
Fundamentals of machine learning
Course 3: linear regression

Mathurin Massias & Titouan Vayer
email: mathurin.massias@inria.fr, titouan.vayer@inria.fr

February 3, 2025

Linear regression

A linear regression model assumes that the regression function f is linear
in the inputs x = (x1, . . . , xd)T ∈ Rd , or that a linear function is a good
approximation to it:

y = f (x) ∼ θ>x + θ0, θ ∈ Rd , θ0 ∈ R

1D toy example
{xj} ∈ R, {yj} ∈ R. Goal: find the linear function f : R→ R that “best
predicts” yj from xj for all j .

Linear regression

A linear regression model assumes that the regression function f is linear
in the inputs x = (x1, . . . , xd)T ∈ Rd , or that a linear function is a good
approximation to it:

y = f (x) ∼ θ>x + θ0, θ ∈ Rd , θ0 ∈ R

1D toy example
{xj} ∈ R, {yj} ∈ R. Goal: find the linear function f : R→ R that “best
predicts” yj from xj for all j .

Why linear regression?

Advantages ?

I simple

I interpretable (easy to understand how the input affects the output)

I can outperform nonlinear models in case of: small training sets,
sparsity (few important features)

I linear models can be applied to transformations of the inputs

How does linear regression work?

Given training data xi ∈ Rd , yi ∈ R ∀i = 1, . . . , n

Learning step: find the parameters θ̂ (hence the function) that
minimizes a measure of error on the data

min
θ

n∑
i=1

`(fθ(xi)− yi)

The linear model

For one sample x:

I Model:

fθ(x) = θ0 +
d∑

j=1

xjθj ∈ R

I Parameters (unknowns):

θ = (θ0, . . . , θd)T ∈ Rd+1

I Training data:

{(x1, y1), . . . , (xn, yn)},
xi ∈ Rd , yi ∈ R

Notation
xi : vector
xi : scalar

For the entire training set:
Denote

X =


1 xT1
1 xT2
...
1 xTn

 ∈ Rn×(d+1)

y =


y1

y2

...
yn

 ∈ Rn

fθ(x) = Xθ ∼ y

Which measure of error?

Least squares estimation method
Square loss ` : R× R→ R:

`(yi , fθ(xi)) = (yi − fθ(xi))2.

Error: RSS= residual sum of squares

RSS(θ) =
n∑

i=1

(yi − fθ(xi))2 =
n∑

i=1

(yi − θ0 −
d∑

j=1

Xijθj)
2

How to minimize the least-squares?

We can write the residual sum of squares as:

RSS(θ) = (y − Xθ)T (y − Xθ) = ‖y − Xθ‖2

The learning problem:
min
θ
‖y − Xθ‖2

This admits an explicit solution!
RSS(θ) is a quadratic function with derivatives

∇RSS(θ) = −2XT (y − Xθ), ∇2RSS(θ) = 2XTX .

Assuming X full column rank, XTX is SPD and the unique solution
satisfies:

XT (y − Xθ) = 0→ θ̂ = (XTX)−1XTy = X †y

θ̂ OLS estimator (ordinary least squares)
X † Moore-Penrose pseudoinverse, linked to Singular Value Decomposition
https://mathurinm.github.io/assets/2022_ens/class.pdf, Def 0.12 &

0.13

https://mathurinm.github.io/assets/2022_ens/class.pdf

Geometrical interpretation

The fitted (predicted) values are:

ŷ = fθ̂(x)

ŷ = X θ̂ = X (XTX)−1XTy = XX †y

Geometrical interpretation

y = y − Xθ + Xθ︸︷︷︸
∈col(X)

Orthogonality condition on the
residual:

XT (y − Xθ) = 0

→ ŷ projection of y onto col(X)

What if X is not full (column) rank?

I If X is not full rank, it ≈ means that two inputs are correlated

I θ̂ is not unique

I Fitted values are still projection of y onto col(X), but no unique way
of expressing θ

I θ̂† = X †y gives the minimum norm solution: among all parameters

θ that minimize ‖y − Xθ‖2, θ̂† has minimal `2 norm, i.e.:

θ̂† = argmin ‖θ‖ subject to θ ∈ argmin ‖y − Xθ‖2

How to measure the quality of the model?

I Mean squared error:

MSE =
RSS

n
=

1

n

n∑
i=1

(yi − ŷi)
2

I R squared:

R2 = 1–

∑n
i=1 (yi–ŷi)

2∑n
i=1 (yi–ȳ)2

We can see the R2 as the error of the model divided by the error of
a basic model who predicts the mean for all inputs.

MSE-R2 a comparison

Properties and interpretation of R2

I The higher the better, the max is 100% (all predictions are exact).

I No minimum: basic model gets 0%, a negative R2 is really bad.

Advantages and disadvantages

I Facilitate comparisons between models. The MSE depends on the

absolute value of the variable to predict: cannot say if it is large or not, R2 is

normalized.

I No information on the mean error of the model on the predictions

→ good to couple it with the MSE.

Linear regression with Scikit-learn

Principle

I First split the data into train
and test

I LinearRegression() builds a
linear model

I lin.fit fits the model to the data

I lin.coef gives the θ

I r2 score computed the R2

Python code
1 from sklearn.model selection import

train test split
2 from sklearn.linear model import

LinearRegression
3 from sklearn.metrics import r2 score
4

5 X train, X test, y train, y test =
train test split(X, y)

6 lin = LinearRegression()
7 lin.fit(X train, y train)
8 lin.coef
9

10

11 r2 score(y test, lin.predict(X test))

Example: diabetes dataset

Objective
Predict, based on diagnostic measurements on the patients with diabetes,
a quantitative measure of disease progression after one year

Predictors: d = 10 variables
I age

I sex

I body mass index

I average blood pressure

I six blood serum measurements

Data
n = 442 diabetes patients

Reference
https://scikit-learn.org/stable/modules/generated/sklearn.

datasets.load_diabetes.html

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html

Linear regression in statistical learning theory

I X and Y vector spaces of all possible inputs/outputs.

I Unknown probability distribution p(z) = p(x, y) on Z = X × Y
I The training set S = {(x1, y1), . . . , (xn, yn)} is made up of n samples

from this probability distribution

I Inference problem: finding a function f : X → Y such that f (x) ∼ y
and the hypothesis space is the set of linear functions L
parametrized by θ

I Let `(f (x), y) be the loss function, a metric for the difference
between the predicted value f (x) and the actual value y .

I The expected risk is defined to be

I [f] =

∫
X×Y

`(f (x), y) p(x, y) dx dy

I The target function f = argmin{h∈L}I [h]

I Because p(x, y) is unknown, a proxy measure for the expected risk

must be used: the empirical risk IS [f] =
1

n

n∑
i=1

`(f (xi), yi)

Linear regression in statistical learning theory

I A learning algorithm that chooses fS = arg minf∈L IS [f] is called
empirical risk minimization: least-squares in our case

I Learning algorithm ≡ find the best θ.

I Learning algorithm gives a value for θ that depends on the training
sample, but θ is actually a random variable.

I What are the statistical properties of this random variable?

I Statistical learning theory studies θ as an estimator

I In particular we will study the properties of the OLS (ordinary least
squares) estimator θ̂ = (XTX)−1XTy

Statistical estimators

I Let θ be a parameter that needs to be estimated.

I An estimator is a rule for calculating an estimate of a given quantity
based on observed data.
Example: sample mean x̂ = 1

n

∑n
i=1 xi is an estimator for the

population mean (we don’t have access to data of the full
population)

I Algebra of random variables: if X is used to denote a random
variable corresponding to the observed data, the estimator (itself
treated as a random variable) is symbolised as a function of that

random variable, θ̂(X).

I The estimate for a particular observed data value x (i.e. for X = x)

is then θ̂(x), which is a fixed value.

Statistical properties of the least squares
estimator (I)

Assumptions:

I xi are fixed (X is nonrandom)

I XTX is invertible (the regressors in X must all be linearly
independent)

I y = f (x) = Xθ + ε

I E(ε|X) = 0 (meaning E(εi |X) = 0 for all i), and so E(ε) = 0 and
E(XTε) = 0.

Lemma: unbiased estimator
If y = Xθ + ε where and E(ε) = 0, then E(θ̂) = θ.

Proof

θ̂ = (XTX)−1XTy = (XTX)−1XT (Xθ + ε) = θ + (XTX)−1XTε

E(θ̂) = E(θ) + (XTX)−1XTE(ε) = θ

Statistical properties of the least squares
estimator (II)

The covariance matrix Σ: definition
Is a square matrix giving the covariance between each pair of elements of
a given random vector v

Σv = cov(v , v) = E[(v − E(v))(v − E(v))T] = E(vvT)− E(v)E(v)T

Σv (i , j) = cov(vi , vj) = E[(vi − E(vi))(vj − E(vj))]

Σv (i , i) = cov(vi , vi) = E[(vi − E(vi))2] = Var(vi)

The covariance matrix: property
Under the assumptions, and assuming also that the errors are
uncorrelated with common variance, that is Σε = σ2I , the covariance
matrix for the LS estimator is:

Σθ = σ2(XTX)−1

Statistical properties of the least squares
estimator

Proof
As before
θ̂ = (XTX)−1XTy = (XTX)−1XT (Xθ + ε) = θ + (XTX)−1XTε.
Then θ̂ − θ = (XTX)−1XTε and

E((θ̂ − θ)(θ̂ − θ)T) = E((XTX)−1XTεεTX (XTX)−1)

= (XTX)−1XTE(εεT)X (XTX)−1

and since E(ε) = 0

E(εεT) = cov(ε, ε) = Σε = σ2I

and the result follows.

Commonly used unbiased estimator of σ2

σ̂2 =
1

N − p − 1

d∑
i=1

(yi − ŷi)
2, E(σ̂2) = σ2

Distribution of the LS estimator

Theorem
Suppose that XTX is invertible, and y = Xθ + ε where ε ∼ N(0, σ2I).
Then

θ̂ ∼ N(θ, (XTX)−1σ2),

ŷ := X θ̂ ∼ N(Xθ,XX †σ2),

ε̂ := y − X θ̂ ∼ N(0, (I − XX †)σ2).

(X † = (XTX)−1XT)

The Gauss-Markov theorem

Definition - Linear unbiased estimators
Linear estimator: θ̃ = Cy, i.e., θ̃j = C1,jy1 + · · ·+ Cn,jyn for all j

Unbiased: E(θ̃) = θ

The assumptions

I Regression model: y = Xθ + ε

I X has full-rank

I E(ε|X) = 0

I Var(ε|X) = σ2I

The theorem
Under the assumptions, the ordinary least squares (OLS) estimator
θ̂ = (XTX)−1XTy of the coefficients θ of a linear regression model is
the best linear unbiased estimator (BLUE), that is, the estimator that has
the smallest variance among those that are unbiased and linear in the
observed output variables y.

The Gauss-Markov theorem

Best in which sense?
I Scalar case (one regressor, θ̂ ∈ R): Var(θ̂|X) ≤ Var(θ̃|X) for any

other linear unbiased estimator θ̃

I Multivariate case (multiple regressors, θ̂ ∈ Rd):
Var(aT θ̂|X) ≤ Var(aT θ̃|X) for any other linear unbiased estimator θ̃
and vector a ∈ Rd . This is equivalent to

cov(θ̃|X)− cov(θ̂|X) SPD

In other words, OLS is BLUE if and only if any linear combination of the
regression coefficients is estimated more precisely by OLS than by any
other linear unbiased estimator.

Towards biased estimators

MSE (θ̂) = E(θ̂ − θ)2 = Var(θ̂)︸ ︷︷ ︸
variance

+ [E(θ̂)− θ]2︸ ︷︷ ︸
squared bias

I GM theorem → LS estimator has the smallest MSE of all unbiased
estimators BUT it may exist a biased estimator with lower MSE

I Trade a little bit of bias for a larger reduction in variance
I Models are distortions of the truth: why not?

Two directions
I Subset selection methods: discrete methods

I Shrinkage methods: continuous methods

Towards biased estimators

MSE (θ̂) = E(θ̂ − θ)2 = Var(θ̂)︸ ︷︷ ︸
variance

+ [E(θ̂)− θ]2︸ ︷︷ ︸
squared bias

I GM theorem → LS estimator has the smallest MSE of all unbiased
estimators BUT it may exist a biased estimator with lower MSE

I Trade a little bit of bias for a larger reduction in variance
I Models are distortions of the truth: why not?

Two directions
I Subset selection methods: discrete methods

I Shrinkage methods: continuous methods

Subset selection methods

y = f (x) ∼ fθ(x), θ ∈ Rd

What?
Select a subset of variables in {θ1, . . . , θd} and set them to zero

Why?

I Improves prediction accuracy: setting some coefficients to zero may
reduce the variance, helps generalization

I Improve interpretability: reduce number of predictors

How?
I Best subset selection (BSS)

I Forward-Stepwise selection

I Backward-Stepwise selection

Best subset selection

Goal:
For a well-chosen k, find the subset of size k that gives the lowest error

I For each k ∈ {1, . . . , d} enumerate all subsets of size k:

(
d
k

)
I For each k ∈ {1, . . . , d} choose the subset that gives the smallest

RSS or the largest R2

I Form the best subset curve (red) and choose k

Best subset selection: step 2

Requires to consider a total of 2d subsets
For all k we need to solve

min
θ∈Rd

‖y − Xθ‖2 s.t. ‖θ‖0 ≤ k

where ‖θ‖0 is the number of non-zero components of θ.

How to solve this ?
I The Lagrangian function is not continuous and not smooth

I Cannot use ”standard” optimization methods

I There are variants of branch-and-bound methods that are efficient
but still limited to rather small d

How to choose k? (I)

I In step 2 all the sets have the same size, we use the RSS

I In step 3 we cannot use the RSS: the BSS curve is always decreasing

I Choice of k should give a good compromise between parsimony and
accuracy

I Also, we want to minimize the test error, not the training error.

I We could use cross-validation (very expensive)!

How to choose k? (II)

I Alternative estimates of test error:
I (lowest) Akaike Information Criterion (AIC) AIC = 2k − 2 ln(L̂)
I (lowest) Bayesian Information Criterion (BIC) BIC = k ln(n)− 2 ln(L̂)
I (highest) Adjusted R2 R2

a = 1− (1− R2) n−1
n−k−1

where L̂ is the likelihood of the model.

I They are motivated by asymptotic information theory arguments and
rely on model assumptions (eg. normality of the errors).

I They are statistics that imposes some sort of penalty on bigger
models and estimate the generalization error

Forward-stepwise selection

Starts with one parameter and sequentially adds the predictor that most
reduces the fit

Backward-stepwise selection

Starts with all parameters and sequentially removes the predictors that
impact the fit less

Shrinkage methods: Ridge and Lasso

I Based on a smooth approximation of the BSS problem

I Continuous methods: easier to use

Ridge regression
Shrinks regression coefficients by imposing a penalty on their size:

θ̂R = arg min
θ

n∑
i=1

(yi − θ0 −
d∑

j=1

Xi,jθj)
2 + λ

d∑
j=1

θ2
j

Used in neural networks → weight decay

Lasso regression
Drives some coefficients to zero by penalizing the sum of absolute values:

θ̂L = arg min
θ

n∑
i=1

(yi − θ0 −
d∑

j=1

Xi,jθj)
2 + λ

d∑
j=1

|θj |

Used in signal processing → basis pursuit

Or equivalently...

From now on, denote

X =


xT1
xT2
...

xTn

 ∈ Rn×d , y =


y1

y2

...
yn

 ∈ Rn

Ridge regression

θ̂R = arg min
θ
‖y − Xθ‖2

subject to ‖θ‖2
2 ≤ t

Lasso regression

θ̂L = arg min
θ
‖y − Xθ‖2

subject to ‖θ‖1 ≤ t

Subset selection

θ̂S = arg min
θ
‖y − Xθ‖2

subject to ‖θ‖0 ≤ t

↪→ Three different norms on the constraints
Used in practice: penalized form, θ̂R = arg minθ ‖y − Xθ‖2 + λ‖θ‖2

2

Similarities and differences

I The best subset selection (BSS) and the lasso estimators have
sparse solutions, i.e., at a solution θ we will have θj = 0 for many
components j ∈ {1, . . . , d}.
I For BSS k directly controls the sparsity level, for Lasso we get a

higher degree of sparsity the smaller the value of t ≥ 0 or the larger
the value of λ ≥ 0

I The lasso and ridge regression problems are convex, BSS is very far
from being convex

Interpretation

Relation between the three estimators

If X has orthonormal columns θ̂ = XTy and

θ̂S = H√2λ(θ̂), θ̂L = Sλ(θ̂), θ̂R =
θ̂

1 + 2λ

where
St(x) = sign(x)(|x | − t)+, Ht(x) = x · I (|x | > t)

are the Soft and Hard thresholding functions.

(θ̂ in the x axis)

Elastic net

I The ridge regression problem is always strongly convex

I The lasso problem is not always strictly convex

I A compromise between the two: elastic net (Zou & Hastie 2005):

min
θ
‖y − Xθ‖2

2 + λ‖θ‖1 + δ‖θ‖2
2

where now both λ, δ are hyperparameters.

I The problem is always strictly convex, the solution is unique, the
elastic net combines some of the desirable predictive properties of
ridge regression with the sparsity properties of the lasso.

Ridge regression: standardisation

The ridge solution is not equivariant under scaling of the input.
Sometimes standardising the inputs before solving the problem improves
the results

Standardisation
Given x , µ, σ (variable, mean and standard deviation) → xs = x−µ

σ

How to find θ̂R?

The intercept θ0 is not penalized and θ̂0 = 1
n

∑n
i=1 yi

We can write the residual sum of squares as:

RSSλ(θ) = (y − Xθ)T (y − Xθ) + λθTθ

this is still a quadratic function.

∇RSSλ(θ) = −2XT (y − Xθ) + 2λθ,

∇2RSSλ(θ) = 2(XTX + λI).

For any λ, XTX + λI is SPD and the unique solution satisfies:

XT (y − Xθ)− λθ = 0

so that
θ̂R = (XTX + λI)−1XTy.

How to find θ̂L?

θ̂L = arg min
θ

n∑
i=1

(yi − θ0 −
d∑

j=1

Xi,jθj)
2

subject to
d∑

j=1

|θi | ≤ t

I The solution is nonlinear in y and there is no closed form expression
of θ̂L, unless X has orthonormal columns

I t small : some coefficients will be zero: continuous subset selection

I Non-smooth optimization problem solved by proximal methods

I State of the art for Lasso: Coordinate Descent, Celer algorithm

https://mathurinm.github.io/celer/

https://mathurinm.github.io/celer/

Proximal methods

min
x

f (x) + λg(x)

I f + g admits a minimizer
I f , g are convex
I f is β-smooth: ‖∇f (x)−∇f (y)‖ ≤ β‖x − y‖ for all x , y
I g is possibly non-differentiable

If there is no g
Gradient descent: xk+1 = xk − 1

β∇f (xk)

Why?
Gradient step minimizes an upper bound on the function:

f (x) ≤ f (y) +∇f (y)T (x − y) +
β

2
‖x − y‖2, ∀x , y

f (xk+1) ≤ f (xk) +∇f (xk)Tpk +
β

2
‖pk‖2

arg minxk+1︷︸︸︷→ pk = −∇f (xk)

β

Proximal methods

If there is g : add λg to the upper bound:

f (x) + λg(x) ≤ f (y) +∇f (y)T (x − y) +
β

2
‖x − y‖2 + λg(x), ∀x , y

Can we minimize the upper bound?

arg min
x

f (y) +∇f (y)T (x − y) +
β

2
‖x − y‖2 + λg(x) =

arg min
x
∇f (y)T (x − y) +

β

2
‖x − y‖2 + λg(x) =

arg min
x

1

2
‖x − (y − 1

β
∇f (y))‖2 +

λ

β
g(x) :=

proxλ
β g (y − 1

β
∇f (y)).

Example
If g(x) = ‖x‖1, proxλg/β(x) = Sλ/β(x).

Gradient methods

Differentiable case

xk+1 = xk −
1

β
∇f (xk)

Convergence
If f is differentiable, β-smooth and
convex:

f (xK)− f (x∗) ≤ 2β‖x1 − x∗‖
K − 1

Proximal gradient descent

xk+1 = proxλg/β(xk − 1/β∇f (xk))

Convergence
If f is differentiable, β-smooth,
convex and g is convex:

f (xK)− f (x∗) ≤ β‖x1 − x∗‖
2K

In both cases f (xK)− f (x∗) = O
(

1
K

)
.

Tuning of the hyperparameters

I β : easy for a linear function f (θ) = ‖Xθ + b‖2, β ∼ ‖XTX‖2, can
be computed by the power method

I λ : essential for good results: cross-validation

Figure: alpha parameter=λ

Ridge and lasso regression with Scikit-learn

Principle

I λ = 1 by default

I Ridge() creates a Ridge model

I Lasso() creates a Lasso model*

I beware of datafit scaling (1/n
or not!)

Python code
1 from sklearn.linear model import Ridge
2 from sklearn.linear model import Lasso
3 from sklearn.metrics import r2 score
4

5 # Ridge
6 rid = Ridge()
7 rid.fit(X train, y train)
8 r2 score(y test, rid.predict(X test))
9

10 # Lasso
11 las = Lasso()
12 las.fit(X train, y train)
13 r2 score(y test, rid.predict(X test))

References I

Some online references for this lesson
I https://www.stat.cmu.edu/~ryantibs/statml/lectures/

sparsity.pdf

I https://artowen.su.domains/courses/305a/ch2.pdf

I https://perso.telecom-paristech.fr/rgower/pdf/M2_

statistique_optimisation/optimization_II_prox_

LASSO-expanded.pdf

Book
The elements of statistical learning, Hastie, Tibshirani, Friedman,
Sprienger (2009)

https://www.stat.cmu.edu/~ryantibs/statml/lectures/sparsity.pdf
https://www.stat.cmu.edu/~ryantibs/statml/lectures/sparsity.pdf
https://artowen.su.domains/courses/305a/ch2.pdf
https://perso.telecom-paristech.fr/rgower/pdf/M2_statistique_optimisation/optimization_II_prox_LASSO-expanded.pdf
https://perso.telecom-paristech.fr/rgower/pdf/M2_statistique_optimisation/optimization_II_prox_LASSO-expanded.pdf
https://perso.telecom-paristech.fr/rgower/pdf/M2_statistique_optimisation/optimization_II_prox_LASSO-expanded.pdf

	Introduction to linear models

