Fundamentals of machine learning Courses 1 & 2: basics of machine learning

Titouan Vayer & Mathurin Massias email: titouan.vayer@inria.fr, mathurin.massias@inria.fr,

January 15, 2025

Full course outline

From theory ...

- 1. Basics of machine learning
- 2. Decision theory & statistical learning
- 3. (Penalized) Linear models
- 4. Dimension reduction
- 5. Kernels and support vector machines
- 6. Ensembles methods
- 7. Clustering, density estimation
- 8. Neural networks
- 9. Advanced neural networks
- 10. Density estimation

... to practice

We will use Python notebooks and scikit-learn

Some references

Shai Shalev-Shwartz and Shai Ben-David (2014). Understanding Machine Learning - From Theory to Algorithms. Cambridge University Press Francis Bach (2022). Learning Theory from First Principles. Trevor Hastie, Robert Tibshirani, and Jerome Friedman (2001). The Elements of Statistical Learning. Springer New York Inc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 50 % final exam
- ▶ 50 % report (jupyter notebooks) on practical sessions
 - Each TD has practical lab: to do at home.
 - Report in notebook should be send <u>after 4 TDs</u>

• Can be done in groups of \approx 2 (max 3).

Python installations

- The practical sessions of the course will require to run jupyter notebooks.
- We recommend that you install python through the Anaconda distribution (python 3.7, 3.8 or 3.9 is preferrable) available at https://www.anaconda.com/products/distribution

You should check that you are able to create and open a jupyter notebook, and inside, run the following imports:

```
1 import matplotlib
```

- 2 import numpy
- 3 import sklearn
- 4 import pytorch
- 5 import pandas
- 6 import scipy

If any of these packages is missing, it can be installed with 'conda install numpy', the command being run in a terminal or in Anaconda prompt for Windows user.

Basics of machine learning

What is machine learning ?

Data in machine learning

From training data to prediction

Loss functions Empirical risk minimization Underfitting/overfitting

Model selection and validation Split your dataset !

A glimpse of decision theory & statistical learning Risk and empirical risk Risk decomposition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

First models: local averaging methods

Learning rates and curse of dimensionality No free-lunch theorem

Conclusion

Some applications

1. Energy networks, disease propagation

ヘロト 人間 とくほとくほとう

æ

Some applications

- 1. Energy networks, disease propagation
- 2. Image analysis (medical application, web)

(日)

э

Some applications

- 1. Energy networks, disease propagation
- 2. Image analysis (medical application, web)
- 3. Protein folding Jumper et al. 2021

Some applications

- 1. Energy networks, disease propagation
- 2. Image analysis (medical application, web)
- 3. Protein folding Jumper et al. 2021
- 4. Generative models https: //stablediffusionweb.com/

Some applications

- 1. Energy networks, disease propagation
- 2. Image analysis (medical application, web)
- 3. Protein folding Jumper et al. 2021
- 4. Generative models https: //stablediffusionweb.com/
- 5. Natural language processing https: //chat.openai.com/chat

AAATGCG....

Some applications

- 1. Energy networks, disease propagation
- 2. Image analysis (medical application, web)
- 3. Protein folding Jumper et al. 2021
- 4. Generative models https: //stablediffusionweb.com/
- 5. Natural language processing
 https:
 //chat.openai.com/chat
- For art https://www.youtube. com/watch?v=MwtVkPKx3RA

AAATGCG....

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Teach a machine to process automatically a some data in order to solve a given problem.

Teach a machine to process automatically a some data in order to solve a given problem.

Unsupervised learning: understanding the data

- Clustering & probability density estimation
- Dimensionality reduction

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Teach a machine to process automatically a some data in order to solve a given problem.

Unsupervised learning: understanding the data

- Clustering & probability density estimation
- Dimensionality reduction

Supervised learning: learning to predict

- Classification: classify points according to some labels
- Regression: predict real (vector) values

Some images and slides have been obtained by the courtesy of Rémi Flamary

(日) (四) (日) (日) (日)

Teach a machine to process automatically a some data in order to solve a given problem.

Unsupervised learning: understanding the data

- Clustering & probability density estimation
- Dimensionality reduction

Supervised learning: learning to predict

- Classification: classify points according to some labels
- Regression: predict real (vector) values

Not covered: reinforcement learning *i.e.* train a machine to choose actions that maximize a reward (games, autonomous vehicles, control).

Supervised classification examples

- e.g. to identify the numbers on images from a 16 × 16 gray level image (image classification)
- ► SPAM, fraud detection, disease classification ...

Clustering example

- Analyse n sequences (individuals) of d genetical responses
- Groups of similar samples ? Gene with similar expressions ?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Find your ML method

https:

//scikit-learn.org/stable/tutorial/machine_learning_map/index.html

Plan

What is machine learning ?

Data in machine learning

From training data to prediction

Loss functions Empirical risk minimization Underfitting/overfitting

Model selection and validation

Split your dataset !

A glimpse of decision theory & statistical learning Risk and empirical risk Risk decomposition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

First models: local averaging methods

Learning rates and curse of dimensionality No free-lunch theorem

Conclusion

Store a data point

Vectorial representation

One "sample", "data point", "individual":

$$\mathbf{x} = (x_1, \cdots, x_d)^{ op} \in \mathbb{R}^d$$

- d is the dimension, x_i is the *i*th information *i* of
 x
- Can describe information about an individual
- For an image x: each pixel of an image
- Descriptors of a cell, word embedding ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Unsupervised dataset

Unsupervised learning

- The dataset contains the samples (x_i)ⁿ_{i=1} where n is the number of samples of size d.
- d and n define the dimensionality of the learning problem.
- ▶ Data stored as a matrix X ∈ ℝ^{n×d} that contains the training samples as rows.

Unsupervised dataset

Unsupervised learning

- The dataset contains the samples (x_i)ⁿ_{i=1} where n is the number of samples of size d.
- d and n define the dimensionality of the learning problem.
- ▶ Data stored as a matrix X ∈ ℝ^{n×d} that contains the training samples as rows.

In ML vectors are sometimes described in row instead of column

Supervised dataset

Supervised learning

- ► The dataset contains the samples (x_i, y_i)ⁿ_{i=1} where x_i is the feature sample and y_i ∈ 𝔅 its label.
- ▶ The values to predict (label) can be concatenated in a vector $\mathbf{y} \in \mathcal{Y}^n$

Supervised dataset

Supervised learning

- The dataset contains the samples (x_i, y_i)ⁿ_{i=1} where x_i is the feature sample and y_i ∈ 𝔅 its label.
- \blacktriangleright The values to predict (label) can be concatenated in a vector $\mathbf{y} \in \mathcal{Y}^n$
- Semi-supervised learning: few labeled points are available, but a large number of unlabeled points are given.

Regression

Objective

$$(\mathbf{x}_i, y_i)_{i=1}^n \quad \Rightarrow \quad f: \mathbb{R}^d \to \mathbb{R}$$

▶ Train a function $f(\mathbf{x}) = y \in \mathcal{Y}$ predicting a continuous value $(\mathcal{Y} = \mathbb{R})$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Can be extended to multi-value prediction $(\mathcal{Y} = \mathbb{R}^p)$.

Regression

Objective

$$(\mathbf{x}_i, y_i)_{i=1}^n \quad \Rightarrow \quad f: \mathbb{R}^d \to \mathbb{R}$$

▶ Train a function $f(\mathbf{x}) = y \in \mathcal{Y}$ predicting a continuous value $(\mathcal{Y} = \mathbb{R})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Can be extended to multi-value prediction $(\mathcal{Y} = \mathbb{R}^p)$.

Hyperparameters

- Type of function (linear, kernel, neural network).
- Performance measure.
- Regularization.

Regression

Objective

$$(\mathbf{x}_i, y_i)_{i=1}^n \quad \Rightarrow \quad f: \mathbb{R}^d \to \mathbb{R}$$

▶ Train a function $f(\mathbf{x}) = y \in \mathcal{Y}$ predicting a continuous value $(\mathcal{Y} = \mathbb{R})$.

• Can be extended to multi-value prediction $(\mathcal{Y} = \mathbb{R}^{p})$.

Hyperparameters

- Type of function (linear, kernel, neural network).
- Performance measure.
- Regularization.

Methods

- ► Least Square (LS).
- ► Ridge regression, Lasso.
- Kernel regression.
- ► Deep learning.

Binary classification

Objective

$$(\mathbf{x}_i, y_i)_{i=1}^n \quad \Rightarrow \quad f: \mathbb{R}^d \to \{-1, 1\} \text{ or } \{0, 1\}$$

- ▶ Train a function $f(\mathbf{x}) = y \in \mathcal{Y}$ predicting a binary value.
- $f(\mathbf{x}) = 0$ defines the boundary on the partition of the feature space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Binary classification

Objective

$$(\mathbf{x}_i, y_i)_{i=1}^n \quad \Rightarrow \quad f: \mathbb{R}^d \to \{-1, 1\} \text{ or } \{0, 1\}$$

▶ Train a function $f(\mathbf{x}) = y \in \mathcal{Y}$ predicting a binary value.

• $f(\mathbf{x}) = 0$ defines the boundary on the partition of the feature space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Hyperparameters

- Type of function (linear, kernel, neural network).
- Performance measure.
- Regularization.

Binary classification

Objective

$$(\mathbf{x}_i, y_i)_{i=1}^n \quad \Rightarrow \quad f: \mathbb{R}^d \to \{-1, 1\} \text{ or } \{0, 1\}$$

▶ Train a function $f(\mathbf{x}) = y \in \mathcal{Y}$ predicting a binary value.

• $f(\mathbf{x}) = 0$ defines the boundary on the partition of the feature space.

Hyperparameters

- Type of function (linear, kernel, neural network).
- Performance measure.
- Regularization.

Methods

- Bayesian classifier (LDA, QDA)
- Linear and kernel discrimination
- Decision trees, random forests.
- ► Deep learning.

Multiclass classification

Objective

$$(\mathbf{x}_i, y_i)_{i=1}^n \quad \Rightarrow \quad f: \mathbb{R}^d \to \{1, \dots, K\}$$

- ► Train a function f(x) = y ∈ 𝔅 predicting an integer value (𝔅 = {1,..., 𝐾}).
- In practice K continuous score functions f_k are estimated and the prediction is

$$f(\mathbf{x}) = rg\max_k f_k(\mathbf{x})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Linear regression

In 1D: $x_j \in \mathbb{R}, y_j \in \mathbb{R}$. Goal: find the linear function $f : \mathbb{R} \to \mathbb{R}$ that "best predicts" y_j from x_j .

(日) (四) (日) (日) (日)
Linear regression

In 1D: $x_j \in \mathbb{R}, y_j \in \mathbb{R}$. Goal: find the linear function $f : \mathbb{R} \to \mathbb{R}$ that "best predicts" y_j from x_j .

Plan

What is machine learning ?

Data in machine learning

From training data to prediction

Loss functions Empirical risk minimization Underfitting/overfitting

Model selection and validation

Split your dataset !

A glimpse of decision theory & statistical learning Risk and empirical risk Risk decomposition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

First models: local averaging methods

Learning rates and curse of dimensionality No free-lunch theorem

Conclusion

The big picture of (parametrized) ML

How to find this function ?

The goal in the learning step will be to find the parameters $\hat{\theta}$ (hence the function) that minimizes a measure of error on the data

A loss function is $\ell:\mathcal{Y}\times\mathcal{Y}\rightarrow\mathbb{R}$ so that:

 ℓ (true value , predicted value) = how good is my prediction

A loss function is $\ell:\mathcal{Y}\times\mathcal{Y}\rightarrow\mathbb{R}$ so that:

 ℓ (true value , predicted value) = how good is my prediction

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

► E.g.
$$y_i \in \mathbb{R} \ \ell(y_i, f(\mathbf{x}_i)) = (y_i - f(\mathbf{x}_i))^2$$
 (square loss)

A loss function is $\ell:\mathcal{Y}\times\mathcal{Y}\rightarrow\mathbb{R}$ so that:

 ℓ (true value , predicted value) = how good is my prediction

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

► E.g.
$$y_i \in \mathbb{R} \ \ell(y_i, f(\mathbf{x}_i)) = (y_i - f(\mathbf{x}_i))^2$$
 (square loss)

► E.g.
$$\mathbf{y}_i \in \mathbb{R}^p \ \ell(y_i, f(\mathbf{x}_i)) = \|\mathbf{y}_i - f(\mathbf{x}_i)\|_2^2$$
 (square loss)

A loss function is $\ell:\mathcal{Y}\times\mathcal{Y}\rightarrow\mathbb{R}$ so that:

 ℓ (true value , predicted value) = how good is my prediction

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

► E.g.
$$y_i \in \mathbb{R} \ \ell(y_i, f(\mathbf{x}_i)) = (y_i - f(\mathbf{x}_i))^2$$
 (square loss)

► E.g.
$$\mathbf{y}_i \in \mathbb{R}^p \ \ell(y_i, f(\mathbf{x}_i)) = \|\mathbf{y}_i - f(\mathbf{x}_i)\|_2^2$$
 (square loss)

► E.g.
$$\mathbf{y}_i \in \mathbb{R}^p \ \ell(y_i, f(\mathbf{x}_i)) = \|\mathbf{y}_i - f(\mathbf{x}_i)\|_q^q \ (\ell_q \text{ loss})$$

A loss function is $\ell:\mathcal{Y}\times\mathcal{Y}\rightarrow\mathbb{R}$ so that:

 ℓ (true value , predicted value) = how good is my prediction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Regression problems

► E.g.
$$y_i \in \mathbb{R} \ \ell(y_i, f(\mathbf{x}_i)) = (y_i - f(\mathbf{x}_i))^2$$
 (square loss)
► E.g. $\mathbf{y}_i \in \mathbb{R}^p \ \ell(y_i, f(\mathbf{x}_i)) = \|\mathbf{y}_i - f(\mathbf{x}_i)\|_2^2$ (square loss)

► E.g.
$$\mathbf{y}_i \in \mathbb{R}^p \ \ell(y_i, f(\mathbf{x}_i)) = \|\mathbf{y}_i - f(\mathbf{x}_i)\|_q^q \ (\ell_q \ \text{loss})$$

Classification problems

► E.g.
$$y_i \in \{-1, 1\} \ \ell(y_i, f(\mathbf{x}_i)) = \mathbf{1}_{y_i \neq f(\mathbf{x}_i)} \ (0/1 \text{ loss})$$

A focus on classification problems $\mathcal{Y} = \{-1,1\}$

 $\ell(y_i, f(\mathbf{x}_i)) = \Phi(y_i f(\mathbf{x}_i))$ with Φ non-increasing.

A focus on classification problems $\mathcal{Y} = \{-1,1\}$

 $\ell(y_i, f(\mathbf{x}_i)) = \Phi(y_i f(\mathbf{x}_i))$ with Φ non-increasing.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $y_i f(\mathbf{x}_i)$ is **the margin** (on the board).

$$\blacktriangleright \ \ell(y_i, f(\mathbf{x}_i)) = \mathbf{1}_{y_i f(\mathbf{x}_i) \leq 0} \ (0/1 \text{ loss})$$

• $\ell(y_i, f(\mathbf{x}_i)) = \max\{0, 1 - y_i f(\mathbf{x}_i)\}$ (hinge loss: **SVM**)

•
$$\ell(y_i, f(\mathbf{x}_i)) = \log(1 + e^{-y_i f(\mathbf{x}_i)})$$
 (logistic loss)

A focus on classification problems $\mathcal{Y} = \{-1, 1\}$

 $\ell(y_i, f(\mathbf{x}_i)) = \Phi(y_i f(\mathbf{x}_i))$ with Φ non-increasing.

Cross-entropy

When f predicts a probability of belonging to a class.

▶ When
$$y_i \in \{0,1\}, f : \mathbb{R}^d \rightarrow [0,1]$$

$$\ell(y_i, f(\mathbf{x}_i)) = -y_i \log f(\mathbf{x}_i) - (1 - y_i) \log f(\mathbf{x}_i).$$
(1)

• When
$$y_i \in \{1, \cdots K\}$$
 and $f : \mathbb{R}^d \to [0, 1]^K$

▶ We do "one-hot encoding" of the labels $(y_i)_{i \in [n]} \to \mathbf{Y} \in \{0, 1\}^{n \times K}$. with $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_k(\mathbf{x}))$.

$$\ell(y_i, f(\mathbf{x}_i)) = -\sum_{k=1}^{K} Y_{i,k} \log(f_k(\mathbf{x}_i)).$$
(2)

Sigmoid and softmax

First case: in practice f(x) = σ(g(x)) where g : ℝ^d → ℝ and σ(z) = exp(z)/(1+exp(z)).
 Second case: f_j(x) = exp(g_j(x))/∑^K_{k=1} exp(g_k(x)) where g : ℝ^d → ℝ^K.

Minimizing the train error

To find f the idea is to **minimize the averaged error** on the training samples:

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(\mathbf{x}_i))$$
(ERM)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Minimizing the train error

To find f the idea is to **minimize the averaged error** on the training samples:

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(\mathbf{x}_i))$$
(ERM)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- It is called empirical risk minimization (ERM)
- Given the loss, finds the "best" f on the training data
- E.g. linear regression
- Same idea applies for unsupervised problem (reconstruction error)

Empirical risk minimization

Parametrized models

• In practice we do ERM with parametrized model $f = f_{\theta}$

$$\min_{\boldsymbol{\theta} \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\boldsymbol{\theta}}(\mathbf{x}_i))$$
(ERM)

Examples

Most classical example: linear least-squares regression (course 3)

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-oldsymbol{ heta}^{ op}\mathbf{x}_i)^2$$

For classification $\mathcal{Y} = \{-1, +1\}$ (see courses 3/5) Logistic regression: Support vector machine:

$$rac{1}{n}\sum_{i=1}^n \log(1+\exp(-y_ioldsymbol{ heta}^ op {f x}_i))$$

$$\frac{1}{n}\sum_{i=1}^{n}\max\{0,1-y_{i}\boldsymbol{\theta}^{\top}\mathbf{x}_{i}\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Empirical risk minimization

Parametrized models

• In practice we do ERM with parametrized model $f = f_{\theta}$

$$\min_{\boldsymbol{\theta} \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\boldsymbol{\theta}}(\mathbf{x}_i))$$
(ERM)

Examples

Most classical example: linear least-squares regression (course 3)

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-oldsymbol{ heta}^{ op}\mathbf{x}_i)^2$$

For classification $\mathcal{Y} = \{-1, +1\}$ (see courses 3/5) Logistic regression: Support vector machine:

$$\frac{1}{n}\sum_{i=1}^{n}\log(1+\exp(-y_i\boldsymbol{\theta}^{\top}\mathbf{x}_i)) \qquad \qquad \frac{1}{n}\sum_{i=1}^{n}\max\{0,1-y_i\boldsymbol{\theta}^{\top}\mathbf{x}_i\}$$

Once solved how do I know if my model is good ?

Underfitting and overfitting

Acc. 0.98/0.88 train/test

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Underfitting and overfitting

Complexity of a model

- Under-fitting when the model is too simple.
- Over-fitting occurs when the model is too complex
- Training data performance is not a good proxy for testing performance.
- We want to predict well on new data!
- Parameter and model validation.

Empirical risk minimization

Train by minimizing the train error

To find f the idea is to **minimize the averaged error** on the training samples:

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(\mathbf{x}_i)) + \lambda \operatorname{Reg}(f)$$
(ERM)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- It is called empirical risk minimization (ERM)
- Given the loss, finds the "best" f on the training data
- Teacher/student analogy
- Same idea applies for unsupervised problem (minimizing reconstruction error)

... but we want generalization !

- We want f to be good outside the training samples
- Add regularization ! (limit the complexity of f)
- But another problem: how to choose λ ?

Hyperparameters

- Are parameters that have to be selected/chosen to define a model.
- Used for the configuration of the model.
- They are not learned on the data !
- Examples (1): regularization strengh λ, number of neighbors k in k-NN, number of trees, number of iterations for an algorithm...
- Example (2): but also all the data pipeline (normalization...)

Parameters

- Are learned on the data.
- *θ* in linear regression, tree cuts,
 U ∈ ℝ^{d×k} in dimension reduction (PCA), centroids in k-means, weights of the neural network...

In scikit-learn

- 1 from sklearn import Model
- 2 hyperparameters = ...
- 3 clf = Model(hyperparameters) # define the model

4 cv.fit(X ,y) #train the model

Machine learning in practice

- **Data acquisition** : sensor, databases, manual or automatic labeling
- Pre-processing : denoising, formating, numerical conversion, normalization
- Feature extraction : manual when prior knowledge, feature selection dimensionality reduction
- **Model estimation** : classification, regression, clustering.
- **Validation** : model and parameter selection.

► Analysis : performance, uncertainty, interpretation of the model. Features extraction, selection and model estimation can be done simultaneously (deep learning, sparse models).

Plan

What is machine learning ?

Data in machine learning

From training data to prediction

Loss functions Empirical risk minimization Underfitting/overfitting

Model selection and validation Split your dataset !

A glimpse of decision theory & statistical learning Risk and empirical risk Risk decomposition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

First models: local averaging methods

Learning rates and curse of dimensionality No free-lunch theorem

Conclusion

Bias-complexity tradeoff

generalization error = estimation error + approximation error

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Select a model that is not too complex but not too simple !

Bias-complexity tradeoff

generalization error = estimation error + approximation error

Select a model that is not too complex but not too simple !

General principle

Estimate the generalization error on data not seen during training

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Is a rough estimate of the test error
- Select the model with the lowest "approximate" test error

Principle of Hold-Out cross-validation

- Split the training data in a training and validation sets (non overlapping).
- Train different models (different methods and/or hyperparameters) on the train data.
- Evaluate performance on the validation data and select the method/parameters with best performance.
- Validation set acts as a proxy of test data
- But only one split is a poor proxy !

Different ways to split the data

Cross-validation Arlot and Celisse 2010

- The training data is split in non-overlapping training/validation sets.
- Hold-Out uses a unique split and computes the performance on the validation set.
- More robust cross-validation approaches actually investigate several splits of the data and compute the average performance:
 - K-fold (split in K sets and use one split as test for all k)
 - Random sampling (aka Shuffle split) draws several random splittings.
- Scikit-learn implementation : sklearn.model_selection.cross_validate

Data splitting with Scikit-learn

- Scikit-learn implements iterator classes for data split in sklearn.model_selection.
- KFold is the classical K-fold cross-validation.
- StratifiedKFold ensures a data split that preserves the proportion of classes.

э

ShuffleSplit randomly selects a proportion of the samples for train/validation.

Validation with Scikit-learn

Principle

- GridSearchCV takes a model and a grid of hyperparameters as input and performs cross-validation.
- Number of splits and type of data splitting can be chosen.
- For large number of parameters complexity is exponential, RandomizedSearchCV can be more efficient.

Python code

- 0.8

0.6

Plan

What is machine learning ?

Data in machine learning

From training data to prediction

Loss functions Empirical risk minimization Underfitting/overfitting

Model selection and validation Split your dataset !

A glimpse of decision theory & statistical learning Risk and empirical risk Risk decomposition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

First models: local averaging methods

Learning rates and curse of dimensionality No free-lunch theorem

Conclusion

Training data

• We have access to *n* r.v. $(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_n, y_n) \sim p$ and loss.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Randomness is the key for a mathematical analysis.
- $p \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ is the **unknown** data distribution.

Training data

- We have access to *n* r.v. $(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_n, y_n) \sim p$ and loss.
- Randomness is the key for a mathematical analysis.
- $p \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ is the **unknown** data distribution.

The (expected) risk

• For a function $f : \mathcal{X} \to \mathcal{Y}$ defined as:

$$\mathcal{R}_p(f) = \mathop{\mathbb{E}}_{(\mathbf{x},y)\sim p}[\ell(y,f(\mathbf{x}))]$$

Generalization error: with the true (unknown) data distrib.

Training data

- We have access to *n* r.v. $(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_n, y_n) \sim p$ and loss.
- Randomness is the key for a mathematical analysis.
- $p \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ is the **unknown** data distribution.

The (expected) risk

• For a function $f : \mathcal{X} \to \mathcal{Y}$ defined as:

$$\mathcal{R}_p(f) = \mathop{\mathbb{E}}_{(\mathbf{x},y)\sim p}[\ell(y,f(\mathbf{x}))]$$

• Generalization error: with the true (unknown) data distrib. The empirical risk

Averaged error on the empirical distribution of the data

$$\widehat{\mathcal{R}}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(\mathbf{x}_i))$$

► $\widehat{\mathcal{R}}(f)$ is a random quantity: ML is statistics ! \Box > < B > < B > < B > < B > < B > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < < C > < < C > < < C > < < C > < < C > < < C > < < C > < < C > < < C > < < C > < < C > < < C > < < C > < < C > < < C > < < C > < < C > < < C > < < C > < < C > < < C > < <

(one) Ultimate goal of ML

▶ Find a function *f*^{*} that minimizes the (expected) risk:

 $f^{\star} \in \operatorname*{arg\,min}_{f:\mathcal{X} \rightarrow \mathcal{Y}} \mathcal{R}_{p}(f)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(one) Ultimate goal of ML

▶ Find a function *f*^{*} that minimizes the (expected) risk:

```
f^{\star} \in \operatorname*{arg\,min}_{f:\mathcal{X} 
ightarrow \mathcal{Y}} \mathcal{R}_{p}(f)
```

Good news ! there is one (TD1): the Bayes predictor

$$f^{\star}(\mathbf{x}_{0}) = \underset{y' \in \mathcal{Y}}{\operatorname{arg\,min}} \mathbb{E}[\ell(y, y') | \mathbf{x} = \mathbf{x}_{0}] = \int_{\mathcal{Y}} \ell(y, y') \mathrm{d}p(y | \mathbf{x}_{0})$$

► Given a supervised learning problem, the Bayes risk R^{*} = R_p(f^{*}) is the optimal performance.

(one) Ultimate goal of ML

▶ Find a function *f*^{*} that minimizes the (expected) risk:

```
f^{\star} \in \operatorname*{arg\,min}_{f:\mathcal{X} 
ightarrow \mathcal{Y}} \mathcal{R}_{p}(f)
```

Good news ! there is one (TD1): the Bayes predictor

$$f^{\star}(\mathbf{x}_{0}) = \underset{y' \in \mathcal{Y}}{\operatorname{arg\,min}} \mathbb{E}[\ell(y, y') | \mathbf{x} = \mathbf{x}_{0}] = \int_{\mathcal{Y}} \ell(y, y') \mathrm{d}p(y | \mathbf{x}_{0})$$

► Given a supervised learning problem, the Bayes risk R^{*} = R_p(f^{*}) is the optimal performance.

Excess risk

▶ We cannot calculate *f*^{*} but we would like to get closer to it

• For a function $f : \mathcal{X} \to \mathcal{Y}$ the excess risk is:

$$\mathcal{R}(f) - \mathcal{R}^{\star} \geq 0$$

Risk decomposition

How to obtain guarantees ?

Practical machine learning ERM:

$$\widehat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta} \in \Theta}{\arg\min} \ \widehat{\mathcal{R}}(f_{\boldsymbol{\theta}}) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\boldsymbol{\theta}}(\mathbf{x}_i))$$

• Question: what is the excess risk of $f_{\hat{\theta}}$?

$$\mathcal{R}(f_{\widehat{\theta}}) - \mathcal{R}^{\star} = ?$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ
How to obtain guarantees ?

Practical machine learning ERM:

$$\widehat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta} \in \Theta}{\arg\min} \ \widehat{\mathcal{R}}(f_{\boldsymbol{\theta}}) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\boldsymbol{\theta}}(\mathbf{x}_i))$$

• Question: what is the excess risk of $f_{\hat{\theta}}$?

$$\mathcal{R}(f_{\widehat{\theta}}) - \mathcal{R}^{\star} = ?$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Bias-complexity tradeoff (see TD2)

 $\mathcal{R}(f_{\hat{\theta}}) - \mathcal{R}^{\star} =$ estimation error + approximation error

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Plan

What is machine learning ?

Data in machine learning

From training data to prediction

Loss functions Empirical risk minimization Underfitting/overfitting

Model selection and validation Split your dataset 1

A glimpse of decision theory & statistical learning Risk and empirical risk Risk decomposition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

First models: local averaging methods

Learning rates and curse of dimensionality No free-lunch theorem

Conclusion

Objective

Remember: minimize the risk = find the Bayes predictor.

• Regression with square loss: $f^{\star}(\mathbf{x}_0) = \mathbb{E}[y|\mathbf{x} = \mathbf{x}_0]$

Classification with 0/1 loss: $f^*(\mathbf{x}_0) = \underset{v \in \mathcal{V}}{\arg \max} p(y' = y | \mathbf{x} = \mathbf{x}_0)$

• Generally: $f^*(\mathbf{x}_0) = \underset{y' \in \mathcal{Y}}{\arg\min} \mathbb{E}[\ell(y, y') | \mathbf{x} = \mathbf{x}_0]$

Problem: we don't know the conditional data distribution $p(y|\mathbf{x})$!

Objective

Remember: minimize the risk = find the Bayes predictor.

- Regression with square loss: $f^{\star}(\mathbf{x}_0) = \mathbb{E}[y|\mathbf{x} = \mathbf{x}_0]$
- Classification with 0/1 loss: $f^*(\mathbf{x}_0) = \underset{v \in \mathcal{V}}{\arg \max} p(y' = y | \mathbf{x} = \mathbf{x}_0)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Generally:
$$f^{\star}(\mathbf{x}_0) = \underset{y' \in \mathcal{Y}}{\arg\min} \mathbb{E}[\ell(y, y') | \mathbf{x} = \mathbf{x}_0]$$

Problem: we don't know the conditional data distribution $p(y|\mathbf{x})$!

Local averaging methods

Main idea: find an estimation $\hat{p}(y|\mathbf{x})$ of $p(y|\mathbf{x})$

• Regression:
$$\widehat{f}(\mathbf{x}_0) = \int y \mathrm{d}\widehat{p}(y|\mathbf{x}_0)$$

Classification:
$$\hat{f}(\mathbf{x}_0) = \underset{y \in \mathcal{Y}}{\arg \max} \ \hat{p}(y' = y | \mathbf{x} = \mathbf{x}_0)$$

Objective

Remember: minimize the risk = find the Bayes predictor.

- Regression with square loss: $f^{\star}(\mathbf{x}_0) = \mathbb{E}[y|\mathbf{x} = \mathbf{x}_0]$
- Classification with 0/1 loss: $f^*(\mathbf{x}_0) = \underset{y \in \mathcal{Y}}{\arg \max} p(y' = y | \mathbf{x} = \mathbf{x}_0)$

• Generally:
$$f^{\star}(\mathbf{x}_0) = \underset{y' \in \mathcal{Y}}{\arg\min} \mathbb{E}[\ell(y, y') | \mathbf{x} = \mathbf{x}_0]$$

Problem: we don't know the conditional data distribution $p(y|\mathbf{x})$!

Local averaging methods

Main idea: find an estimation $\hat{p}(y|\mathbf{x})$ of $p(y|\mathbf{x})$

• Regression:
$$\widehat{f}(\mathbf{x}_0) = \int y \mathrm{d}\widehat{p}(y|\mathbf{x}_0)$$

Classification:
$$\hat{f}(\mathbf{x}_0) = \underset{y \in \mathcal{Y}}{\arg \max} \ \hat{p}(y' = y | \mathbf{x} = \mathbf{x}_0)$$

Benefits/inconvenients

- + No optimization problem & well understood Györfi et al. 2002
- \pm Simple estimators (easy to find but simple)
- ► Not very adaptive to the regularity of the function (curse of dim)

"Linear" estimator The estimator of $p(y|\mathbf{x})$ has the form:

$$\widehat{p}(y|\mathbf{x}) = \sum_{i=1}^{n} \omega_i(\mathbf{x}) \delta_{y_i}(y)$$

- $\omega_i(\mathbf{x})$ are weights, $\forall \mathbf{x}, \omega_i(\mathbf{x}) \ge 0$ and $\sum_{i=1}^n \omega_i(\mathbf{x}) = 1$
- ▶ $\omega_i : \mathcal{X} \to \mathbb{R}_+$ depends on the input data $(\mathbf{x}_i)_{i \in \llbracket n \rrbracket}$ only.

"Linear" estimator The estimator of $p(y|\mathbf{x})$ has the form:

$$\widehat{p}(y|\mathbf{x}) = \sum_{i=1}^{n} \omega_i(\mathbf{x}) \delta_{y_i}(y)$$

•
$$\omega_i(\mathbf{x})$$
 are weights, $\forall \mathbf{x}, \omega_i(\mathbf{x}) \geq 0$ and $\sum_{i=1}^n \omega_i(\mathbf{x}) = 1$

▶ $\omega_i : \mathcal{X} \to \mathbb{R}_+$ depends on the input data $(\mathbf{x}_i)_{i \in \llbracket n \rrbracket}$ only.

Examples

- Regression (square loss): $\hat{f}(\mathbf{x}_0) = ?$
- Classification (binary): $\hat{f}(\mathbf{x}_0) = ?$

Approximate the conditional distribution

"Linear" estimator

The estimator of $p(y|\mathbf{x})$ has the form:

$$\widehat{p}(y|\mathbf{x}) = \sum_{i=1}^{n} \omega_i(\mathbf{x}) \delta_{y_i}(y)$$

• $\omega_i(\mathbf{x})$ are weights, $\forall \mathbf{x}, \omega_i(\mathbf{x}) \ge 0$ and $\sum_{i=1}^n \omega_i(\mathbf{x}) = 1$

▶ $\omega_i : \mathcal{X} \to \mathbb{R}_+$ depends on the input data $(\mathbf{x}_i)_{i \in \llbracket n \rrbracket}$ only.

Examples

- Regression (square loss): $\hat{f}(\mathbf{x}_0) = \sum_{i}^{n} \omega_i(\mathbf{x}_0) y_i$ local averaging
- ► Classification (binary): $\hat{f}(\mathbf{x}_0) = \underset{q \in \{+1,-1\}}{\operatorname{arg max}} \sum_{i=1}^n \omega_i(\mathbf{x}_0) \mathbf{1}_{y_i=q}$ weighted

majority vote

► e.g. data agnostic:
$$\omega_i(\mathbf{x}) = \frac{1}{n}$$
, $\widehat{f}(\mathbf{x}_0) = \underset{q \in \{+1, -1\}}{\operatorname{arg max}} \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{y_i = q}$

Partition estimators

First basic idea: split your space

▶ $\mathcal{X} = \cup_{j \in J} A_j$ a partition of the input space $(j \neq j', A_j \cap A_{j'} = \emptyset)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Partition estimators

First basic idea: split your space

▶ $\mathcal{X} = \cup_{j \in J} A_j$ a partition of the input space $(j \neq j', A_j \cap A_{j'} = \emptyset)$

- $A(\mathbf{x})$ is the unique partition corresponding to \mathbf{x}
- Weights are defined by:

$$\forall i \in \{1, \cdots, n\}, \ \omega_i(\mathbf{x}) = \frac{\mathbf{1}_{\mathbf{x}_i \in A(\mathbf{x})}}{\sum_{j=1}^n \mathbf{1}_{\mathbf{x}_j \in A(\mathbf{x})}}$$

► $\forall \mathbf{x} \in A_k, \omega_i(\mathbf{x}) = 1/\#\{ \text{ train samples in } A_k \} \text{ if } \mathbf{x} \in A_k \text{ else } 0.$

► If no train samples in A_k then $\forall i \in [[n]], w_i(\mathbf{x}) = 1/n$

Regressogram

- Let $x_i \sim \text{Unif}([0, 1])$ with n = 50
- True function $f(x) = \sin(\pi x)$ and we observe $y_i = f(x_i) + \varepsilon_i$ where $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Regression with partition estimator $\hat{f}(\mathbf{x}) = \sum_{i=1}^{n} \omega_i(\mathbf{x}) y_i$
- Local average of the ouputs y_i in each region/partition
- Known as "regressogram": piecewise affine estimator

Birds of a feather flock together

► Given a new input x KNN predictor looks at the K nearest points in the dataset (x_{i1}(x), y_{i1}(x)), · · · , (x_{iK}(x), y_{iK}(x))

• Prediction for $\mathbf{x} =$ majority vote / averaging on K neighbors

Birds of a feather flock together

► Given a new input x KNN predictor looks at the K nearest points in the dataset (x_{i1}(x), y_{i1}(x)), · · · , (x_{iK}(x), y_{iK}(x))

• Prediction for $\mathbf{x} =$ majority vote / averaging on K neighbors

• e.g. regression
$$\hat{f}(\mathbf{x}) = \frac{1}{K} \sum_{i \in \{i_1(\mathbf{x}), \dots, i_K(\mathbf{x})\}} y_i = \frac{1}{K} \sum_{i \in \mathcal{N}^K(\mathbf{x})} y_i$$

Birds of a feather flock together

► Given a new input x KNN predictor looks at the K nearest points in the dataset (x_{i1}(x), y_{i1}(x)), · · · , (x_{iK}(x), y_{iK}(x))

• Prediction for $\mathbf{x} =$ majority vote / averaging on K neighbors

• e.g. regression
$$\hat{f}(\mathbf{x}) = \frac{1}{K} \sum_{i \in \{i_1(\mathbf{x}), \dots, i_K(\mathbf{x})\}} y_i = \frac{1}{K} \sum_{i \in \mathcal{N}^K(\mathbf{x})} y_i$$

• Corresponds to $\omega_i(\mathbf{x}) = \frac{1}{K}$ if $i \in \mathcal{N}^K(\mathbf{x})$ else 0

Birds of a feather flock together

- ▶ Given a new input x KNN predictor looks at the K nearest points in the dataset (x_{i₁(x)}, y_{i₁(x)}), · · · , (x_{i_K(x)}, y_{i_K(x)})
- Prediction for $\mathbf{x} =$ majority vote / averaging on K neighbors

• e.g. regression
$$\hat{f}(\mathbf{x}) = \frac{1}{K} \sum_{i \in \{i_1(\mathbf{x}), \dots, i_K(\mathbf{x})\}} y_i = \frac{1}{K} \sum_{i \in \mathcal{N}^K(\mathbf{x})} y_i$$

- Corresponds to $\omega_i(\mathbf{x}) = \frac{1}{K}$ if $i \in \mathcal{N}^K(\mathbf{x})$ else 0
- K needs to be validated (cross-validation) + naive complexity O(nd) per test point x

Birds of a feather flock together

- ▶ Given a new input x KNN predictor looks at the K nearest points in the dataset (x_{i₁(x)}, y_{i₁(x)}), · · · , (x_{i_K(x)}, y_{i_K(x)})
- Prediction for $\mathbf{x} =$ majority vote / averaging on K neighbors

• e.g. regression
$$\hat{f}(\mathbf{x}) = \frac{1}{K} \sum_{i \in \{i_1(\mathbf{x}), \dots, i_K(\mathbf{x})\}} y_i = \frac{1}{K} \sum_{i \in \mathcal{N}^K(\mathbf{x})} y_i$$

• Corresponds to $\omega_i(\mathbf{x}) = \frac{1}{K}$ if $i \in \mathcal{N}^K(\mathbf{x})$ else 0

K needs to be validated (cross-validation) + naive complexity O(nd) per test point x

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

"Kernel" function

 $\blacktriangleright \ \kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+ \text{ a pointwise non-negative function}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• κ measures similarity between points

"Kernel" function

- $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ a pointwise non-negative function
- κ measures similarity between points
- ▶ In practice when $\mathcal{X} \subseteq \mathbb{R}^d$, $k(\mathbf{x}, \mathbf{x}') = q_h(\mathbf{x} \mathbf{x}') = h^{-d}q(\frac{1}{h}(\mathbf{x} \mathbf{x}'))$
- ▶ $q : \mathbb{R}^d \to \mathbb{R}_+$ that has large values around 0, h > 0 the **bandwidth**

"Kernel" function

• $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ a pointwise non-negative function

- κ measures similarity between points
- ▶ In practice when $\mathcal{X} \subseteq \mathbb{R}^d$, $k(\mathbf{x}, \mathbf{x}') = q_h(\mathbf{x} \mathbf{x}') = h^{-d}q(\frac{1}{h}(\mathbf{x} \mathbf{x}'))$
- ▶ $q : \mathbb{R}^d \to \mathbb{R}_+$ that has large values around 0, h > 0 the **bandwidth**

- ▶ e.g. box kernel $q(\mathbf{x}) = \mathbf{1}_{\|\mathbf{x}\|_2 \leq 1}$, gaussian $q(\mathbf{x}) = \exp(-\|\mathbf{x}\|_2/2)$
- I same name but not the same as kernels in SVM !

"Kernel" function

• $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ a pointwise non-negative function

- κ measures similarity between points
- ▶ In practice when $\mathcal{X} \subseteq \mathbb{R}^d$, $k(\mathbf{x}, \mathbf{x}') = q_h(\mathbf{x} \mathbf{x}') = h^{-d}q(\frac{1}{h}(\mathbf{x} \mathbf{x}'))$
- ▶ $q : \mathbb{R}^d \to \mathbb{R}_+$ that has large values around 0, h > 0 the **bandwidth**
- ▶ e.g. box kernel $q(\mathbf{x}) = \mathbf{1}_{\|\mathbf{x}\|_2 \leq 1}$, gaussian $q(\mathbf{x}) = \exp(-\|\mathbf{x}\|_2/2)$

The Nadaraya-Watson estimator

The weights are defined by:

$$\omega_i(\mathbf{x}) = \frac{\kappa(\mathbf{x}, \mathbf{x}_i)}{\sum_{j=1}^n \kappa(\mathbf{x}, \mathbf{x}_j)}$$

• $\omega_i(\mathbf{x})$ is close to 1 when \mathbf{x} is similar to \mathbf{x}_i

• e.g. regression $\hat{f}(\mathbf{x}) = \sum_{i=1}^{n} \frac{\kappa(\mathbf{x}, \mathbf{x}_i) y_i}{\sum_{j=1}^{n} \kappa(\mathbf{x}, \mathbf{x}_j)}$, smoothness depends on h

• Complexity of calculating $\widehat{f}(\mathbf{x})$ usually in $\mathcal{O}(nd)$

Plan

What is machine learning ?

Data in machine learning

From training data to prediction

Loss functions Empirical risk minimization Underfitting/overfitting

Model selection and validation

A glimpse of decision theory & statistical learning Risk and empirical risk Risk decomposition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

First models: local averaging methods

Learning rates and curse of dimensionality No free-lunch theorem

Conclusion

Question

Once we have selected a model how many samples n do we need to train it ?

Question

Once we have selected a model how many samples n do we need to train it ?

The answer is statistical

Can I bound (w.h.p. or in expectation)

excess risk = estimation error + approximation error $\leq h(n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▶ Ideally the function $h(n) \xrightarrow[n \to +\infty]{} 0$ fast: it is called the *learning rate*

Learning rates & excess risk

Question

Once we have selected a model how many samples n do we need to train it ?

The answer is statistical

Can I bound (w.h.p. or in expectation)

excess risk = estimation error + approximation error $\leq h(n)$

▶ Ideally the function $h(n) \xrightarrow[n \to +\infty]{} 0$ fast: it is called the *learning rate*

Curse of dimensionality

▶ If the best function *f*^{*} is only Lipschitz-continuous:

 $\mathbb{E}[\text{ excess risk }] \lesssim n^{-1/d}$

(日) (日) (日) (日) (日) (日) (日) (日)

- ▶ This rate is unavoidable without further knowledge on *f*^{*}
- Slow rates: exponentially many samples are needed !

Curse of dimensionality

Think about interpolation: goal find $f : [0,1]^d \to \mathbb{R}$

- You have n values of this function f(x_i) at sampled locations x_i
- To find f you want to interpolate between the $f(x_i)$'s
- If f is not regular, a good approximation requires precise covering of [0, 1]^d (small meshes)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Curse of dimensionality

Think about interpolation: goal find $f : [0,1]^d \to \mathbb{R}$

- You have n values of this function f(x_i) at sampled locations x_i
- To find f you want to interpolate between the $f(x_i)$'s
- If f is not regular, a good approximation requires precise covering of [0, 1]^d (small meshes)

Problem: points are isolated in high dimension

- ▶ Vol. of a hypercube with edge length r < 1 is r^d : quickly $\downarrow 0$ as $d \rightarrow \infty$
- To compensate you need a number of sample which grows exponentially with d

Curse of dimensionality

Main ideas

- Without prior on f* the required number of samples n to estimate f* is exponential in d.
- In high dim it is easy to overfit a model.
- The notion of nearest neighbors vanishes in high dim.
- Three remedies: use simple models (linear), dimensionality reduction or prior on f*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Question

Once we have selected a model how many samples n do we need to train it ?

The answer is statistical

```
Can I bound (w.h.p. or in expectation)
```

```
excess risk = estimation error + approximation error \leq h(n)
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Curse of dimensionality (see rates in Györfi et al. 2002; Bach 2022)

Learning rates & excess risk

Question

Once we have selected a model how many samples n do we need to train it ?

The answer is statistical

excess risk = estimation error + approximation error $\leq h(n)$

Curse of dimensionality (see rates in Györfi et al. 2002; Bach 2022)

A new hope: prior knowledge on the Bayes predictor

▶ If the best function *f*^{*} is smooth (bounded *s*-th order derivatives):

 $\mathbb{E}[\text{ excess risk }] \lesssim n^{-s/d}$

- Smoothness helps ! But also if data is low-dimensional.
- ► Even better: linear \mathbb{E} [excess risk] = $\frac{\sigma^2 d}{n}$, finite hypothesis space: on the board !

One algorithm to rule them all ?

After all, is it possible to learn all tasks with one algorithm ?
After all, is it possible to learn all tasks with one algorithm ?

►
$$D_p(n) = \{(x_i, y_i)\}_{i \in [n]}$$
 where $(x_i, y_i) \sim p$ *i.i.d.*

Very abstract way: an algorithm A is a mapping from D_p(n) to a function from X to Y

• Goal: find \mathcal{A} such that $\mathcal{R}_p(\mathcal{A}(D_p(n))) - \mathcal{R}_p^{\star}$ is small

After all, is it possible to learn all tasks with one algorithm ?

►
$$D_p(n) = \{(x_i, y_i)\}_{i \in [n]}$$
 where $(x_i, y_i) \sim p$ *i.i.d.*

Very abstract way: an algorithm A is a mapping from D_p(n) to a function from X to Y

• Goal: find \mathcal{A} such that $\mathcal{R}_p(\mathcal{A}(D_p(n))) - \mathcal{R}_p^{\star}$ is small

No free lunch theorem

Binary classif. with 0 - 1 loss, with \mathcal{X} infinite. Let $\mathcal{P} =$ set of all prob. distributions on $\mathcal{X} \times \{0, 1\}$. $\forall n > 0, \forall \mathcal{A}:$ $\sup_{p \in \mathcal{P}} \mathbb{E}[\mathcal{R}_p(\mathcal{A}(D_p(n)))] - \mathcal{R}_p^* \ge 1/2$

After all, is it possible to learn all tasks with one algorithm ?

►
$$D_p(n) = \{(x_i, y_i)\}_{i \in [n]}$$
 where $(x_i, y_i) \sim p$ *i.i.d.*

Very abstract way: an algorithm A is a mapping from D_p(n) to a function from X to Y

• Goal: find \mathcal{A} such that $\mathcal{R}_p(\mathcal{A}(D_p(n))) - \mathcal{R}_p^*$ is small

No free lunch theorem

Binary classif. with 0 - 1 loss, with \mathcal{X} infinite. Let $\mathcal{P} =$ set of all prob. distributions on $\mathcal{X} \times \{0, 1\}$. $\forall n > 0, \forall \mathcal{A}:$ $\sup_{p \in \mathcal{P}} \mathbb{E}[\mathcal{R}_p(\mathcal{A}(D_p(n)))] - \mathcal{R}_p^* \ge 1/2$

For any A, for a fixed n, there is a data distribution that makes the algorithm useless (same as the chance level)

Plan

What is machine learning ?

Data in machine learning

From training data to prediction

Loss functions Empirical risk minimization Underfitting/overfitting

Model selection and validation

Spiit your dataset !

A glimpse of decision theory & statistical learning Risk and empirical risk Risk decomposition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

First models: local averaging methods

Learning rates and curse of dimensionality No free-lunch theorem

Conclusion

Other problems

Fairness:

Ping-pong ball (73%)

Rugby Ball (18%)

Baseball player (69%)

Ping-pong ball (32%)

- Volleyball (25%)
- Ping-pong ball (92%)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Interpretability
- Ecological problems
- And many more ...

References I

- Arlot, Sylvain and Alain Celisse (2010). "A survey of cross-validation procedures for model selection". In: *Statistics Surveys* 4.
- Bach, Francis (2022). Learning Theory from First Principles.
 - Györfi, L. et al. (2002). A Distribution-Free Theory of Nonparametric Regression. Springer Series in Statistics. Springer New York.
- Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2001). *The Elements of Statistical Learning*. Springer New York Inc.
- Jumper, John et al. (2021). "Highly accurate protein structure prediction with AlphaFold". In: *Nature* 596.7873, pp. 583–589.
- Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding Machine Learning - From Theory to Algorithms. Cambridge University Press.