ENS Lyon
2023,/2024 Titouan Vayer

TD N°1 : Kernels for ML

- EXERCISE 1: KERNEL RIDGE REGRESSION FOR TEMPERATURE TRENDS FORECASTING -

The aim of this third exercise is to model the evolution of the temperature of certain countries over
time, using the tools of kernel theory. In particular, we will see:

e Why in ML you can’t do just anything.
e Why assumptions about the data and the model are important.
e Why managing hyperparameters is tricky.

To do this, we'll be collecting data from Berkeley Earth (http://berkeleyearth.1bl.gov). To avoid long
and tedious work, you can download the data at https://github.com/leouieda/global-temperature-
data/tree/main/data. Once this is done, you can use the following code to load the data:

We will need the following libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

cmap = plt.cm.get_cmap('tabl0') # nice cmap for figures
from os import listdir

from os.path import isfile, join

from sklearn.kernel_ridge import KernelRidge

data_path = './data/temperature' # where data is stored
all_countries = []
for f in listdir(data_path):
if isfile(join(data_path, f)) and f.endswith('.csv'):
all_countries.append(f.replace('.csv',''))
print(all_countries)

country_name = 'peru' # choose a country
assert country_name in all_countries

Load the data
temp = pd.read_csv(data_path+'/'+country_name+'.csv', names=['date','temp'])
temp.head ()

X
y

np.array (range (temp.date.shape[0])) .reshape(-1,1)
np.array (temp.temp)

The time series in the dataset are pairs (y;, ;) € R? where y; is the temperature value at time z;. The
aim of this exercise is to find a function f: R — R that models the evolution of temperature over time.

(i) Show a time series from a country of your choice. How many points does it contain? What can you
tell at first glance about the appearance of this series?

(ii) In the dataset, what is the variable to be predicted? What is the input variable?

(iii) Divide the dataset into two sets, train and validation (temporally coherent), with a parameter that
adjusts the relative size of these two sets (called, for example, ratio).

page 1

http://berkeleyearth.lbl.gov
https://github.com/leouieda/global-temperature-data/tree/main/data
https://github.com/leouieda/global-temperature-data/tree/main/data

Initially, we’ll just try to predict the trend in these temperatures. We’ll be looking for a polynomial
regression of degree 2, i.e. functions of the type f(r) = ap + a12 + azz?.

(iv) This polynomial regression corresponds to a ridge regression with a particular kernel: which one?

(v) Using KernelRidge train a polynomial regression model of degree 2 taking a validation ratio = 50%
train and then with a validation ratio = 20% train. What can you conclude?

We will now use a Kernel Ridge Regression (KRR) model with a Gaussian kernel. x(t,t') = exp(—|t —
t'12/(27)).
(vi) What is, a priori, the advantage of such a model?

(vii) Calculate and display the Gram matrix associated with this core for multiple values of . How do
you interpret this hyparameter? What other hyperparameter should be taken into account in a

KRR model?

(viii) With a train/validation ratio of 0.8, calculate the validation performance of
each of the associated models on a given parameter grid. You can use
from sklearn.model_selection import ParameterGrid. The idea is to obtain a figure

resembling the following:

107 Validation error (in log)

103

102 4

101 4

~
c
O 10° 4
2
S
= 10714 102
o
> _
o 10 2 |
g []
1073
10t Il
107 10t
107 1074 1073 1072
Scaley

(ix) Choose the hyperparameter pair that gives the smallest error. What would it take to make this
choice properly? (We’ll do it at the end).

(x) Project the predictions to a 2050 horizon. What can you conclude? What should be taken into
account in the model to improve it?

(xi) (Bonus question on this part) Do it all again without the help of scikit-learn.

This time we will repeat the same analysis with regressors of the form

K
f(z) = Z ay cos(2mk fox) + ax 41T + agox?,
k=1
where a1, -+ ,ax 42 are to be optimized.

(xii) What are the hyperparameters of this model? Rewrite the problem of estimating (ax)rex] as a
linear regression problem (penalizing with a 3 norm).

(xiii) Follow the same procedure as above, implementing this function. You may find inspiration in the
following class.

page 2

Monthly avg temperature of peru

Train/Valid set

Projection
21.5 A KRR (RBF), SSE test = 36001.43
=== KRR (poly degree 2), SSE test = 14.86 l
= Seasonality model, SSE test = 16.33 ‘E
4 P °
21.0 H P
- 1 :
o o o
< 205 o oL ARES
g % APV N
2 o .
20.0 f

A
19.5 A ‘:

19.0 A

T T T T y T T T T T T T
1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050
Date

Figure 1: One possible result.

from sklearn.linear_model import Ridge

class SeasonalityModel():
def __init__(self, K=3, w0=12, alpha=1.0):
self .K = K
self.w0 = w0
self.alpha = alpha
self .model = Ridge(alpha=self.alpha, fit_intercept=False)

def Phi(self, X):
Y = np.zeros((X.shape[0], 1+2+self.K))
Y[:,0] = np.ones(X.shape[0])
Y[:,1] = X.ravel()
Y[:,2] = X.ravel () *%*2
for k in range(1l, self.K+1):
Y[:,2+k] = np.cos((2*k*np.pi*X.ravel()*self.w0))
return Y

def fit(self, X, y):
Xtransfo = self.Phi(X)
self .model.fit (Xtransfo, y)

def predict(self,X):
Xtransfo = self.Phi(X)
return self.model.predict(Xtransfo)

(xiv) Conduct a cross-validation approach for selecting hyperparameters. A possible final result is shown
in Figure 1. How could the model be improved? You can use the code below.

page 3

def frozendict(d: dict):
keys = sorted(d.keys())
return tuple((k, d[k]) for k in keys)

def do_cv(param_grid, X_in, y_in, model, n_splits=3):
tscv = TimeSeriesSplit(n_splits=n_splits)
results = {}
for j, dic_param in enumerate(param_grid):

instantiated_model = model(**dic_param)

cv_errors = []

for i, (train_index, valid_index) in enumerate(tscv.split(X_in)):
X_train, y_train = X_in[train_index], y_in[train_index]
X_valid, y_valid = X_in[valid_index], y_in[valid_index]

instantiated_model.fit(X_train, y_train)
ypred = instantiated_model.predict(X_valid)
err_ = mean_squared_error(y_valid, ypred)
cv_errors.append(err_)

results[frozendict(dic_param)] = np.mean(cv_errors)

print ('Parameter {} done ..'.format(dic_param))

print('--- {0:.0%} finished ---'.format(j/len(list(param_grid))))
return results

page 4

