Figure 1: Two graphs

ENS Lyon
2023/2024 Titouan Vayer

TD : Kernels for ML

- EXERCISE 1: A PROOF FOR THE POSITIVE DEFINITENESS OF THE (GAUSSIAN KERNEL -

The purpose of this exercise is to show that the Gaussian kernel x(x,y) = exp(—||x — y||3/20?) is a
PD kernel for any ¢ > 0. In the following x1, ks, - - are fixed PD kernels.

(i) Show that vyk; for any v > 0 is a PD kernel.
(ii) Show that k1 + k2 is a PD kernel.

(iii) Suppose that r(x,y) ;= lim #,,(x,y) exists for any x,y € R?. Show that it defines a PD kernel.

m——+o0

(iv) Consider two n x n PSD matrices K;, Ky and the matrix K; ® Ky defined by V(4, j) € [n]°, [Ki ®
Ko)i; = [K1]ij[K2]i; (this is known as the Hadamard product of two matrices). Show that K; © Kj
is a PSD matrix (this result is known as the Schur product theorem).

Deduce that k(x,y) := k1(x,y)k2(x,y) is a PD kernel.

)

(vi) Consider f: X — R then show that x(x,y) := f(x)k1(x,y)f(y) is a PD kernel.
) From the previous answers prove that k(x,y) := exp(—||x — y||3/202) is a PD kernel.
)

Consider a n x n PSD matrix A and a m x m PSD matrix B. We define the tensor A ® B as the
AllB s AlnB

nm X nm matrix defined by A @ B := : : . Show that A ® B is a PSD matrix.

Aa.B - A,.B
Deduce that if k1 : X x X — R is a PSD kernel on X and x5 : Y x Y — R is a PSD kernel on Y
then k((x,y), (x',¥')) = k1(x,x")k2(y,y’) is a PSD kernel on X x).

- EXERCISE 2: WL TEST OF ISOMORPHISM -

Show that the Weisfeiler-Lehman test of isomorphism cannot distinguish the two graphs in Figure 1.

- EXERCISE 3: KERNEL RIDGE REGRESSION FOR TEMPERATURE TRENDS FORECASTING -

The aim of this third exercise is to model the evolution of the temperature of certain countries over
time, using the tools of kernel theory. In particular, we will see:

e Why in ML you can’t do just anything.

e Why assumptions about the data and the model are important.

page 1

e Why managing hyperparameters is tricky.

To do this, we'll be collecting data from Berkeley Earth (http://berkeleyearth.1bl.gov). To avoid long
and tedious work, you can download the data at https://github.com/leouieda/global-temperature-
data/tree/main/data. Once this is done, you can use the following code to load the data:

We will need the following libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

cmap = plt.cm.get_cmap('tabl0') # nice cmap for figures
from os import listdir

from os.path import isfile, join

from sklearn.kernel_ridge import KernelRidge

data_path = './data/temperature' # where data is stored
all_countries = []
for f in listdir(data_path):
if isfile(join(data_path, f)) and f.endswith('.csv'):
all_countries.append(f.replace('.csv',''))
print(all_countries)

country_name = 'peru' # choose a country
assert country_name in all_countries

Load the data
temp = pd.read_csv(data_path+'/'+country_name+'.csv', names=['date','temp'])
temp.head ()

The time series in the dataset are pairs (y;,t;) € R? where y; is the temperature value at time t;. The
aim of this exercise is to find a function f: R — R that models the evolution of temperature over time.

(i) Show a time series from a country of your choice. How many points does it contain? What can you
tell at first glance about the appearance of this series?

(ii) In the dataset, what is the variable to be predicted? What is the input variable?

(iii) Divide the dataset into two sets, train and validation (temporally coherent), with a parameter that
adjusts the relative size of these two sets (called, for example, ratio).

Initially, we’ll just try to predict the trend in these temperatures. We’ll be looking for a polynomial
regression of degree 2, i.e. functions of the type f(t) = ap + a1t + ast>.

(iv) This polynomial regression corresponds to a ridge regression with a particular kernel: which one?

(v) Using KernelRidge train a polynomial regression model of degree 2 taking a validation ratio = 50%
train and then with a validation ratio = 20% train. What can you conclude?

We will now use a Kernel Ridge Regression (KRR) model with a Gaussian kernel. x(t,t') = exp(—|t —
t'2/(29%)).
(vi) What is, a priori, the advantage of such a model?

(vii) Calculate and display the Gram matrix associated with this core for multiple values of . How do
you interpret this hyparameter? What other hyperparameter should be taken into account in a

KRR model?

(viii) With a train/validation ratio of 0.8, calculate the validation performance of
each of the associated models on a given parameter grid. You can use
from sklearn.model_selection import ParameterGrid. The idea is to obtain a figure

resembling the the left plot of Figure 2.

page 2

http://berkeleyearth.lbl.gov
https://github.com/leouieda/global-temperature-data/tree/main/data
https://github.com/leouieda/global-temperature-data/tree/main/data

Validation error (in log)

3
10 Monthly avg temperature of peru
2
10 Train/Valid set
Projection
10! 2151 KRR (RBF), SSE test = 36001.43
~< = KRR (poly degree 2), SSE test = 14.86
g 100 === Seasonality model, SSE test = 16.33
S 21.0 s
g
-1 2
= 10 10 5
o <205
= o
L 102 §
[20.0
« 103
10-4 = 19.5
1
10°° 10 19.0
10-% 10°* 1073 1072 ’

Scale y 1940 1950 1960 1970 1980 1990Dat2e000 2010 2020 2030 2040 2050

Figure 2: (left) CV errors w.r.t. parameters of the model (right) temperature predictions for different
models.

(ix) Choose the hyperparameter pair that gives the smallest error. What would it take to make this
choice properly? (We’ll do it at the end).

(x) For this choice, calculate the prediction on all the data. What can you conclude?

(xi) Repeat the same procedure, playing with the finesse of the hyperparameter grid. What can you
conclude?

(xii) Project the predictions to a 2050 horizon. What can you conclude? What should be taken into
account in the model to improve it?

(xiii) (Bonus question on this part) Do it all again without the help of scikit-learn.

This time we will repeat the same analysis with regressors of the form

K
f) = Z ay cos(2mk fot) + ax 41t + ar4ot?,
k=1
where a1, -+ ,ax 42 are to be optimized.

(xiv) What are the hyperparameters of this model? Rewrite the problem of estimating (ax)re[x] as a
linear regression problem (penalizing with a /2 norm).

(xv) Follow the same procedure as above, implementing this function. You may find inspiration in the
following class.

from sklearn.linear_model import Ridge

class SeasonalityModel():
def __init__(self, K=3, w0=12, alpha=1.0):

self .K = K

self.w0 = w0

self.alpha = alpha

self.model = Ridge(alpha=self.alpha, fit_intercept=False)

def Phi(self, X):
Y = np.zeros((X.shape[0], 1+2+self.K))
Y[:,0] = np.ones(X.shapel[0])
Y[:,1] = X.ravel()
Y[:,2] = X.ravel()*x*2
for k in range(l, self.K+1):
Y[:,2+k] = np.cos((2*k*np.pi*X.ravel()*self.w0))

page 3

return Y

def fit(self, X, y):
Xtransfo = self.Phi(X)
self .model.fit(Xtransfo, y)

def predict(self,X):
Xtransfo = self.Phi(X)
return self.model.predict(Xtransfo)

(xvi) Conduct a cross-validation approach for selecting hyperparameters. A possible final result is shown
in Figure 2. How could the model be improved?

- EXERCISE 4: GRAPH KERNELS FOR GRAPHS CLASSIFICATION -

In this exercise we will have access to a dataset of graphs (G1,y1),- -, (Gn,yn) where y; are classes
and we want to learn a function that takes a graph as input and output a label/class. This a problem of
classification on the space of graphs. We will use the framework of graph kernels and the GraKel library.
You can find the data here https://chrsmrrs.github.io/datasets/docs/datasets/ and a description
of it here https://1sll-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets.

(i) First download the MUTAG dataset in here https://chrsmrrs.github.io/datasets/docs/
datasets/ in .zip format. You can load the data afterwards using the following code.

import numpy as np #we will need the following libraries
from grakel.datasets import fetch_dataset

from grakel.datasets.base import read_data

from grakel.kernels import WeisfeilerLehman, VertexHistogram
import zipfile

name = "MUTAG"
verbose = True
path = './data' # where data is stored
with zipfile.ZipFile(path+"/" + str(name) + '.zip', "r") as zip_ref:
if verbose:
print ("Extracting dataset ", str(name) + "..")
zip_ref.extractall()

if verbose:
print ("Parsing dataset ", str(name) + "..")

dataset = read_data(name,
with_classes=True,
prefer_attr_nodes=False,
prefer_attr_edges=False,
produce_labels_nodes=False,
is_symmetric=False,
as_graphs=True
)

G = dataset.data

dataset.target

<
I

(ii) Do a quick inspection of the dataset and labels: what do the data represent? how many classes?
what can you conclude? What do you need to consider?

page 4

https://chrsmrrs.github.io/datasets/docs/datasets/
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://chrsmrrs.github.io/datasets/docs/datasets/
https://chrsmrrs.github.io/datasets/docs/datasets/

(iii) Using the following code based on the networkx library plot different training points

import networkx as nx
import matplotlib.pyplot as plt
m= 12
nx_g = nx.from_numpy_matrix(G[m].get_adjacency_matrix())
i=0
for _,v in G[m] .node_labels.items():
nx.set_node_attributes(nx_g, {i : {'label':v}})
i+=1
cols = {0:'r', 1: 'b', 2:'g'}
pos=nx.layout.kamada_kawai_layout (nx_g)
nx.draw_networkx(nx_g,
with_labels=True,
1abels=nx.get_node_attributes(nx_g,'label’),
node_color=[cols[v] for k,v in
nx.get_node_attributes(nx_g, 'label').items()]
)

(iv) With scikit-learn splits the dataset into a training and a test set (you can use
from sklearn.model_selection import train_test_split).

(v) The following code consider a Weisfeiler-Lehman graph kernel and train/test the model on the
splits defined before. What is the kernel considered here? What do the parameters correspond
to? What is the accuracy on the test set? Compare it to a simple naive baseline (you may use
from sklearn.dummy import DummyClassifier).

wl_kernel = WeisfeilerLehman(n_iter=5, normalize=True,
base_graph_kernel=VertexHistogram)

K_train = wl_kernel.fit_transform(G_train)

K_test = wl_kernel.transform(G_test)

clf = SVC(kernel='precomputed')

clf . fit(K_train, y_train)

y_pred = clf.predict(K_test)

(vi) Implement a cross validation (CV) procedure with StratifiedKFold and compute the average CV
score. Compare with the previous error. Is this a good measure of the generalization error of the
complete model?

(vii) Implement a nested CV procedure (explanations on the board). You can use the following class.

class GK_classifier():
def __init__(self, C=1, n_iter=5, normalize=True):

self.C=C

self.n_iter=n_iter

self.normalize=normalize

wl_kernel = WeisfeilerLehman(n_iter=self.n_iter,
normalize=self.normalize,
base_graph_kernel=VertexHistogram)

self.graphkernel = wl_kernel

self.svc=SVC(kernel='precomputed', C=self.C)

def fit(self, X, y=None):
K = self.graphkernel.fit_transform(X)
self.svc.fit(K, y)

def predict(self,X):

page 5

K=self.graphkernel.transform(X)
return self.svc.predict(K)

page 6

