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Linear methods for classification

Given data {xi,...,X,} we want to assign each x; to a class, we look for
a function ¢ such that
f:RY = {1,...,K}
X—y

Linear classification
A classification predictor ¢ divides the space in K subregions (number of
classes). The decision boundaries (boundaries of these regions) are linear




How to obtain linear boundaries? (1)

» Supervised linear fit in each class (linear discriminant function):

~

A(x) =00+ 00x, k=1,....K
» The decision boundary between class k and /-
{x|f(x) = f(x)} = {x|(Bko — be0) + (Bx — 6:)"x = 0}

is an hyperplane.

» The predicted output is :

f(x) = arg max ACI A g

100000~

» This also works for
transformations of 7(x)
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How to obtain linear boundaries? (l1)

» Directly looking for linear separating hyperplanes: support vector
machines (SVMs)

Hyperplane ®e

g e




Logistic regression

> It is a classification method: input (x;); € R and (y;); € {+1,0}.
» Probabilistic model: find a model hg s.t. P(y = +1|x) = hg(x).
> Bayes decision: f(x) = argmax,c o1} P(y = kx).
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> It is a classification method: input (x;); € R and (y;); € {+1,0}.
» Probabilistic model: find a model hg s.t. P(y = +1|x) = hg(x).
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The sigmoid function
o(z) =1/(1 + exp(—2)).
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» Usually used to model
probabilities.



Logistic regression

> It is a classification method: input (x;); € R and (y;); € {+1,0}.
» Probabilistic model: find a model hg s.t. P(y = +1|x) = hg(x).
> Bayes decision: f(x) = argmax,c o1} P(y = kx).

The logistic regression model

The sigmoid function The model is P(y = +1|x) = o(0 "x + b).
o(z) = 1/(1 + exp(—2)). » 0 c RY are weights, b € R is a bias
1o that are to be optimized.
0.8 > |t is a generalized linear model.
0.6 » Is is also a one layer neural-network
04 (no hidden layer).
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» Usually used to model 7 m- O 7%
probabilities. ./



Logistic regression

One property
P(y=0[x)=1-P(y =1|x) =1 —0(0"x + b) = o(—(8"x + b))
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Maximum likelihood estimation
Find @ € R, b € R that minizes the cross-entropy (board)

— > yilogP(yi = 1|x;) + (1 — yi) log P(y; = O|x;)



Logistic regression

One property
P(y=0[x)=1-P(y =1|x) =1 —0(0"x + b) = o(—(8"x + b))

Maximum likelihood estimation
Find @ € R, b € R that minizes the cross-entropy (board)

— > yilogP(yi = 1|x;) + (1 — yi) log P(y; = O|x;)

Minimizing the logistic loss
i —vi(O x: T,.
n Z yi(@' x; + b) + log [1—|—exp(9 x,—l—b)} .

i=1

3

> Convex problem, can be solved with (Quasi) Newton's method.
» It is a linear decision boundary.

» Extends also to multi-class classification by modeling
B(y = klx) = softmax((6] x + bx)xcxq) (1)

and minimizing cross-entropy.



Logistic regression with Scikit-learn

Principle

» First split the data into train
and test

» LogisticRegression() builds a
logistic model

> logreg.fit fits the model to the
data

» accuracy_score and
confusion_matrix allow to
evaluate the model
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Python code

from sklearn.model_selection import
train_test_split

from sklearn.linear_model import
LogisticRegression

from sklearn import metrics

X_train, X_test, y_train, y_test =
train_test_split(X, y)

logreg = LogisticRegression(C=1e5)

logreg.fit(X, Y)

pred= model2.predict(X_test)
print(metrics.accuracy_score(y-test, pred))
print(metrics.confusion_matrix(y-test, pred))



From logistic regression to LDA/QDA

A model
> In log-reg we model P(Y = k|X = x).
» In LDA/QDA we will instead model P(X = x|Y = k).

Bayes theorem

p(alg) = LEEAPA) (BIL?[)B’; )

> P(A|B) is called the posterior. Example: “probability of having
cancer given that the person is a smoker”.

> P(B|A) is called the likelihood; Example: “probability of being a
smoker given that the person has cancer”.

> P(A) is called the prior; this is the probability of our hypothesis
without any additional prior information. Example: “probability of
having cancer”.

> P(B) is called the marginal likelihood, this is the total probability of
observing the evidence. Example: “probability of being a smoker”.



Linear discriminant analysis

From Bayes theorem:

P(Y = k|X = x) = M
2o fe(X)me

with
> fi(x) =P(X = x|Y = k) the conditional density of X in class k
» 71 = P(Y = k) the prior probability of class k, Zle =1

Many techniques use models for the class densities.
Example
» LDA and QDA use gaussian densities

» mixtures of Gaussians allow for nonlinear boundaries



Linear discriminant analysis (LDA)

We model each class density as multivariate Gaussian

() = e B T ),

(2r)9det(T)

LDA arises in the special case when L, = %, Vk.
If we compare two classes:

Py = kIX =
|og M — LDA of WINE dataset
Py =¢X =x)
fi(x) Tk
B B

T 1
log = — = (puk + p1e) TE (e — p1e)
Ty 2

. - 2 a 2 H

+xTE 7 (ke — pe) Py = k|X = x) = P(y = {|X = x)
Ply=k|X=x) _
which is linear in x — the decision = log Ply=f1X=x) — 0

boundary between two classes is
linear:



Linear discriminant analysis (LDA)

The samples can be equivalently divided into classes using the linear
discriminant function:

1
Sr(x) = xTE e — E,Ukz_l,uk + log Tk
and y(x) = arg maxy dx(x).

The parameters of the gaussians distributions are not known, we need to
estimate them from the training data:

> 7 = nk/n, with ng the number of training samples in class k
> /:\Lk = Zy,-:k Xi/nk

a K A~ o
> 2= 20 = ) = )T/ (n = K)



function:

Quadratic discriminant analysis (QDA)

Si(x) =

1
—5log Xk = 5 (x — ) %

and y(x) = arg max, dx(x)

The samples are divided into classes using the quadratic discriminant

(x — k) + log mk

QDA_Sepals

The decision boundaries are quadratic: {x|dx(x) = d¢(x)}
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Evaluate classification models

Confusion Matrix

Actually Actually
Positive (1) | Negative (0)

Predicted T'fu,e F‘"f'?e

L Positives Positives
Positive (1) (TPs) (FPs)
Predicted False Trug

. Negatives Negatives
Negative (0) (FNs) (TNs)

» Accuracy = (TP+TN) / N — no good for imbalanced datasets
» Confusion matrix
» Precision : the proportion of data correctly predicted as positive

(percentage of good positives in the positive class)

» Recall (Sensitivity, True Positive Rate): how good your model is at
correctly predicting positive cases. It's the proportion of positive
cases that were correctly identified.

Recall = (TP)/(TP + FN)



Support vector machines: binary classification

Given a training set {(x;,y;)}"_;, where y; = —lory, =1



Separating hyperplane

» We look for a hyperplane that separates samples in the training set
belonging to different classes:

> P ={xeRy(x) = +1}
> N = (xeRy(x) = -1}

Hyperplane: for 8 € R, b € R

H=Hpp={xcRI|h(x)=0"x+b=0}
» New samples are assigned to a class according to the sign of
function h.



The margin

» The separating hyperplane is not unique: for each the margin p(8, b)

is defined as:
|07 x + b

161l

» The margin is the distance of the closest sample to the hyperplane:

p(6, b) = min

p(8,b) = mind(x;, H)



Optimal hyperplane

» The optimal hyperplane is the one that maximizes the margin:
max 0,b
OcR9, beR p( )

» Minimizes the probability of errors for the classification of new
samples



Linearly separable case

> If features are linearly separable it exists an hyperplane H such that:
h(x;) > 0 for all x; € P and h(x;) < 0 for all x; € N.

» There exist then 8 € RY and b € R such that for ¢ > 0:

0"x; +b>e, forall x; € P,
0"x;+ b < —¢, forall x; € N.

» By scaling, WLOG, we can consider 8 € R? and b € R such that :

0"x; +b>1, forall x; € P,
0"x;+ b < —1, forall x; € N. (2)

» We will define a separating hyperplane each H = Hp ;, with
(6, b) € RY x R satisfying (2).



Linearly separable case

Finding the optimal hyperplane requires solving
|0TX,' + b|
max in ————

OcR" beR x;€PUN || 0]

We will prove that the optimal hyperplane exists and is unique, and that
it can be found solving an equivalent problem:

1
min f||0||2

9cRY beR 2
st. 0Tx;+b>1, forall x; € P,
0 x;i+ b < —1, forall x; € V.



Theoretical results

Lemma 1
For all separating hyperplanes it holds

mawzfﬂ

(from the definition of p, because |87 x; + b| > 1 for all x; € P UN")

Lemma 2
For all separating hyperplane (0, b) it exists another separating
hyperplane (8, b) such that

p&@gmaa—@w

Moreover, there exist (at least) two points x™ and x~ such that
0"xt +h=1
0"x" +b=-1



Theoretical results

Theorem 1
The problem

i 0|? 3
0€@I726R|| | 3)
st. 87x;+ b > 1, forall x; € P,

0"x; +b<—1, forall x; € N.

admits a unique solution (6%, b*).
Notice that this is a convex quadratic programming problem.



Theoretical results

Theorem 2
If (6%, b*) is the solution of problem (3), it is also the only solution of

max 0, b
oeRd,beRp( )
st. 87x;+ b >1, forall x; € P,

0"x;i+ b < —1, forall x; € V.

Proof
From Lemma 1 and 2 for every separating hyperplane, we have:
1 - 1 1
0] e[ — 6]l

So for (6*, b*) we get p(6*, b*) = I\Gl*\l so it is the optimal hyperplane.




How to solve (3)?

Usually the dual problem is solved:

1
min =X Z7Zx—e" X
AER™ 2

st. ATy=0,A>0
with
ZZ[lelw--a)/mxm]v e:[]-a-"al]T

and m number of training samples. Solving this we find A* and we can
recover 8* and b* as :

6 = Z /\?‘y,-x,- — support vectors
i=1
Ali((0)Txi +b*) =1 =0,i=1,....,m

The decision function is then:

f(x) = sgn((a*)Tx + b")



Non separable case

If the features are not linearly separable it is necessary to allow the
presence of some outliers inserting some slack variables (; > 0
i=1,....,m:

07x; +b>1—( for all x; € P,

07 x;+b< —1+( forall x; € N.

m
» If x; is incorrectly classified {; > 1, so >_ (; is an upper bound of the
i=1
number of training features misinterpreted:

1 m
in =||@]|> + C ;
min S16]* + ’;C
st. yi(07x;+b) <1—¢,
G>0,i=1....,m



The value of C

X1

Larger value of C

A

e e

| .
e L.t
. i .

e | .
ese | o

1
[ B B

58 EERESEEES

x2

Smaller value of C



Which problem to solve in practice?

Usually the dual problem is solved:

1
min =X Z7Zx—e" X
AER™ 2
st. AMfy=0,0<A<C
with
Z:[YIXIw--amem]a e:[]-a-"al]T

and m number of training samples. Solving this we find A* and we can
recover 8* and b* as :

6 = Z /\?‘y,-x,- — support vectors
i=1
ANli((0)Txi+b*) =1 =0,i=1,....m

The decision function is then:

f(x) = sgn((O*)Tx + b")



Hard margin SVM vs soft margin SVM
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Nonlinear SVM

The kernel trick
Move to an higher dimensional space to make the features separable

Kernel function
Given Q C RY, k: Q x Q — Riis a kernel function if k(x,y) = ¢(x) 7 #(y)
for all x,y € Q, where ¢ : Q — H with H an Hilbert space.



Linear SVM in the feature space

Idea
Choose a feature space H of dimension higher than d. Apply the method
previously seen to ¢(x;) and look for a separating hyperplane in H.

1
min =A7Z7TZx—e™ A
AER™ 2

st. AMTy=0,0<A<C

with
Z= [YI¢(XI)7"'7Ym¢(X)m]a €= []ﬂ""l]T

The decision function is then:

F(x) = sgn((8")Td(x) + b*) = sgn(D_ Afyik(xi,x) + b7)

i=1

f is linear in the feature space, nonlinear in the input space



Most common kernels

» Polynomial kernel: k(x,z) = (x"z+ 1), peN, p>1
> Gaussian kernel (or RBF) k(x, z) = e~lx—=I"/20°
» Hyperbolic tangent k(x,z) = tanh(Bx"z +7), B,y €R



Libraries for SVM

» LIBSVM: https://www.csie.ntu.edu.tw/~cjlin/libsvm/,
LIBLINEAR:

https://www.csie.ntu.edu.tw/~cjlin/liblinear/
» sklearn: sklearn.svm.SVC(C=1.0, kernel="rbf"..) (from LIBSVM)
» sklearn: sklearn.svm.LinearSVC(penalty="12", ..) (from LIBLINEAR)

SVC with linear kernel LinearSVC (linear kernel)
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SVC with RBF kernel SVC with polynomial (degree 3) kernel
P '.l

sepal width (cm)
sepal width (cm)
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https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
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