
Fundamentals of machine learning
Courses 1 & 2: basics of machine learning

Titouan Vayer & Mathurin Massias
email: titouan.vayer@inria.fr, mathurin.massias@inria.fr,

January 15, 2025

Full course outline

From theory ...

1. Basics of machine learning

2. Decision theory & statistical
learning

3. (Penalized) Linear models

4. Dimension reduction

5. Kernels and support vector
machines

6. Ensembles methods

7. Clustering, density estimation

8. Neural networks

9. Advanced neural networks

10. Density estimation

... to practice
We will use Python notebooks and
scikit-learn

Some references
Shai Shalev-Shwartz and Shai Ben-David (2014).

Understanding Machine Learning - From Theory to

Algorithms. Cambridge University Press

Francis Bach (2022). Learning Theory from First

Principles.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman

(2001). The Elements of Statistical Learning. Springer

New York Inc.

Evaluation

I 50 % final exam

I 50 % report (jupyter notebooks) on practical sessions
I Each TD has practical lab: to do at home.
I Report in notebook should be send after 4 TDs
I Can be done in groups of ≈ 2 (max 3).

Python installations

I The practical sessions of the course will require to run jupyter
notebooks.

I We recommend that you install python through the Anaconda
distribution (python 3.7, 3.8 or 3.9 is preferrable) available at
https://www.anaconda.com/products/distribution

You should check that you are able to create and open a jupyter notebook,
and inside, run the following imports:

1 import matplotlib

2 import numpy

3 import sklearn

4 import pytorch

5 import pandas

6 import scipy

If any of these packages is missing, it can be installed with ‘conda install
numpy‘, the command being run in a terminal or in Anaconda prompt for
Windows user.

https://www.anaconda.com/products/distribution

Basics of machine learning

What is machine learning ?

Data in machine learning

From training data to prediction
Loss functions
Empirical risk minimization
Underfitting/overfitting

Model selection and validation
Split your dataset !

A glimpse of decision theory & statistical learning
Risk and empirical risk
Risk decomposition

First models: local averaging methods

Learning rates and curse of dimensionality
No free-lunch theorem

Conclusion

What is machine learning ?

Some applications

1. Energy networks, disease
propagation

2. Image analysis (medical
application, web)

3. Protein folding Jumper et al.
2021

4. Generative models https:

//stablediffusionweb.com/

5. Natural language processing
https:

//chat.openai.com/chat

6. For art https://www.youtube.
com/watch?v=MwtVkPKx3RA

https://stablediffusionweb.com/
https://stablediffusionweb.com/
https://chat.openai.com/chat
https://chat.openai.com/chat
https://www.youtube.com/watch?v=MwtVkPKx3RA
https://www.youtube.com/watch?v=MwtVkPKx3RA

What is machine learning ?

Some applications

1. Energy networks, disease
propagation

2. Image analysis (medical
application, web)

3. Protein folding Jumper et al.
2021

4. Generative models https:

//stablediffusionweb.com/

5. Natural language processing
https:

//chat.openai.com/chat

6. For art https://www.youtube.
com/watch?v=MwtVkPKx3RA

https://stablediffusionweb.com/
https://stablediffusionweb.com/
https://chat.openai.com/chat
https://chat.openai.com/chat
https://www.youtube.com/watch?v=MwtVkPKx3RA
https://www.youtube.com/watch?v=MwtVkPKx3RA

What is machine learning ?

Some applications

1. Energy networks, disease
propagation

2. Image analysis (medical
application, web)

3. Protein folding Jumper et al.
2021

4. Generative models https:

//stablediffusionweb.com/

5. Natural language processing
https:

//chat.openai.com/chat

6. For art https://www.youtube.
com/watch?v=MwtVkPKx3RA

https://stablediffusionweb.com/
https://stablediffusionweb.com/
https://chat.openai.com/chat
https://chat.openai.com/chat
https://www.youtube.com/watch?v=MwtVkPKx3RA
https://www.youtube.com/watch?v=MwtVkPKx3RA

What is machine learning ?

Some applications

1. Energy networks, disease
propagation

2. Image analysis (medical
application, web)

3. Protein folding Jumper et al.
2021

4. Generative models https:

//stablediffusionweb.com/

5. Natural language processing
https:

//chat.openai.com/chat

6. For art https://www.youtube.
com/watch?v=MwtVkPKx3RA

https://stablediffusionweb.com/
https://stablediffusionweb.com/
https://chat.openai.com/chat
https://chat.openai.com/chat
https://www.youtube.com/watch?v=MwtVkPKx3RA
https://www.youtube.com/watch?v=MwtVkPKx3RA

What is machine learning ?

Some applications

1. Energy networks, disease
propagation

2. Image analysis (medical
application, web)

3. Protein folding Jumper et al.
2021

4. Generative models https:

//stablediffusionweb.com/

5. Natural language processing
https:

//chat.openai.com/chat

6. For art https://www.youtube.
com/watch?v=MwtVkPKx3RA

https://stablediffusionweb.com/
https://stablediffusionweb.com/
https://chat.openai.com/chat
https://chat.openai.com/chat
https://www.youtube.com/watch?v=MwtVkPKx3RA
https://www.youtube.com/watch?v=MwtVkPKx3RA

What is machine learning ?

Some applications

1. Energy networks, disease
propagation

2. Image analysis (medical
application, web)

3. Protein folding Jumper et al.
2021

4. Generative models https:

//stablediffusionweb.com/

5. Natural language processing
https:

//chat.openai.com/chat

6. For art https://www.youtube.
com/watch?v=MwtVkPKx3RA

https://stablediffusionweb.com/
https://stablediffusionweb.com/
https://chat.openai.com/chat
https://chat.openai.com/chat
https://www.youtube.com/watch?v=MwtVkPKx3RA
https://www.youtube.com/watch?v=MwtVkPKx3RA

What is machine learning ?

What is machine learning ?

The objective of machine learning
Teach a machine to process automatically a some data in order to solve a
given problem.

Unsupervised learning: understanding the data

I Clustering & probability density
estimation

I Dimensionality reduction

8/65

Clustering

)

Objective

{xi}n
i=1) {ŷi}n

i=1

I Organize training examples in groups: Find the labels ŷi 2 Y = {1, . . . , K}.

I Optional : find a clustering function f̂(x) 2 Y that can cluster new samples.

Parameters

I K number of classes.

I Similarity measure between
samples.

I Minimal distance between
clusters.

Methods

I K-means.

I Gaussian mixtures.

I Spectral clustering.

I Hierarchical clustering.

3/36

What is machine learning?

Objective of Machine Learning (ML)

Teach a machine to process automatically a large amount of data (signals, images,
text, objects) in order to solve a given problem.

Unsupervised learning: Understanding the data.

I Clustering

I Probability Density Estimation

I Generative modeling

I Dimensionality reduction

Supervised learning: Learning to predict.

I Classification

I Regression

Reinforcement learning: Learn from environment.

Train a machine to choose actions that maximize a reward
(games, autonomous vehicles, control).

Supervised learning: learning to predict

I Classification: classify points
according to some labels

I Regression: predict real (vector)
values

3/36

What is machine learning?

Objective of Machine Learning (ML)

Teach a machine to process automatically a large amount of data (signals, images,
text, objects) in order to solve a given problem.

Unsupervised learning: Understanding the data.

I Clustering

I Probability Density Estimation

I Generative modeling

I Dimensionality reduction

Supervised learning: Learning to predict.

I Classification

I Regression

Reinforcement learning: Learn from environment.

Train a machine to choose actions that maximize a reward
(games, autonomous vehicles, control).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

prediction
train points
test points

Not covered: reinforcement learning i.e. train a machine to choose actions
that maximize a reward (games, autonomous vehicles, control).

What is machine learning ?

The objective of machine learning
Teach a machine to process automatically a some data in order to solve a
given problem.

Unsupervised learning: understanding the data

I Clustering & probability density
estimation

I Dimensionality reduction

8/65

Clustering

)

Objective

{xi}n
i=1) {ŷi}n

i=1

I Organize training examples in groups: Find the labels ŷi 2 Y = {1, . . . , K}.

I Optional : find a clustering function f̂(x) 2 Y that can cluster new samples.

Parameters

I K number of classes.

I Similarity measure between
samples.

I Minimal distance between
clusters.

Methods

I K-means.

I Gaussian mixtures.

I Spectral clustering.

I Hierarchical clustering.

3/36

What is machine learning?

Objective of Machine Learning (ML)

Teach a machine to process automatically a large amount of data (signals, images,
text, objects) in order to solve a given problem.

Unsupervised learning: Understanding the data.

I Clustering

I Probability Density Estimation

I Generative modeling

I Dimensionality reduction

Supervised learning: Learning to predict.

I Classification

I Regression

Reinforcement learning: Learn from environment.

Train a machine to choose actions that maximize a reward
(games, autonomous vehicles, control).

Supervised learning: learning to predict

I Classification: classify points
according to some labels

I Regression: predict real (vector)
values

3/36

What is machine learning?

Objective of Machine Learning (ML)

Teach a machine to process automatically a large amount of data (signals, images,
text, objects) in order to solve a given problem.

Unsupervised learning: Understanding the data.

I Clustering

I Probability Density Estimation

I Generative modeling

I Dimensionality reduction

Supervised learning: Learning to predict.

I Classification

I Regression

Reinforcement learning: Learn from environment.

Train a machine to choose actions that maximize a reward
(games, autonomous vehicles, control).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

prediction
train points
test points

Not covered: reinforcement learning i.e. train a machine to choose actions
that maximize a reward (games, autonomous vehicles, control).

What is machine learning ?

The objective of machine learning
Teach a machine to process automatically a some data in order to solve a
given problem.

Unsupervised learning: understanding the data

I Clustering & probability density
estimation

I Dimensionality reduction

8/65

Clustering

)

Objective

{xi}n
i=1) {ŷi}n

i=1

I Organize training examples in groups: Find the labels ŷi 2 Y = {1, . . . , K}.

I Optional : find a clustering function f̂(x) 2 Y that can cluster new samples.

Parameters

I K number of classes.

I Similarity measure between
samples.

I Minimal distance between
clusters.

Methods

I K-means.

I Gaussian mixtures.

I Spectral clustering.

I Hierarchical clustering.

3/36

What is machine learning?

Objective of Machine Learning (ML)

Teach a machine to process automatically a large amount of data (signals, images,
text, objects) in order to solve a given problem.

Unsupervised learning: Understanding the data.

I Clustering

I Probability Density Estimation

I Generative modeling

I Dimensionality reduction

Supervised learning: Learning to predict.

I Classification

I Regression

Reinforcement learning: Learn from environment.

Train a machine to choose actions that maximize a reward
(games, autonomous vehicles, control).

Supervised learning: learning to predict

I Classification: classify points
according to some labels

I Regression: predict real (vector)
values

3/36

What is machine learning?

Objective of Machine Learning (ML)

Teach a machine to process automatically a large amount of data (signals, images,
text, objects) in order to solve a given problem.

Unsupervised learning: Understanding the data.

I Clustering

I Probability Density Estimation

I Generative modeling

I Dimensionality reduction

Supervised learning: Learning to predict.

I Classification

I Regression

Reinforcement learning: Learn from environment.

Train a machine to choose actions that maximize a reward
(games, autonomous vehicles, control).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

prediction
train points
test points

Some images and slides have been obtained by the courtesy of Rémi Flamary

Not covered: reinforcement learning i.e. train a machine to choose actions
that maximize a reward (games, autonomous vehicles, control).

What is machine learning ?

The objective of machine learning
Teach a machine to process automatically a some data in order to solve a
given problem.

Unsupervised learning: understanding the data

I Clustering & probability density
estimation

I Dimensionality reduction

8/65

Clustering

)

Objective

{xi}n
i=1) {ŷi}n

i=1

I Organize training examples in groups: Find the labels ŷi 2 Y = {1, . . . , K}.

I Optional : find a clustering function f̂(x) 2 Y that can cluster new samples.

Parameters

I K number of classes.

I Similarity measure between
samples.

I Minimal distance between
clusters.

Methods

I K-means.

I Gaussian mixtures.

I Spectral clustering.

I Hierarchical clustering.

3/36

What is machine learning?

Objective of Machine Learning (ML)

Teach a machine to process automatically a large amount of data (signals, images,
text, objects) in order to solve a given problem.

Unsupervised learning: Understanding the data.

I Clustering

I Probability Density Estimation

I Generative modeling

I Dimensionality reduction

Supervised learning: Learning to predict.

I Classification

I Regression

Reinforcement learning: Learn from environment.

Train a machine to choose actions that maximize a reward
(games, autonomous vehicles, control).

Supervised learning: learning to predict

I Classification: classify points
according to some labels

I Regression: predict real (vector)
values

3/36

What is machine learning?

Objective of Machine Learning (ML)

Teach a machine to process automatically a large amount of data (signals, images,
text, objects) in order to solve a given problem.

Unsupervised learning: Understanding the data.

I Clustering

I Probability Density Estimation

I Generative modeling

I Dimensionality reduction

Supervised learning: Learning to predict.

I Classification

I Regression

Reinforcement learning: Learn from environment.

Train a machine to choose actions that maximize a reward
(games, autonomous vehicles, control).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

prediction
train points
test points

Not covered: reinforcement learning i.e. train a machine to choose actions
that maximize a reward (games, autonomous vehicles, control).

What is machine learning ?

Supervised classification examples

I e.g. to identify the numbers on images from a 16× 16 gray level image
(image classification)

I SPAM, fraud detection, disease classification ...

What is machine learning ?

Clustering example

I Analyse n sequences (individuals)
of d genetical responses

I Groups of similar samples ? Gene
with similar expressions ?

Find your ML method

https:

//scikit-learn.org/stable/tutorial/machine_learning_map/index.html

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

Plan

What is machine learning ?

Data in machine learning

From training data to prediction
Loss functions
Empirical risk minimization
Underfitting/overfitting

Model selection and validation
Split your dataset !

A glimpse of decision theory & statistical learning
Risk and empirical risk
Risk decomposition

First models: local averaging methods

Learning rates and curse of dimensionality
No free-lunch theorem

Conclusion

Store a data point

Vectorial representation

One “sample”, “data point”, “individual”:

x = (x1, · · · , xd)> ∈ Rd

I d is the dimension, xi is the ith information i of
x

I Can describe information about an individual

I For an image x: each pixel of an image

I Descriptors of a cell, word embedding ...

Unsupervised dataset

X =


x>1
x>2
...

x>n

 =

x11 x12 . . . x1d

...
...

...
...

xn1 xn2 . . . xnd



Unsupervised learning

I The dataset contains the samples (xi)
n
i=1 where n is the number of

samples of size d .

I d and n define the dimensionality of the learning problem.

I Data stored as a matrix X ∈ Rn×d that contains the training samples
as rows.

I4! in ML vectors are sometimes described in row instead of
column

Unsupervised dataset

X =


x>1
x>2
...

x>n

 =

x11 x12 . . . x1d

...
...

...
...

xn1 xn2 . . . xnd



Unsupervised learning

I The dataset contains the samples (xi)
n
i=1 where n is the number of

samples of size d .

I d and n define the dimensionality of the learning problem.

I Data stored as a matrix X ∈ Rn×d that contains the training samples
as rows.

I4! in ML vectors are sometimes described in row instead of
column

Supervised dataset

Samples + labels:

X =


x>1
x>2
...

x>n

 y =


y1

y2

...
yn



Classification Regression

Supervised learning

I The dataset contains the samples (xi , yi)
n
i=1 where xi is the feature

sample and yi ∈ Y its label.

I The values to predict (label) can be concatenated in a vector y ∈ Yn

I Semi-supervised learning: few labeled points are available, but a large
number of unlabeled points are given.

Supervised dataset

Samples + labels:

X =


x>1
x>2
...

x>n

 y =


y1

y2

...
yn



Classification Regression

Supervised learning

I The dataset contains the samples (xi , yi)
n
i=1 where xi is the feature

sample and yi ∈ Y its label.

I The values to predict (label) can be concatenated in a vector y ∈ Yn

I Semi-supervised learning: few labeled points are available, but a large
number of unlabeled points are given.

Regression

⇒

Objective

(xi , yi)
n
i=1 ⇒ f : Rd → R

I Train a function f (x) = y ∈ Y predicting a continuous value (Y = R).

I Can be extended to multi-value prediction (Y = Rp).

Hyperparameters

I Type of function (linear,
kernel, neural network).

I Performance measure.

I Regularization.

Methods
I Least Square (LS).

I Ridge regression, Lasso.

I Kernel regression.

I Deep learning.

Regression

⇒

Objective

(xi , yi)
n
i=1 ⇒ f : Rd → R

I Train a function f (x) = y ∈ Y predicting a continuous value (Y = R).

I Can be extended to multi-value prediction (Y = Rp).

Hyperparameters

I Type of function (linear,
kernel, neural network).

I Performance measure.

I Regularization.

Methods
I Least Square (LS).

I Ridge regression, Lasso.

I Kernel regression.

I Deep learning.

Regression

⇒

Objective

(xi , yi)
n
i=1 ⇒ f : Rd → R

I Train a function f (x) = y ∈ Y predicting a continuous value (Y = R).

I Can be extended to multi-value prediction (Y = Rp).

Hyperparameters

I Type of function (linear,
kernel, neural network).

I Performance measure.

I Regularization.

Methods
I Least Square (LS).

I Ridge regression, Lasso.

I Kernel regression.

I Deep learning.

Binary classification

⇒

Objective

(xi , yi)
n
i=1 ⇒ f : Rd → {−1, 1} or {0, 1}

I Train a function f (x) = y ∈ Y predicting a binary value.

I f (x) = 0 defines the boundary on the partition of the feature space.

Hyperparameters

I Type of function (linear,
kernel, neural network).

I Performance measure.

I Regularization.

Methods
I Bayesian classifier (LDA, QDA)

I Linear and kernel discrimination

I Decision trees, random forests.

I Deep learning.

Binary classification

⇒

Objective

(xi , yi)
n
i=1 ⇒ f : Rd → {−1, 1} or {0, 1}

I Train a function f (x) = y ∈ Y predicting a binary value.

I f (x) = 0 defines the boundary on the partition of the feature space.

Hyperparameters

I Type of function (linear,
kernel, neural network).

I Performance measure.

I Regularization.

Methods
I Bayesian classifier (LDA, QDA)

I Linear and kernel discrimination

I Decision trees, random forests.

I Deep learning.

Binary classification

⇒

Objective

(xi , yi)
n
i=1 ⇒ f : Rd → {−1, 1} or {0, 1}

I Train a function f (x) = y ∈ Y predicting a binary value.

I f (x) = 0 defines the boundary on the partition of the feature space.

Hyperparameters

I Type of function (linear,
kernel, neural network).

I Performance measure.

I Regularization.

Methods
I Bayesian classifier (LDA, QDA)

I Linear and kernel discrimination

I Decision trees, random forests.

I Deep learning.

Multiclass classification

⇒

Objective

(xi , yi)
n
i=1 ⇒ f : Rd → {1, . . . ,K}

I Train a function f (x) = y ∈ Y predicting an integer value
(Y = {1, . . . ,K}).

I In practice K continuous score functions fk are estimated and the
prediction is

f (x) = arg max
k

fk(x)

Two toy examples

Two toy examples

Two toy examples

Two toy examples

Linear regression
In 1D: xj ∈ R, yj ∈ R. Goal: find the linear function f : R→ R that “best
predicts” yj from xj .

Two toy examples

Linear regression
In 1D: xj ∈ R, yj ∈ R. Goal: find the linear function f : R→ R that “best
predicts” yj from xj .

Plan

What is machine learning ?

Data in machine learning

From training data to prediction
Loss functions
Empirical risk minimization
Underfitting/overfitting

Model selection and validation
Split your dataset !

A glimpse of decision theory & statistical learning
Risk and empirical risk
Risk decomposition

First models: local averaging methods

Learning rates and curse of dimensionality
No free-lunch theorem

Conclusion

The big picture of (parametrized) ML

How to find this function ?

The goal in the learning step will be to find the parameters θ̂ (hence the
function) that minimizes a measure of error on the data

Loss functions

Supervised case
A loss function is ` : Y × Y → R so that:

` (true value , predicted value) = how good is my prediction

Regression problems

I E.g. yi ∈ R `(yi , f (xi)) = (yi − f (xi))2 (square loss)

I E.g. yi ∈ Rp `(yi , f (xi)) = ‖yi − f (xi)‖2
2 (square loss)

I E.g. yi ∈ Rp `(yi , f (xi)) = ‖yi − f (xi)‖qq (`q loss)

Classification problems

I E.g. yi ∈ {−1, 1} `(yi , f (xi)) = 1yi 6=f (xi) (0/1 loss)

Loss functions

Supervised case
A loss function is ` : Y × Y → R so that:

` (true value , predicted value) = how good is my prediction

Regression problems

I E.g. yi ∈ R `(yi , f (xi)) = (yi − f (xi))2 (square loss)

I E.g. yi ∈ Rp `(yi , f (xi)) = ‖yi − f (xi)‖2
2 (square loss)

I E.g. yi ∈ Rp `(yi , f (xi)) = ‖yi − f (xi)‖qq (`q loss)

Classification problems

I E.g. yi ∈ {−1, 1} `(yi , f (xi)) = 1yi 6=f (xi) (0/1 loss)

Loss functions

Supervised case
A loss function is ` : Y × Y → R so that:

` (true value , predicted value) = how good is my prediction

Regression problems

I E.g. yi ∈ R `(yi , f (xi)) = (yi − f (xi))2 (square loss)

I E.g. yi ∈ Rp `(yi , f (xi)) = ‖yi − f (xi)‖2
2 (square loss)

I E.g. yi ∈ Rp `(yi , f (xi)) = ‖yi − f (xi)‖qq (`q loss)

Classification problems

I E.g. yi ∈ {−1, 1} `(yi , f (xi)) = 1yi 6=f (xi) (0/1 loss)

Loss functions

Supervised case
A loss function is ` : Y × Y → R so that:

` (true value , predicted value) = how good is my prediction

Regression problems

I E.g. yi ∈ R `(yi , f (xi)) = (yi − f (xi))2 (square loss)

I E.g. yi ∈ Rp `(yi , f (xi)) = ‖yi − f (xi)‖2
2 (square loss)

I E.g. yi ∈ Rp `(yi , f (xi)) = ‖yi − f (xi)‖qq (`q loss)

Classification problems

I E.g. yi ∈ {−1, 1} `(yi , f (xi)) = 1yi 6=f (xi) (0/1 loss)

Loss functions

Supervised case
A loss function is ` : Y × Y → R so that:

` (true value , predicted value) = how good is my prediction

Regression problems

I E.g. yi ∈ R `(yi , f (xi)) = (yi − f (xi))2 (square loss)

I E.g. yi ∈ Rp `(yi , f (xi)) = ‖yi − f (xi)‖2
2 (square loss)

I E.g. yi ∈ Rp `(yi , f (xi)) = ‖yi − f (xi)‖qq (`q loss)

Classification problems

I E.g. yi ∈ {−1, 1} `(yi , f (xi)) = 1yi 6=f (xi) (0/1 loss)

Loss functions

A focus on classification problems Y = {−1, 1}

`(yi , f (xi)) = Φ(yi f (xi)) with Φ non-increasing.

I yi f (xi) is the margin (on the board).

I `(yi , f (xi)) = 1yi f (xi)≤0 (0/1 loss)

I `(yi , f (xi)) = max{0, 1− yi f (xi)} (hinge loss: SVM)

I `(yi , f (xi)) = log(1 + e−yi f (xi)) (logistic loss)

4 3 2 1 0 1 2 3 40.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
logistic log(1 + e x)
hinge loss max(1 x, 0)
0/1 loss
square (1 x)2

Loss functions

A focus on classification problems Y = {−1, 1}

`(yi , f (xi)) = Φ(yi f (xi)) with Φ non-increasing.

I yi f (xi) is the margin (on the board).

I `(yi , f (xi)) = 1yi f (xi)≤0 (0/1 loss)

I `(yi , f (xi)) = max{0, 1− yi f (xi)} (hinge loss: SVM)

I `(yi , f (xi)) = log(1 + e−yi f (xi)) (logistic loss)

4 3 2 1 0 1 2 3 40.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
logistic log(1 + e x)
hinge loss max(1 x, 0)
0/1 loss
square (1 x)2

Loss functions

A focus on classification problems Y = {−1, 1}

`(yi , f (xi)) = Φ(yi f (xi)) with Φ non-increasing.

I yi f (xi) is the margin (on the board).

I `(yi , f (xi)) = 1yi f (xi)≤0 (0/1 loss)

I `(yi , f (xi)) = max{0, 1− yi f (xi)} (hinge loss: SVM)

I `(yi , f (xi)) = log(1 + e−yi f (xi)) (logistic loss)

4 3 2 1 0 1 2 3 40.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
logistic log(1 + e x)
hinge loss max(1 x, 0)
0/1 loss
square (1 x)2

Loss functions

Cross-entropy
When f predicts a probability of belonging to a class.

I When yi ∈ {0, 1}, f : Rd → [0, 1]

`(yi , f (xi)) = −yi log f (xi)− (1− yi) log f (xi) . (1)

I When yi ∈ {1, · · ·K} and f : Rd → [0, 1]K .
I We do ”one-hot encoding” of the labels (yi)i∈[[n]] → Y ∈ {0, 1}n×K .

with f (x) = (f1(x), · · · , fk(x)).

`(yi , f (xi)) = −
K∑

k=1

Yi,k log(fk(xi)) . (2)

Sigmoid and softmax

I First case: in practice f (x) = σ(g(x)) where g : Rd → R and

σ(z) = exp(z)
1+exp(z) .

I Second case: fj(x) =
exp(gj (x))∑K
k=1 exp(gk (x))

where g : Rd → RK .

Empirical risk minimization

Minimizing the train error
To find f the idea is to minimize the averaged error on the training
samples:

min
f

1

n

n∑
i=1

`(yi , f (xi)) (ERM)

I It is called empirical risk minimization (ERM)

I Given the loss, finds the “best” f on the training data

I E.g. linear regression

I Same idea applies for unsupervised problem (reconstruction error)

Empirical risk minimization

Minimizing the train error
To find f the idea is to minimize the averaged error on the training
samples:

min
f

1

n

n∑
i=1

`(yi , f (xi)) (ERM)

I It is called empirical risk minimization (ERM)

I Given the loss, finds the “best” f on the training data

I E.g. linear regression

I Same idea applies for unsupervised problem (reconstruction error)

Empirical risk minimization

Parametrized models
I In practice we do ERM with parametrized model f = fθ

min
θ∈Θ

1

n

n∑
i=1

`(yi , fθ(xi)) (ERM)

Examples

I Most classical example: linear least-squares regression (course 3)

1

n

n∑
i=1

(yi − θ>xi)
2

I For classification Y = {−1,+1} (see courses 3/5)

Logistic regression:

1

n

n∑
i=1

log(1 + exp(−yiθ>xi))

Support vector machine:

1

n

n∑
i=1

max{0, 1− yiθ
>xi}

Once solved how do I know if my model is good ?

Empirical risk minimization

Parametrized models
I In practice we do ERM with parametrized model f = fθ

min
θ∈Θ

1

n

n∑
i=1

`(yi , fθ(xi)) (ERM)

Examples

I Most classical example: linear least-squares regression (course 3)

1

n

n∑
i=1

(yi − θ>xi)
2

I For classification Y = {−1,+1} (see courses 3/5)

Logistic regression:

1

n

n∑
i=1

log(1 + exp(−yiθ>xi))

Support vector machine:

1

n

n∑
i=1

max{0, 1− yiθ
>xi}

Once solved how do I know if my model is good ?

Underfitting and overfitting

Acc. 0.89/0.89 train/test Acc. 0.93/0.92 train/test Acc. 0.98/0.88 train/test

Complexity of a model

I Under-fitting when the model is too
simple.

I Over-fitting occurs when the model is
too complex

I Training data performance is not a good
proxy for testing performance.

I We want to predict well on new data!

I Parameter and model validation. 0 5 10 15 20 25 30
Complexity of the model

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Accuracy on train/test datasets
Train
Test

Underfitting and overfitting

Acc. 0.89/0.89 train/test Acc. 0.93/0.92 train/test Acc. 0.98/0.88 train/test

Complexity of a model

I Under-fitting when the model is too
simple.

I Over-fitting occurs when the model is
too complex

I Training data performance is not a good
proxy for testing performance.

I We want to predict well on new data!

I Parameter and model validation. 0 5 10 15 20 25 30
Complexity of the model

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Accuracy on train/test datasets
Train
Test

Empirical risk minimization

Train by minimizing the train error
To find f the idea is to minimize the averaged error on the training
samples:

min
f

1

n

n∑
i=1

`(yi , f (xi)) + λReg(f) (ERM)

I It is called empirical risk minimization (ERM)

I Given the loss, finds the “best” f on the training data

I Teacher/student analogy

I Same idea applies for unsupervised problem (minimizing reconstruction
error)

... but we want generalization !

I We want f to be good outside the training samples

I Add regularization ! (limit the complexity of f)

I But another problem: how to choose λ ?

Parameters vs hyperparameters

Hyperparameters

I Are parameters that have to be
selected/chosen to define a
model.

I Used for the configuration of the
model.

I They are not learned on the
data !

I Examples (1): regularization
strengh λ, number of neighbors
k in k-NN, number of trees,
number of iterations for an
algorithm...

I Example (2): but also all the
data pipeline (normalization...)

Parameters
I Are learned on the data.

I θ in linear regression, tree cuts,
U ∈ Rd×k in dimension reduction
(PCA), centroids in k-means,
weights of the neural network...

In scikit-learn
1 from sklearn import Model
2 hyperparameters = ...
3 clf = Model(hyperparameters) # define the

model
4 cv.fit(X ,y) #train the model

Machine learning in practice

I Data acquisition : sensor, databases, manual or automatic labeling

I Pre-processing : denoising, formating, numerical conversion,
normalization

I Feature extraction : manual when prior knowledge, feature selection
dimensionality reduction

I Model estimation : classification, regression, clustering.

I Validation : model and parameter selection.

I Analysis : performance, uncertainty, interpretation of the model.

Features extraction, selection and model estimation can be done
simultaneously (deep learning, sparse models).

Plan

What is machine learning ?

Data in machine learning

From training data to prediction
Loss functions
Empirical risk minimization
Underfitting/overfitting

Model selection and validation
Split your dataset !

A glimpse of decision theory & statistical learning
Risk and empirical risk
Risk decomposition

First models: local averaging methods

Learning rates and curse of dimensionality
No free-lunch theorem

Conclusion

Model selection and validation

Bias-complexity tradeoff

generalization error = estimation error + approximation error

Select a model that is not too complex but not too simple !

General principle

I Estimate the generalization error on data not seen during training

I Is a rough estimate of the test error

I Select the model with the lowest “approximate” test error

Model selection and validation

Bias-complexity tradeoff

generalization error = estimation error + approximation error

Select a model that is not too complex but not too simple !

General principle

I Estimate the generalization error on data not seen during training

I Is a rough estimate of the test error

I Select the model with the lowest “approximate” test error

Splitting the data

Full dataset

Test setTraining set

Test setTraining set Validation set

Principle of Hold-Out cross-validation

I Split the training data in a training and validation sets (non
overlapping).

I Train different models (different methods and/or hyperparameters) on
the train data.

I Evaluate performance on the validation data and select the
method/parameters with best performance.

I Validation set acts as a proxy of test data

I But only one split is a poor proxy !

Different ways to split the data

Cross-validation Arlot and Celisse 2010
I The training data is split in non-overlapping training/validation sets.

I Hold-Out uses a unique split and computes the performance on the
validation set.

I More robust cross-validation approaches actually investigate several
splits of the data and compute the average performance:
I K-fold (split in K sets and use one split as test for all k)
I Random sampling (aka Shuffle split) draws several random splittings.

I Scikit-learn implementation : sklearn.model_selection.cross_validate

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html

Data splitting with Scikit-learn

0 20 40 60 80 100
Sample index

0
1
2
3

Class

CV
 it

er
at

io
n

KFold

0 20 40 60 80 100
Sample index

0
1
2
3

Class

CV
 it

er
at

io
n

StratifiedKFold

0 20 40 60 80 100
Sample index

0
1
2
3

Class

CV
 it

er
at

io
n

ShuffleSplit

0 20 40 60 80 100
Sample index

0
1
2
3

Class

CV
 it

er
at

io
n

TimeSeriesSplit
Testing set
Training set

I Scikit-learn implements iterator classes for data split in
sklearn.model_selection.

I KFold is the classical K-fold cross-validation.

I StratifiedKFold ensures a data split that preserves the proportion of
classes.

I ShuffleSplit randomly selects a proportion of the samples for
train/validation.

Validation with Scikit-learn

Data

10−2 10−1 100 101 102

γ

10−2

10−1

100

101

102

C

Avg. accuracy 5-Fold

0.5

0.6

0.7

0.8

0.9

10−2 10−1 100 101 102

γ

10−2

10−1

100

101

102

C

Avg. accuracy ShuffleSplit

0.5

0.6

0.7

0.8

0.9
Cross val. SVM

Principle

I GridSearchCV takes a model and
a grid of hyperparameters as
input and performs
cross-validation.

I Number of splits and type of
data splitting can be chosen.

I For large number of parameters
complexity is exponential,
RandomizedSearchCV can be
more efficient.

Python code
1 from sklearn.svm import SVC
2 from sklearn.model selection import

GridSearchCV
3

4 ngrid=21
5 clf = SVC()
6 param grid={'C':np.logspace(−2,2,ngrid),
7 'gamma':np.logspace(−2,2,ngrid),}
8

9 cv = GridSearchCV(clf,param grid)
10

11 cv.fit(xn,y)
12

13 # recover best parameters and estimators
14 clf opt = cv.best estimator
15 params opt = cv.best params

Plan

What is machine learning ?

Data in machine learning

From training data to prediction
Loss functions
Empirical risk minimization
Underfitting/overfitting

Model selection and validation
Split your dataset !

A glimpse of decision theory & statistical learning
Risk and empirical risk
Risk decomposition

First models: local averaging methods

Learning rates and curse of dimensionality
No free-lunch theorem

Conclusion

Risk and empirical risk

Training data

I We have access to n r.v. (x1, y1), · · · , (xn, yn) ∼ p and loss.

I Randomness is the key for a mathematical analysis.

I p ∈ P(X × Y) is the unknown data distribution.

The (expected) risk

I For a function f : X → Y defined as:

Rp(f) = E
(x,y)∼p

[`(y , f (x))]

I Generalization error: with the true (unknown) data distrib.

The empirical risk

I Averaged error on the empirical distribution of the data

R̂(f) =
1

n

n∑
i=1

`(yi , f (xi))

I R̂(f) is a random quantity: ML is statistics !

Risk and empirical risk

Training data

I We have access to n r.v. (x1, y1), · · · , (xn, yn) ∼ p and loss.

I Randomness is the key for a mathematical analysis.

I p ∈ P(X × Y) is the unknown data distribution.

The (expected) risk

I For a function f : X → Y defined as:

Rp(f) = E
(x,y)∼p

[`(y , f (x))]

I Generalization error: with the true (unknown) data distrib.

The empirical risk

I Averaged error on the empirical distribution of the data

R̂(f) =
1

n

n∑
i=1

`(yi , f (xi))

I R̂(f) is a random quantity: ML is statistics !

Risk and empirical risk

Training data

I We have access to n r.v. (x1, y1), · · · , (xn, yn) ∼ p and loss.

I Randomness is the key for a mathematical analysis.

I p ∈ P(X × Y) is the unknown data distribution.

The (expected) risk

I For a function f : X → Y defined as:

Rp(f) = E
(x,y)∼p

[`(y , f (x))]

I Generalization error: with the true (unknown) data distrib.

The empirical risk

I Averaged error on the empirical distribution of the data

R̂(f) =
1

n

n∑
i=1

`(yi , f (xi))

I R̂(f) is a random quantity: ML is statistics !

Risk and empirical risk

(one) Ultimate goal of ML

I Find a function f ? that minimizes the (expected) risk:

f ? ∈ arg min
f :X→Y

Rp(f)

I Good news ! there is one (TD1): the Bayes predictor

f ?(x0) = arg min
y ′∈Y

E[`(y , y ′)|x = x0] =

∫
Y
`(y , y ′)dp(y |x0)

I Given a supervised learning problem, the Bayes risk R? = Rp(f ?) is
the optimal performance.

Excess risk
I We cannot calculate f ? but we would like to get closer to it

I For a function f : X → Y the excess risk is:

R(f)−R? ≥ 0

Risk and empirical risk

(one) Ultimate goal of ML

I Find a function f ? that minimizes the (expected) risk:

f ? ∈ arg min
f :X→Y

Rp(f)

I Good news ! there is one (TD1): the Bayes predictor

f ?(x0) = arg min
y ′∈Y

E[`(y , y ′)|x = x0] =

∫
Y
`(y , y ′)dp(y |x0)

I Given a supervised learning problem, the Bayes risk R? = Rp(f ?) is
the optimal performance.

Excess risk
I We cannot calculate f ? but we would like to get closer to it

I For a function f : X → Y the excess risk is:

R(f)−R? ≥ 0

Risk and empirical risk

(one) Ultimate goal of ML

I Find a function f ? that minimizes the (expected) risk:

f ? ∈ arg min
f :X→Y

Rp(f)

I Good news ! there is one (TD1): the Bayes predictor

f ?(x0) = arg min
y ′∈Y

E[`(y , y ′)|x = x0] =

∫
Y
`(y , y ′)dp(y |x0)

I Given a supervised learning problem, the Bayes risk R? = Rp(f ?) is
the optimal performance.

Excess risk
I We cannot calculate f ? but we would like to get closer to it

I For a function f : X → Y the excess risk is:

R(f)−R? ≥ 0

Risk decomposition

How to obtain guarantees ?

I Practical machine learning ERM:

θ̂ ∈ arg min
θ∈Θ

R̂(fθ) =
1

n

n∑
i=1

`(yi , fθ(xi))

I Question: what is the excess risk of fθ̂?

R(fθ̂)−R? = ?

Bias-complexity tradeoff (see TD2)

R(fθ̂)−R? = estimation error + approximation error

Risk decomposition

How to obtain guarantees ?

I Practical machine learning ERM:

θ̂ ∈ arg min
θ∈Θ

R̂(fθ) =
1

n

n∑
i=1

`(yi , fθ(xi))

I Question: what is the excess risk of fθ̂?

R(fθ̂)−R? = ?

Bias-complexity tradeoff (see TD2)

R(fθ̂)−R? = estimation error + approximation error

Risk decomposition

Bias-complexity tradeoff

excess risk = estimation error + approximation error

Risk decomposition

Bias-complexity tradeoff

excess risk = estimation error + approximation error

Risk decomposition

Bias-complexity tradeoff

excess risk = estimation error + approximation error

Risk decomposition

Bias-complexity tradeoff

excess risk = estimation error + approximation error

Plan

What is machine learning ?

Data in machine learning

From training data to prediction
Loss functions
Empirical risk minimization
Underfitting/overfitting

Model selection and validation
Split your dataset !

A glimpse of decision theory & statistical learning
Risk and empirical risk
Risk decomposition

First models: local averaging methods

Learning rates and curse of dimensionality
No free-lunch theorem

Conclusion

Objective

Remember: minimize the risk = find the Bayes predictor.

I Regression with square loss: f ?(x0) = E[y |x = x0]

I Classification with 0/1 loss: f ?(x0) = arg max
y∈Y

p(y ′ = y |x = x0)

I Generally: f ?(x0) = arg min
y ′∈Y

E[`(y , y ′)|x = x0]

Problem: we don’t know the conditional data distribution p(y |x) !

Local averaging methods
Main idea: find an estimation p̂(y |x) of p(y |x)

I Regression: f̂ (x0) =
∫
ydp̂(y |x0)

I Classification: f̂ (x0) = arg max
y∈Y

p̂(y ′ = y |x = x0)

Benefits/inconvenients

I + No optimization problem & well understood Györfi et al. 2002

I ± Simple estimators (easy to find but simple)

I − Not very adaptive to the regularity of the function (curse of dim)

Objective

Remember: minimize the risk = find the Bayes predictor.

I Regression with square loss: f ?(x0) = E[y |x = x0]

I Classification with 0/1 loss: f ?(x0) = arg max
y∈Y

p(y ′ = y |x = x0)

I Generally: f ?(x0) = arg min
y ′∈Y

E[`(y , y ′)|x = x0]

Problem: we don’t know the conditional data distribution p(y |x) !

Local averaging methods
Main idea: find an estimation p̂(y |x) of p(y |x)

I Regression: f̂ (x0) =
∫
ydp̂(y |x0)

I Classification: f̂ (x0) = arg max
y∈Y

p̂(y ′ = y |x = x0)

Benefits/inconvenients

I + No optimization problem & well understood Györfi et al. 2002

I ± Simple estimators (easy to find but simple)

I − Not very adaptive to the regularity of the function (curse of dim)

Objective

Remember: minimize the risk = find the Bayes predictor.

I Regression with square loss: f ?(x0) = E[y |x = x0]

I Classification with 0/1 loss: f ?(x0) = arg max
y∈Y

p(y ′ = y |x = x0)

I Generally: f ?(x0) = arg min
y ′∈Y

E[`(y , y ′)|x = x0]

Problem: we don’t know the conditional data distribution p(y |x) !

Local averaging methods
Main idea: find an estimation p̂(y |x) of p(y |x)

I Regression: f̂ (x0) =
∫
ydp̂(y |x0)

I Classification: f̂ (x0) = arg max
y∈Y

p̂(y ′ = y |x = x0)

Benefits/inconvenients

I + No optimization problem & well understood Györfi et al. 2002

I ± Simple estimators (easy to find but simple)

I − Not very adaptive to the regularity of the function (curse of dim)

Approximate the conditional distribution

“Linear” estimator
The estimator of p(y |x) has the form:

p̂(y |x) =
n∑

i=1

ωi (x)δyi (y)

I ωi (x) are weights, ∀x, ωi (x) ≥ 0 and
∑n

i=1 ωi (x) = 1

I ωi : X → R+ depends on the input data (xi)i∈[[n]] only.

Examples

I Regression (square loss): f̂ (x0) =?

I Classification (binary): f̂ (x0) =?

Approximate the conditional distribution

“Linear” estimator
The estimator of p(y |x) has the form:

p̂(y |x) =
n∑

i=1

ωi (x)δyi (y)

I ωi (x) are weights, ∀x, ωi (x) ≥ 0 and
∑n

i=1 ωi (x) = 1

I ωi : X → R+ depends on the input data (xi)i∈[[n]] only.

Examples

I Regression (square loss): f̂ (x0) =?

I Classification (binary): f̂ (x0) =?

Approximate the conditional distribution

“Linear” estimator
The estimator of p(y |x) has the form:

p̂(y |x) =
n∑

i=1

ωi (x)δyi (y)

I ωi (x) are weights, ∀x, ωi (x) ≥ 0 and
∑n

i=1 ωi (x) = 1

I ωi : X → R+ depends on the input data (xi)i∈[[n]] only.

Examples

I Regression (square loss): f̂ (x0) =
n∑
i

ωi (x0)yi local averaging

I Classification (binary): f̂ (x0) = arg max
q∈{+1,−1}

n∑
i=1

ωi (x0)1yi=q weighted

majority vote

I e.g. data agnostic: ωi (x) = 1
n , f̂ (x0) = arg max

q∈{+1,−1}

1
n

n∑
i=1

1yi=q

Partition estimators

First basic idea: split your space

I X = ∪j∈JAj a partition of the input space (j 6= j ′,Aj ∩ Aj′ = ∅)

I A(x) is the unique partition corresponding to x

I Weights are defined by:

∀i ∈ {1, · · · , n}, ωi (x) =
1xi∈A(x)∑n
j=1 1xj∈A(x)

I ∀x ∈ Ak , ωi (x) = 1/#{ train samples in Ak} if x ∈ Ak else 0.

I If no train samples in Ak then ∀i ∈ [[n]],wi (x) = 1/n

Partition estimators

First basic idea: split your space

I X = ∪j∈JAj a partition of the input space (j 6= j ′,Aj ∩ Aj′ = ∅)

I A(x) is the unique partition corresponding to x

I Weights are defined by:

∀i ∈ {1, · · · , n}, ωi (x) =
1xi∈A(x)∑n
j=1 1xj∈A(x)

I ∀x ∈ Ak , ωi (x) = 1/#{ train samples in Ak} if x ∈ Ak else 0.

I If no train samples in Ak then ∀i ∈ [[n]],wi (x) = 1/n

Partition estimators

Regressogram

I Let xi ∼ Unif([0, 1]) with n = 50

I True function f (x) = sin(πx) and we observe yi = f (xi) + εi where
εi ∼ N (0, σ2)

I Regression with partition estimator f̂ (x) =
n∑
i

ωi (x)yi

I Local average of the ouputs yi in each region/partition

I Known as “regressogram”: piecewise affine estimator

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

subdivisions = 3

true fun.
regressogram
train points

subdivisions = 8

true fun.
regressogram
train points

subdivisions = 15

true fun.
regressogram
train points

Nearest neighbors

Birds of a feather flock together

I Given a new input x KNN predictor looks at the K nearest points in
the dataset (xi1(x), yi1(x)), · · · , (xiK (x), yiK (x))

I Prediction for x = majority vote / averaging on K neighbors

I e.g. regression f̂ (x) = 1
K

∑
i∈{i1(x),··· ,iK (x)} yi = 1

K

∑
i∈NK (x) yi

I Corresponds to ωi (x) = 1
K if i ∈ NK (x) else 0

I K needs to be validated (cross-validation) + naive complexity O(nd)
per test point x

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

K = 2

true fun.
KNN
train points

K = 8

true fun.
KNN
train points

K = 12

true fun.
KNN
train points

Nearest neighbors

Birds of a feather flock together

I Given a new input x KNN predictor looks at the K nearest points in
the dataset (xi1(x), yi1(x)), · · · , (xiK (x), yiK (x))

I Prediction for x = majority vote / averaging on K neighbors

I e.g. regression f̂ (x) = 1
K

∑
i∈{i1(x),··· ,iK (x)} yi = 1

K

∑
i∈NK (x) yi

I Corresponds to ωi (x) = 1
K if i ∈ NK (x) else 0

I K needs to be validated (cross-validation) + naive complexity O(nd)
per test point x

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

K = 2

true fun.
KNN
train points

K = 8

true fun.
KNN
train points

K = 12

true fun.
KNN
train points

Nearest neighbors

Birds of a feather flock together

I Given a new input x KNN predictor looks at the K nearest points in
the dataset (xi1(x), yi1(x)), · · · , (xiK (x), yiK (x))

I Prediction for x = majority vote / averaging on K neighbors

I e.g. regression f̂ (x) = 1
K

∑
i∈{i1(x),··· ,iK (x)} yi = 1

K

∑
i∈NK (x) yi

I Corresponds to ωi (x) = 1
K if i ∈ NK (x) else 0

I K needs to be validated (cross-validation) + naive complexity O(nd)
per test point x

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

K = 2

true fun.
KNN
train points

K = 8

true fun.
KNN
train points

K = 12

true fun.
KNN
train points

Nearest neighbors

Birds of a feather flock together

I Given a new input x KNN predictor looks at the K nearest points in
the dataset (xi1(x), yi1(x)), · · · , (xiK (x), yiK (x))

I Prediction for x = majority vote / averaging on K neighbors

I e.g. regression f̂ (x) = 1
K

∑
i∈{i1(x),··· ,iK (x)} yi = 1

K

∑
i∈NK (x) yi

I Corresponds to ωi (x) = 1
K if i ∈ NK (x) else 0

I K needs to be validated (cross-validation) + naive complexity O(nd)
per test point x

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

K = 2

true fun.
KNN
train points

K = 8

true fun.
KNN
train points

K = 12

true fun.
KNN
train points

Nearest neighbors

Birds of a feather flock together

I Given a new input x KNN predictor looks at the K nearest points in
the dataset (xi1(x), yi1(x)), · · · , (xiK (x), yiK (x))

I Prediction for x = majority vote / averaging on K neighbors

I e.g. regression f̂ (x) = 1
K

∑
i∈{i1(x),··· ,iK (x)} yi = 1

K

∑
i∈NK (x) yi

I Corresponds to ωi (x) = 1
K if i ∈ NK (x) else 0

I K needs to be validated (cross-validation) + naive complexity O(nd)
per test point x

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

K = 2

true fun.
KNN
train points

K = 8

true fun.
KNN
train points

K = 12

true fun.
KNN
train points

Nearest neighbors

4 2 0 2 4 6

4

2

0

2

4

6

8

train
test

4 2 0 2 4 6

4

2

0

2

4

6

8

K = 1

train points
4 2 0 2 4 6

4

2

0

2

4

6

8

K = 5

train points
4 2 0 2 4 6

4

2

0

2

4

6

8

K = 10

train points

4 2 0 2 4 6

4

2

0

2

4

6

8

train
test

4 2 0 2 4 6

4

2

0

2

4

6

8

K = 1

test points
4 2 0 2 4 6

4

2

0

2

4

6

8

K = 5

test points
4 2 0 2 4 6

4

2

0

2

4

6

8

K = 10

test points

Nadaraya-Watson estimator

“Kernel” function
I κ : X × X → R+ a pointwise non-negative function

I κ measures similarity between points

I In practice when X ⊆ Rd , k(x, x′) = qh(x− x′) = h−dq(1
h (x− x′))

I q : Rd → R+ that has large values around 0, h > 0 the bandwidth

I e.g. box kernel q(x) = 1‖x‖2≤1, gaussian q(x) = exp(−‖x‖2/2)

I4! same name but not the same as kernels in SVM !

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0

2

4

6

8

10

qh for box kernel
bandwidth h = 0.1
bandwidth h = 0.3
bandwidth h = 0.5
bandwidth h = 1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0

2

4

6

8

10

qh for gaussian kernel
bandwidth h = 0.1
bandwidth h = 0.3
bandwidth h = 0.5
bandwidth h = 1

Nadaraya-Watson estimator

“Kernel” function
I κ : X × X → R+ a pointwise non-negative function

I κ measures similarity between points

I In practice when X ⊆ Rd , k(x, x′) = qh(x− x′) = h−dq(1
h (x− x′))

I q : Rd → R+ that has large values around 0, h > 0 the bandwidth

I e.g. box kernel q(x) = 1‖x‖2≤1, gaussian q(x) = exp(−‖x‖2/2)

I4! same name but not the same as kernels in SVM !

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0

2

4

6

8

10

qh for box kernel
bandwidth h = 0.1
bandwidth h = 0.3
bandwidth h = 0.5
bandwidth h = 1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0

2

4

6

8

10

qh for gaussian kernel
bandwidth h = 0.1
bandwidth h = 0.3
bandwidth h = 0.5
bandwidth h = 1

Nadaraya-Watson estimator

“Kernel” function
I κ : X × X → R+ a pointwise non-negative function

I κ measures similarity between points

I In practice when X ⊆ Rd , k(x, x′) = qh(x− x′) = h−dq(1
h (x− x′))

I q : Rd → R+ that has large values around 0, h > 0 the bandwidth

I e.g. box kernel q(x) = 1‖x‖2≤1, gaussian q(x) = exp(−‖x‖2/2)

I4! same name but not the same as kernels in SVM !

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0

2

4

6

8

10

qh for box kernel
bandwidth h = 0.1
bandwidth h = 0.3
bandwidth h = 0.5
bandwidth h = 1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0

2

4

6

8

10

qh for gaussian kernel
bandwidth h = 0.1
bandwidth h = 0.3
bandwidth h = 0.5
bandwidth h = 1

Nadaraya-Watson estimator

“Kernel” function
I κ : X × X → R+ a pointwise non-negative function

I κ measures similarity between points

I In practice when X ⊆ Rd , k(x, x′) = qh(x− x′) = h−dq(1
h (x− x′))

I q : Rd → R+ that has large values around 0, h > 0 the bandwidth

I e.g. box kernel q(x) = 1‖x‖2≤1, gaussian q(x) = exp(−‖x‖2/2)

I4! same name but not the same as kernels in SVM !

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0

2

4

6

8

10

qh for box kernel
bandwidth h = 0.1
bandwidth h = 0.3
bandwidth h = 0.5
bandwidth h = 1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0

2

4

6

8

10

qh for gaussian kernel
bandwidth h = 0.1
bandwidth h = 0.3
bandwidth h = 0.5
bandwidth h = 1

Nadaraya-Watson estimator

The Nadaraya-Watson estimator

I The weights are defined by:

ωi (x) =
κ(x, xi)∑n
j=1 κ(x, xj)

I ωi (x) is close to 1 when x is similar to xi

I e.g. regression f̂ (x) =
∑n

i=1
κ(x,xi)yi∑n
j=1 κ(x,xj)

, smoothness depends on h

I Complexity of calculating f̂ (x) usually in O(nd)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

bandwidth = 0.01

true fun.
Nadaraya Watson
train points

bandwidth = 0.05

true fun.
Nadaraya Watson
train points

bandwidth = 1

true fun.
Nadaraya Watson
train points

Plan

What is machine learning ?

Data in machine learning

From training data to prediction
Loss functions
Empirical risk minimization
Underfitting/overfitting

Model selection and validation
Split your dataset !

A glimpse of decision theory & statistical learning
Risk and empirical risk
Risk decomposition

First models: local averaging methods

Learning rates and curse of dimensionality
No free-lunch theorem

Conclusion

Learning rates & excess risk

Question

Once we have selected a model how many samples n do we need to train
it ?

Learning rates & excess risk

Question

Once we have selected a model how many samples n do we need to train
it ?

The answer is statistical
I Can I bound (w.h.p. or in expectation)

excess risk = estimation error + approximation error ≤ h(n)

I Ideally the function h(n) →
n→+∞

0 fast: it is called the learning rate

Learning rates & excess risk

Question

Once we have selected a model how many samples n do we need to train
it ?

The answer is statistical
I Can I bound (w.h.p. or in expectation)

excess risk = estimation error + approximation error ≤ h(n)

I Ideally the function h(n) →
n→+∞

0 fast: it is called the learning rate

Curse of dimensionality

I If the best function f ? is only Lipschitz-continuous:

E[excess risk] . n−1/d

I This rate is unavoidable without further knowledge on f ?

I Slow rates: exponentially many samples are needed !

Curse of dimensionality

Think about interpolation: goal find f : [0, 1]d → R
I You have n values of this function f (xi) at sampled locations xi
I To find f you want to interpolate between the f (xi)’s

I If f is not regular, a good approximation requires precise covering of
[0, 1]d (small meshes)

Problem: points are isolated in high dimension

I Vol. of a hypercube with edge length r < 1 is rd : quickly ↓ 0 as
d →∞

I To compensate you need a number of sample which grows
exponentially with d

Curse of dimensionality

Think about interpolation: goal find f : [0, 1]d → R
I You have n values of this function f (xi) at sampled locations xi
I To find f you want to interpolate between the f (xi)’s

I If f is not regular, a good approximation requires precise covering of
[0, 1]d (small meshes)

Problem: points are isolated in high dimension

I Vol. of a hypercube with edge length r < 1 is rd : quickly ↓ 0 as
d →∞

I To compensate you need a number of sample which grows
exponentially with d

Curse of dimensionality

Main ideas
I Without prior on f ? the required number of samples n to estimate f ? is

exponential in d.

I In high dim it is easy to overfit a model.

I The notion of nearest neighbors vanishes in high dim.

I Three remedies: use simple models (linear), dimensionality reduction or
prior on f ?

Learning rates & excess risk

Question

Once we have selected a model how many samples n do we need to train
it ?

The answer is statistical
I Can I bound (w.h.p. or in expectation)

excess risk = estimation error + approximation error ≤ h(n)

I Curse of dimensionality (see rates in Györfi et al. 2002; Bach 2022)

Learning rates & excess risk

Question

Once we have selected a model how many samples n do we need to train
it ?

The answer is statistical
I Can I bound (w.h.p. or in expectation)

excess risk = estimation error + approximation error ≤ h(n)

I Curse of dimensionality (see rates in Györfi et al. 2002; Bach 2022)

A new hope: prior knowledge on the Bayes predictor

I If the best function f ? is smooth (bounded s-th order derivatives):

E[excess risk] . n−s/d

I Smoothness helps ! But also if data is low-dimensional.

I Even better: linear E[excess risk] = σ2d
n , finite hypothesis space: on

the board !

One algorithm to rule them all ?

After all, is it possible to learn all tasks with one algorithm ?

I Dp(n) = {(xi , yi)}i∈[[n]] where (xi , yi) ∼ p i.i.d.

I Very abstract way: an algorithm A is a mapping from Dp(n) to a
function from X to Y

I Goal: find A such that Rp(A(Dp(n)))−R?p is small

No free lunch theorem

Binary classif. with 0− 1 loss, with X infinite. Let P = set of all prob.
distributions on X × {0, 1}.
∀n > 0,∀A:

sup
p∈P

E[Rp(A(Dp(n)))]−R?p ≥ 1/2

For any A, for a fixed n, there is a data distribution that makes the
algorithm useless (same as the chance level)

One algorithm to rule them all ?

After all, is it possible to learn all tasks with one algorithm ?

I Dp(n) = {(xi , yi)}i∈[[n]] where (xi , yi) ∼ p i.i.d.

I Very abstract way: an algorithm A is a mapping from Dp(n) to a
function from X to Y

I Goal: find A such that Rp(A(Dp(n)))−R?p is small

No free lunch theorem

Binary classif. with 0− 1 loss, with X infinite. Let P = set of all prob.
distributions on X × {0, 1}.
∀n > 0,∀A:

sup
p∈P

E[Rp(A(Dp(n)))]−R?p ≥ 1/2

For any A, for a fixed n, there is a data distribution that makes the
algorithm useless (same as the chance level)

One algorithm to rule them all ?

After all, is it possible to learn all tasks with one algorithm ?

I Dp(n) = {(xi , yi)}i∈[[n]] where (xi , yi) ∼ p i.i.d.

I Very abstract way: an algorithm A is a mapping from Dp(n) to a
function from X to Y

I Goal: find A such that Rp(A(Dp(n)))−R?p is small

No free lunch theorem

Binary classif. with 0− 1 loss, with X infinite. Let P = set of all prob.
distributions on X × {0, 1}.
∀n > 0,∀A:

sup
p∈P

E[Rp(A(Dp(n)))]−R?p ≥ 1/2

For any A, for a fixed n, there is a data distribution that makes the
algorithm useless (same as the chance level)

One algorithm to rule them all ?

After all, is it possible to learn all tasks with one algorithm ?

I Dp(n) = {(xi , yi)}i∈[[n]] where (xi , yi) ∼ p i.i.d.

I Very abstract way: an algorithm A is a mapping from Dp(n) to a
function from X to Y

I Goal: find A such that Rp(A(Dp(n)))−R?p is small

No free lunch theorem

Binary classif. with 0− 1 loss, with X infinite. Let P = set of all prob.
distributions on X × {0, 1}.
∀n > 0,∀A:

sup
p∈P

E[Rp(A(Dp(n)))]−R?p ≥ 1/2

For any A, for a fixed n, there is a data distribution that makes the
algorithm useless (same as the chance level)

Plan

What is machine learning ?

Data in machine learning

From training data to prediction
Loss functions
Empirical risk minimization
Underfitting/overfitting

Model selection and validation
Split your dataset !

A glimpse of decision theory & statistical learning
Risk and empirical risk
Risk decomposition

First models: local averaging methods

Learning rates and curse of dimensionality
No free-lunch theorem

Conclusion

Other problems

I Fairness:

I Interpretability

I Ecological problems

I And many more ...

References I

Arlot, Sylvain and Alain Celisse (2010). “A survey of cross-validation
procedures for model selection”. In: Statistics Surveys 4.

Bach, Francis (2022). Learning Theory from First Principles.

Györfi, L. et al. (2002). A Distribution-Free Theory of Nonparametric
Regression. Springer Series in Statistics. Springer New York.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2001). The
Elements of Statistical Learning. Springer New York Inc.

Jumper, John et al. (2021). “Highly accurate protein structure prediction
with AlphaFold”. In: Nature 596.7873, pp. 583–589.

Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding Machine
Learning - From Theory to Algorithms. Cambridge University Press.

	What is machine learning ?
	Data in machine learning
	From training data to prediction
	Loss functions
	Empirical risk minimization
	Underfitting/overfitting

	Model selection and validation
	Split your dataset !

	A glimpse of decision theory & statistical learning
	Risk and empirical risk
	Risk decomposition

	First models: local averaging methods
	Learning rates and curse of dimensionality
	No free-lunch theorem

	Conclusion
	References

