
ENS de Lyon, M2 Computer Science
2024/2025 Pierre Borgnat (CNRS, LP ENSL)

Practical Session : ML and/for Graphs: Introduction to Graph Signal Processing

This is the following of the tutorial, now about graph signals and methods of graph signal processing.
Reminder: the practical sessions will be done preferentially in python, using the pygsp toolbox:

https://pygsp.readthedocs.io/en/stable/tutorials/intro.html
This practical session was prepared by Nicolas Tremblay (CNRS, now at GIPSA-lab, Grenoble) and

Michael Defferrard (formerly at EPFL, now at Qualcomm Research), and I warmly thanks them for that.
You can find this tutorial, and more, online: https://github.com/mdeff/pygsp_tutorial_graphsip

- Step 3: Graph signals: gradient, divergence, smoothness -

A graph signal is a function V → R that associates a value to each node v ∈ V of a graph. The signal
values can be represented as a vector f ∈ RN where N = |V| is the number of nodes in the graph.

1) Let’s generate a graph and a random signal. Then plot the signal on the graph to visualize it.

graph = graphs.Sensor(N=100)
signal = np.random.normal(size=graph.N)
graph.plot_signal(signal)

2) Gradient and divergence. The gradient ∇G f of the signal f on the graph G is a signal on the
edges defined as

(∇G)(i,j) f =
√
Wij(fi − fj)

Similarly, we can compute the divergence of an edge signal, which is again a signal on the nodes.

(divG x)i =
∑

j∼i

√
Wijx(i,j)

graph.compute_differential_operator()
gradient = graph.D @ signal
assert gradient.size == graph.Ne
divergence = graph.D.T @ gradient
assert divergence.size == graph.N
graph.plot_signal(divergence)

Compare the Laplacian operator ton the divergence of the gradient.

3) Smoothness. What is the smoothest graph signal, i.e. the signal f for which f⊺Lf = 0? Verify
computationally. What if L is the normalized Laplacian? Verify computationally.
Replicate the experiments of Figure 1.

- Step 4: Fourier: modes, transform -

As in classical signal processing, the Fourier transform plays a central role in graph signal processing.
Getting the Fourier basis is however computationally intensive as it needs to fully diagonalize the Laplacian.
While it can be used to filter signals on graphs, a better alternative is to use one of the fast approximations
(see pygsp.filters.Filter.filter). Let’s compute it nonetheless to visualize the eigenvectors of the
Laplacian. Analogous to classical Fourier analysis, they look like sinuses on the graph. Let’s plot the
second and third eigenvectors (the first is constant). Those are graph signals, i.e. functions s : V → Rd

which assign a set of values (a vector in Rd at every node v ∈ V of the graph.

page 1

https://pygsp.readthedocs.io/en/stable/tutorials/intro.html
https://github.com/mdeff/pygsp_tutorial_graphsip

Graph Signal Processing First examples GSP on directed graphs Other Examples

Illustration on the smoothness of graph signals

fTL1f = 0.14 fTL2f = 1.31 fTL3f = 1.81

Smoothness of Graph Signals Revisited
25

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Incorporation of the Underlying Graph Connectivity 5

For notions of global smoothness, the discrete p-Dirichlet
form of f is defined as

Sp(f) :=
1

p

X

i�V

k�ifkp2 =
1

p

X

i�V

�
�X

j�Ni

Wi,j [f(j)� f(i)]
2

�
�

p
2

.

(5)

When p = 1, S1(f) is the total variation of the signal with
respect to the graph. When p = 2, we have

S2(f) =
1

2

X

i�V

X

j�Ni

Wi,j [f(j)� f(i)]
2

=
X

(i,j)�E
Wi,j [f(j)� f(i)]

2
= fTLf . (6)

S2(f) is known as the graph Laplacian quadratic form [17],
and the semi-norm kfkL is defined as

kfkL := kL 1
2 fk2 =

p
fTLf =

�
S2(f).

Note from (6) that the quadratic form S2(f) is equal to zero
if and only if f is constant across all vertices (which is why
kfkL is only a semi-norm), and, more generally, S2(f) is small
when the signal f has similar values at neighboring vertices
connected by an edge with a large weight; i.e., when it is
smooth.

Returning to the graph Laplacian eigenvalues and eigen-
vectors, the Courant-Fischer Theorem [35, Theorem 4.2.11]
tells us they can also be defined iteratively via the Rayleigh
quotient as

�0 = min
f�RN

�f�2=1

{fTLf} , (7)

and �� = min
f�RN

�f�2=1
f�span{u0,...,u��1}

{fTLf} , ` = 1, 2, . . . , N � 1, (8)

where the eigenvector u� is the minimizer of the `th prob-
lem. From (6) and (7), we see again why u0 is constant
for connected graphs. Equation (8) explains why the graph
Laplacian eigenvectors associated with lower eigenvalues are
smoother, and provides another interpretation for why the
graph Laplacian spectrum carries a notion of frequency.

Example 1 in the box below demonstrates the importance of
incorporating the underlying graph structure when processing
signals on graphs.

F. Other Graph Matrices

The basis {u�}�=0,1,...,N�1 of graph Laplacian eigenvectors
is just one possible basis to use in the forward and inverse
graph Fourier transforms (3) and (4). A second popular option
is to normalize each weight Wi,j by a factor 1p

didj

. Doing so

leads to the normalized graph Laplacian, which is defined as
L̃ := D� 1

2 LD� 1
2 , or, equivalently,

(L̃f)(i) =
1p
di

X

j�Ni

Wi,j

�
f(i)p

di

� f(j)�
dj

�
.

G1

λ

f̂ λ()

G2

λ

f̂ λ()

G3

λ

f̂ λ()

Example 1 (Importance of the underlying graph):
In the figure above, we plot the same signal f on
three different unweighted graphs with the same set
of vertices, but different edges. The top row shows the
signal in the vertex domains, and the bottom row shows
the signal in the respective graph spectral domains.

The smoothness and graph spectral content of the
signal both depend on the underlying graph structure.
In particular, the signal f is smoothest with respect
to the intrinsic structure of G1, and least smooth with
respect to the intrinsic structure of G3. This can be seen
(i) visually; (ii) through the Laplacian quadratic form,
as fTL1f = 0.14, fTL2f = 1.31, and fTL3f = 1.81;
and (iii) through the graph spectral representations,
where the signal has all of its energy in the low
frequencies in the graph spectral plot of f̂ on G1, and
more energy in the higher frequencies in the graph
spectral plot of f̂ on G3.

The eigenvalues {�̃�}�=0,1,...,N�1 of the normalized graph
Laplacian of a connected graph G satisfy

0 = �̃0 < �̃1 . . . �̃max 2,

with �̃max = 2 if and only if G is bipartite; i.e., the set of
vertices V can be partitioned into two subsets V1 and V2 such
that every edge e 2 E connects one vertex in V1 and one vertex
in V2. We denote the normalized graph Laplacian eigenvectors
by {ũ�}�=0,1,...,N�1. As seen in Figure 3(b), the spectrum of
L̃ also carries a notion of frequency, with the eigenvectors
associated with higher eigenvalues generally having more zero
crossings. However, unlike u0, the normalized graph Laplacian
eigenvector ũ0 associated with the zero eigenvalue is not a
constant vector.

The normalized and non-normalized graph Laplacians are
both examples of generalized graph Laplacians [36, Section
1.6], also called discrete Schrödinger operators. A generalized
graph Laplacian of a graph G is any symmetric matrix whose
i, jth entry is negative if there is an edge connecting vertices
i and j, equal to zero if i �= j and i is not connected to j, and
may be anything if i = j.

A third popular matrix that is often used in dimensionality-
reduction techniques for signals on graphs is the random walk
matrix P := D�1W. Each entry Pi,j describes the probability
of going from vertex i to vertex j in one step of a Markov
random walk on the graph G. For connected, aperiodic graphs,
each row of Pt converges to the stationary distribution of

Recall, a signal is smooth with respect to the intrinsic structure of its
underlying graph

Similarly, the graph spectral content also depends on the underlying graph

David Shuman Signal Processing on Graphs February 11, 2013 21 / 35

p. 20

1) Graph Fourier Basis.
The graph Fourier basis U = [u1, . . . , uN], where ui is the ith Fourier mode, is given by the
eigendecomposition of the graph Laplacian L such as

L = UΛU⊺.

Λ = diag([λ1, . . . , λN]) is the diagonal matrix of squared "graph frequencies".
Indeed, the following relation holds:

λi = u⊺
i Lui

The parallel with classical signal processing is best seen on a ring graph, where the graph Fourier
basis is equivalent to the classical Fourier basis. The following plot shows some eigenvectors drawn
on a 1D and 2D embedding of the ring graph. While the signals are easier to interpret on a
1D plot (with graph.set_coordinates(’line1D’), the 2D plot best represents the graph (with
graph.set_coordinates(’ring’)).
Vizualize the eigenvectors on a ring graph (as a ring, or in 1D), then on the 2D Euclidean grid.

Your code here
Use the following functions:

G.compute_fourier_basis()

graph.plot_signal(graph.U[:, 4], ax=axes[0])

Finally, on more complicated domains, the intuition that lower frequencies should be smooth
transfers.

graph = graphs.Logo()

Localization of some eigenvectors
A fundamental property of the classical Fourier modes is that they are delocalized. Put differently: a
signal can never be localized in time/space and in the Fourier space. This Heisenberg principle does
not transfer to graphs so easily. For instance, let us look at a very irregular graph: the comet graph.

from pygsp import filters

G = graphs.Comet(N=30, k=20)
graph.set_coordinates('spring')
G.compute_fourier_basis()
G.plot()

plt.figure(figsize=(10, 10))
plt.imshow(np.abs(G.U))
plt.colorbar()
print('The largest entry in the Fourier basis is ' + str(np.max(np.abs(G.U))))

page 2

2) Graph Fourier transform.

The spectral content of a signal indicates if the signal is low-pass, band-pass, or high-pass. Again,
intuition transfers from classical Fourier analysis. Some examples:

G = graphs.Sensor(seed=42)
G.compute_fourier_basis()

taus = [0, 3, 10]
fig, axes = plt.subplots(len(taus), 2, figsize=(11, 6))

x0 = np.random.RandomState(1).normal(size=G.N)
for i, tau in enumerate(taus):

g = filters.Heat(G, tau)
x = g.filter(x0).squeeze()
x_hat = G.gft(x).squeeze()

G.plot_signal(x, ax=axes[i, 0])
axes[i, 0].set_axis_off()
axes[i, 0].text(0, -0.2, '$x^T L x = {:.2f}$'.format(x.T @ G.L @ x))

axes[i, 1].plot(G.e, np.abs(x_hat), '.-')

axes[0, 0].set_title(r'x: signal in the vertex domain')
axes[0, 1].set_title(r'\hat{x}: signal in the spectral domain')
axes[-1, 1].set_xlabel("laplacian's eigenvalues / graph frequencies")

3) Exercise.

Verify λi = u⊺
i Lui computationally.

(a) Make a band-pass signal in the spectral domain.

(b) Compute the inverse Fourier transform.

(c) Visualize your signal in the vertex domain.

- Step 5: Filters – Heat Diffusion, Denoising,... -

To filter signals on graphs, we need to define filters. They are represented in the toolbox by the
pygsp.filters.Filter class.
https://pygsp.readthedocs.io/en/stable/reference/filters.html
Filters are usually defined in the spectral domain, given a transfer function that weights the coefficients at
the different eigenvalues.

Utilities:

import numpy as np
import matplotlib.pyplot as plt
from pygsp import graphs, filters
from additional_utils import get_approx_filter
import time

1) Heat diffusion.
The heat kernel h(λ) is defined as:

hτ (λ) = exp−τλ .

page 3

https://pygsp.readthedocs.io/en/stable/reference/filters.html

The graph heat equation reads:
dx

dt
+ Lx = 0.

With x̂ = U⊤x is the Fourier transform of x, this equation is easily solved:

x̂ = exp−tΛ x̂0

where x̂0 is the initial signal at time t = 0. Such that:

x(t) = U exp−tΛ U⊤x0 = Uht(Λ)U⊤x0.

Apply this filter to a random sensor graph, or on a ring graph (you will see the gaussian kernel).

G1 = graphs.Sensor(seed=42)

G2 = graphs.Ring(N=100)

2) Example of denoising.
Let’s define a low-pass filter

g(λ) =
1

1 + τλ

Given a noisy version of a smooth signal xnoisy, one can denoise it with the low-pass filter g:

xdenoised = Ug(Λ)U⊤xnoisy

Apply the filter to a noisy signal on a graph of your choice, e.g, the GSP one.

3) Polynomial approximation.

Let us approximate g(x) =
1

1 + x
on the interval [0, λN] by a Chebychev polynomial of order m:

g(x) ≃
m∑

k=0

αkx
k = p(x),

such that the exact filtering can be approximated by a polynomial in L:

xfiltered = Ug(Λ)U⊤x (1)

≃ Up(Λ)U⊤x (2)

= U

m∑

k=0

αkΛ
kU⊤x (3)

=

m∑

k=0

αkL
kx (4)

Note that computing
∑m

k=0 αkL
kx takes only m matrix-vector multiplication and costs thus O(m|E|)

with |E| the number of edges of the graph (compared to the O(N3) necessary operations just to
diagonalize L for the exact computation!)

Compare the computation times of the direct implementation and the approximation .
Compare also the precisions.

page 4

