Instantiate a model and complete the following code to train
the neural network. Plot the corresponding loss and the prediction.

losses = [] #store the losses at each epoch
for i in range(epochs):

Compute prediction and loss
pred = model()
loss = loss_fn(,)

Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.append(loss.item())

(v) What happens when the number of parameters explodes ? (take for example d1 = 200).

(vi) We will now experience classification on the two-moons dataset. You can import it following the
code

from sklearn.model_selection import train_test_split
from sklearn import datasets, metrics
X, y = datasets.make_moons(n_samples= 1000, random_state = 42, noise = 0.1)

Split train/test
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.33, shuffle=False
)

#PyTorch requires torch.Tensor as input not numpy array
Xt = torch.from_numpy(X_train).type(torch.FloatTensor)
yt = torch.from_numpy(y_train).type(torch.FloatTensor)

Plot the dataset and along with the classes of each point.

(vii) We will now consider a different neural-network for classification. Complete the predict function of
the following class.

class NeuralNetworkClassifier(nn.Module):
def __init__(self, d1 = 10):

super(NeuralNetworkClassifier,self).__init__()
self.fc1 = nn.Linear(2,d1)
self.fc12 = nn.Linear(d1, d1)
self.fc2 = nn.Linear(d1,1)
self.output_fun = nn.Sigmoid()

def forward(self,x):
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc12(x)
x = nn.functional.relu(x)
x = self.fc2(x)
return self.output_fun(x).ravel()

page 2

def predict(self,x):
predict the class with the highest score

To train we will use the binary cross entropy (explanations on the board)

model = NeuralNetworkClassifier(#define it)
learning_rate = #define it
epochs = #define it

optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
loss_fn = nn.BCELoss()

Complete the following code

losses = []
test_acc = []
for i in range(epochs):

Compute prediction and loss
pred = model()
loss = loss_fn(,)

Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.append(loss.item())

Calculate the prediction on the test
test_pred = model.predict(torch.from_numpy(X_test).type(torch.FloatTensor)).numpy()
Look at the accuracy on the test
test_acc.append(metrics.accuracy_score(y_test,test_pred))

and plot the loss and the test accuracy.

(viii) Visualize the decision boundary with the help of the following code

from matplotlib.colors import ListedColormap

def pred_func():
return #to complete

colors = ['red', 'blue']

def plot_decision_boundary(pred_func, X,y):
cm_bright = ListedColormap(["#539CFF","#FFD053"])
Set min and max values and give it some padding
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = 0.01
Generate a grid of points with distance h between them
xx,yy=np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Predict the function value for the whole grid
Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
Plot the contour and training examples
plt.contourf(xx, yy, Z, cmap=cm_bright)
plt.scatter(X[:, 0], X[:, 1], c= [colors[y[i]] for i in range(y.shape[0])],

cmap=cm_bright)

page 3

