
Fundamentals of machine learning
Course 5: linear classification

Elisa Riccietti & Titouan Vayer
email: elisa.riccietti@ens-lyon.fr, titouan.vayer@inria.fr

February 18, 2025

Linear methods for classification

Given data {x1, . . . , xn} we want to assign each xi to a class, we look for
a function c such that

f : Rd → {1, . . . ,K}
x→ y

Linear classification
A classification predictor c divides the space in K subregions (number of
classes). The decision boundaries (boundaries of these regions) are linear

How to obtain linear boundaries? (I)

I Supervised linear fit in each class (linear discriminant function):

f̂k(x) = θ̂k,0 + θ̂T
k x, k = 1, . . . ,K

I The decision boundary between class k and `:

{x|f̂k(x) = f̂`(x)} = {x|(θ̂k,0 − θ̂`,0) + (θ̂k − θ̂`)
Tx = 0}

is an hyperplane.

I The predicted output is :

f̂ (x) = arg max
k

f̂k(x)

I This also works for
transformations of f̂k(x)

How to obtain linear boundaries? (II)

I Directly looking for linear separating hyperplanes: support vector
machines (SVMs)

Logistic regression

I It is a classification method: input (xi)i ∈ Rd and (yi)i ∈ {+1, 0}.
I Probabilistic model: find a model hθ s.t. P(y = +1|x) ≈ hθ(x).

I Bayes decision: f (x) = argmaxk∈{0,1} P(y = k |x).

The sigmoid function
σ(z) = 1/(1 + exp(−z)).

I Usually used to model
probabilities.

The logistic regression model
The model is P(y = +1|x) = σ(θ>x + b).

I θ ∈ Rd are weights, b ∈ R is a bias
that are to be optimized.

I It is a generalized linear model.

I Is is also a one layer neural-network
(no hidden layer).

Logistic regression

I It is a classification method: input (xi)i ∈ Rd and (yi)i ∈ {+1, 0}.
I Probabilistic model: find a model hθ s.t. P(y = +1|x) ≈ hθ(x).

I Bayes decision: f (x) = argmaxk∈{0,1} P(y = k |x).

The sigmoid function
σ(z) = 1/(1 + exp(−z)).

I Usually used to model
probabilities.

The logistic regression model
The model is P(y = +1|x) = σ(θ>x + b).

I θ ∈ Rd are weights, b ∈ R is a bias
that are to be optimized.

I It is a generalized linear model.

I Is is also a one layer neural-network
(no hidden layer).

Logistic regression

I It is a classification method: input (xi)i ∈ Rd and (yi)i ∈ {+1, 0}.
I Probabilistic model: find a model hθ s.t. P(y = +1|x) ≈ hθ(x).

I Bayes decision: f (x) = argmaxk∈{0,1} P(y = k |x).

The sigmoid function
σ(z) = 1/(1 + exp(−z)).

I Usually used to model
probabilities.

The logistic regression model
The model is P(y = +1|x) = σ(θ>x + b).

I θ ∈ Rd are weights, b ∈ R is a bias
that are to be optimized.

I It is a generalized linear model.

I Is is also a one layer neural-network
(no hidden layer).

Logistic regression

One property
P(y = 0|x) = 1− P(y = 1|x) = 1− σ(θ>x + b) = σ(−(θ>x + b))

Maximum likelihood estimation
Find θ ∈ Rd , b ∈ R that minizes the cross-entropy (board)

−
∑
i

yi logP(yi = 1|xi) + (1− yi) logP(yi = 0|xi)

Minimizing the logistic loss

min
θ,b

n∑
i=1

−yi (θ>xi + b) + log
[
1 + exp

(
θ>xi + b

)]
.

I Convex problem, can be solved with (Quasi) Newton’s method.

I It is a linear decision boundary.

I Extends also to multi-class classification by modeling

P(y = k|x) = softmax((θ>k x + bk)k∈[[K]]) (1)

and minimizing cross-entropy.

Logistic regression

One property
P(y = 0|x) = 1− P(y = 1|x) = 1− σ(θ>x + b) = σ(−(θ>x + b))

Maximum likelihood estimation
Find θ ∈ Rd , b ∈ R that minizes the cross-entropy (board)

−
∑
i

yi logP(yi = 1|xi) + (1− yi) logP(yi = 0|xi)

Minimizing the logistic loss

min
θ,b

n∑
i=1

−yi (θ>xi + b) + log
[
1 + exp

(
θ>xi + b

)]
.

I Convex problem, can be solved with (Quasi) Newton’s method.

I It is a linear decision boundary.

I Extends also to multi-class classification by modeling

P(y = k|x) = softmax((θ>k x + bk)k∈[[K]]) (1)

and minimizing cross-entropy.

Logistic regression

One property
P(y = 0|x) = 1− P(y = 1|x) = 1− σ(θ>x + b) = σ(−(θ>x + b))

Maximum likelihood estimation
Find θ ∈ Rd , b ∈ R that minizes the cross-entropy (board)

−
∑
i

yi logP(yi = 1|xi) + (1− yi) logP(yi = 0|xi)

Minimizing the logistic loss

min
θ,b

n∑
i=1

−yi (θ>xi + b) + log
[
1 + exp

(
θ>xi + b

)]
.

I Convex problem, can be solved with (Quasi) Newton’s method.

I It is a linear decision boundary.

I Extends also to multi-class classification by modeling

P(y = k |x) = softmax((θ>k x + bk)k∈[[K]]) (1)

and minimizing cross-entropy.

Logistic regression with Scikit-learn

Principle

I First split the data into train
and test

I LogisticRegression() builds a
logistic model

I logreg.fit fits the model to the
data

I accuracy score and
confusion matrix allow to
evaluate the model

Python code
1 from sklearn.model selection import

train test split
2 from sklearn.linear model import

LogisticRegression
3 from sklearn import metrics
4

5 X train, X test, y train, y test =
train test split(X, y)

6 logreg = LogisticRegression(C=1e5)
7 logreg.fit(X, Y)
8

9 pred= model2.predict(X test)
10 print(metrics.accuracy score(y test, pred))
11 print(metrics.confusion matrix(y test, pred))

From logistic regression to LDA/QDA

A model
I In log-reg we model P(Y = k |X = x).

I In LDA/QDA we will instead model P(X = x |Y = k).

Bayes theorem

P(A|B) =
P(B|A)P(A)

P(B)

I P(A|B) is called the posterior. Example: “probability of having
cancer given that the person is a smoker”.

I P(B|A) is called the likelihood; Example: “probability of being a
smoker given that the person has cancer”.

I P(A) is called the prior; this is the probability of our hypothesis
without any additional prior information. Example: “probability of
having cancer”.

I P(B) is called the marginal likelihood; this is the total probability of
observing the evidence. Example: “probability of being a smoker”.

Linear discriminant analysis

From Bayes theorem:

P(Y = k |X = x) =
fk(x)πk∑K
`=1 f`(x)π`

with

I fk(x) = P(X = x |Y = k) the conditional density of X in class k

I πk = P(Y = k) the prior probability of class k ,
∑K

k=1 πk = 1

Many techniques use models for the class densities.

Example

I LDA and QDA use gaussian densities

I mixtures of Gaussians allow for nonlinear boundaries

Linear discriminant analysis (LDA)

We model each class density as multivariate Gaussian

fk(x) =
1√

(2π)ddet(Σk)
e−

1
2 (x−µk)T Σ−1

k (x−µk).

LDA arises in the special case when Σk = Σ, ∀k .
If we compare two classes:

log
P(y = k|X = x)

P(y = `|X = x)
=

log
fk(x)

f`(x)
+ log

πk
π`

=

log
πk
π`
− 1

2
(µk + µ`)

TΣ−1(µk − µ`)

+ xTΣ−1(µk − µ`)

which is linear in x → the decision
boundary between two classes is
linear:

P(y = k |X = x) = P(y = `|X = x)

→ log P(y=k|X=x)
P(y=`|X=x) = 0

Linear discriminant analysis (LDA)

The samples can be equivalently divided into classes using the linear
discriminant function:

δk(x) = xTΣ−1µk −
1

2
µkΣ−1µk + log πk

and ŷ(x) = arg maxk δk(x).

The parameters of the gaussians distributions are not known, we need to
estimate them from the training data:

I π̂k = nk/n, with nk the number of training samples in class k

I µ̂k =
∑

yi=k xi/nk

I Σ̂ =
∑K

k=1

∑
yi=k(xi − µ̂k)(xi − µ̂k)T/(n − K)

Quadratic discriminant analysis (QDA)

The samples are divided into classes using the quadratic discriminant
function:

δk(x) = −1

2
log |Σk | −

1

2
(x − µk)TΣ−1

k (x − µk) + log πk

and ŷ(x) = arg maxk δk(x).

The decision boundaries are quadratic: {x |δk(x) = δ`(x)}

Evaluate classification models

I Accuracy = (TP+TN) / N → no good for imbalanced datasets

I Confusion matrix
I Precision : the proportion of data correctly predicted as positive

(percentage of good positives in the positive class)

Prec = (TP)/(TP + FP)

I Recall (Sensitivity, True Positive Rate): how good your model is at
correctly predicting positive cases. It’s the proportion of positive
cases that were correctly identified.

Recall = (TP)/(TP + FN)

Support vector machines: binary classification

Given a training set {(xi , yi)}ni=1, where yi = −1 or yi = 1

Separating hyperplane

I We look for a hyperplane that separates samples in the training set
belonging to different classes:
I P = {x ∈ Rd |y(x) = +1}
I N = {x ∈ Rd |y(x) = −1}

Hyperplane: for θ ∈ Rd , b ∈ R

H = Hθ,b = {x ∈ Rd | h(x) = θTx + b = 0 }
I New samples are assigned to a class according to the sign of

function h.

The margin

I The separating hyperplane is not unique: for each the margin ρ(θ, b)
is defined as:

ρ(θ, b) = min
|θTx + b|
‖θ‖

I The margin is the distance of the closest sample to the hyperplane:

ρ(θ, b) = min
xi

d(xi ,H)

Optimal hyperplane

I The optimal hyperplane is the one that maximizes the margin:

max
θ∈Rd ,b∈R

ρ(θ, b)

I Minimizes the probability of errors for the classification of new
samples

Linearly separable case

I If features are linearly separable it exists an hyperplane H such that:
h(xi) > 0 for all xi ∈ P and h(xi) < 0 for all xi ∈ N .

I There exist then θ ∈ Rd and b ∈ R such that for ε > 0:

θTxi + b ≥ ε, for all xi ∈ P,
θTxi + b ≤ −ε, for all xi ∈ N .

I By scaling, WLOG, we can consider θ ∈ Rd and b ∈ R such that :

θTxi + b ≥ 1, for all xi ∈ P,
θTxi + b ≤ −1, for all xi ∈ N . (2)

I We will define a separating hyperplane each H = Hθ,b with
(θ, b) ∈ Rd × R satisfying (2).

Linearly separable case

Finding the optimal hyperplane requires solving

max
θ∈Rn,b∈R

min
xi∈P∪N

|θTxi + b|
‖θ‖

We will prove that the optimal hyperplane exists and is unique, and that
it can be found solving an equivalent problem:

min
θ∈Rd ,b∈R

1

2
‖θ‖2

s.t. θTxi + b ≥ 1, for all xi ∈ P,
θTxi + b ≤ −1, for all xi ∈ N .

Theoretical results

Lemma 1
For all separating hyperplanes it holds

ρ(θ, b) ≥ 1

‖θ‖

(from the definition of ρ, because |θTxi + b| ≥ 1 for all xi ∈ P ∪N .)

Lemma 2
For all separating hyperplane (θ, b) it exists another separating
hyperplane (θ̄, b̄) such that

ρ(θ, b) ≤ ρ(θ̄, b̄) =
1

‖θ̄‖
.

Moreover, there exist (at least) two points x+ and x− such that

θ̄Tx+ + b̄ = 1

θ̄Tx− + b̄ = −1

Theoretical results

Theorem 1
The problem

min
θ∈Rd ,b∈R

‖θ‖2 (3)

s.t. θTxi + b ≥ 1, for all xi ∈ P,
θTxi + b ≤ −1, for all xi ∈ N .

admits a unique solution (θ∗, b∗).

Notice that this is a convex quadratic programming problem.

Theoretical results

Theorem 2
If (θ∗, b∗) is the solution of problem (3), it is also the only solution of

max
θ∈Rd ,b∈R

ρ(θ, b)

s.t. θTxi + b ≥ 1, for all xi ∈ P,
θTxi + b ≤ −1, for all xi ∈ N .

Proof
From Lemma 1 and 2 for every separating hyperplane, we have:

1

‖θ‖
≤ ρ(θ, b) ≤ ρ(θ̄, b̄) =

1

‖θ̄‖
≤ 1

‖θ∗‖

So for (θ∗, b∗) we get ρ(θ∗, b∗) = 1
‖θ∗‖ so it is the optimal hyperplane.

How to solve (3)?

Usually the dual problem is solved:

min
λ∈Rm

1

2
λTZTZλ− eTλ

s.t. λTy = 0, λ ≥ 0

with
Z = [y1x1, . . . , ymxm], e = [1, . . . , 1]T

and m number of training samples. Solving this we find λ∗ and we can
recover θ∗ and b∗ as :

θ∗ =
m∑
i=1

λ∗i yixi → support vectors

λi [yi ((θ∗)Txi + b∗)− 1] = 0, i = 1, . . . ,m

The decision function is then:

f (x) = sgn((θ∗)Tx + b∗)

Non separable case

If the features are not linearly separable it is necessary to allow the
presence of some outliers inserting some slack variables ζi ≥ 0
i = 1, . . . ,m :

θTxi + b ≥ 1− ζi for all xi ∈ P,
θT xi + b ≤ −1 + ζi for all xi ∈ N .

I If xi is incorrectly classified ζi > 1, so
m∑
i=1

ζi is an upper bound of the

number of training features misinterpreted:

min
ω,b,ζ

1

2
‖θ‖2 + C

m∑
i=1

ζi

s.t. yi (θ
Txi + b) ≤ 1− ζi ,

ζi ≥ 0, i = 1, . . . ,m.

The value of C

Which problem to solve in practice?

Usually the dual problem is solved:

min
λ∈Rm

1

2
λTZTZλ− eTλ

s.t. λTy = 0, 0 ≤ λ ≤ C

with
Z = [y1x1, . . . , ymxm], e = [1, . . . , 1]T

and m number of training samples. Solving this we find λ∗ and we can
recover θ∗ and b∗ as :

θ∗ =
m∑
i=1

λ∗i yixi → support vectors

λi [yi ((θ∗)Txi + b∗)− 1] = 0, i = 1, . . . ,m

The decision function is then:

f (x) = sgn((θ∗)Tx + b∗)

Hard margin SVM vs soft margin SVM

Nonlinear SVM

The kernel trick
Move to an higher dimensional space to make the features separable

Kernel function
Given Ω ⊂ Rd , k : Ω×Ω→ R is a kernel function if k(x, y) = φ(x)Tφ(y)
for all x, y ∈ Ω, where φ : Ω→ H with H an Hilbert space.

Linear SVM in the feature space

Idea
Choose a feature space H of dimension higher than d . Apply the method
previously seen to φ(xi) and look for a separating hyperplane in H.

min
λ∈Rm

1

2
λTZTZλ− eTλ

s.t. λTy = 0, 0 ≤ λ ≤ C

with
Z = [y1φ(x1), . . . , ymφ(x)m], e = [1, . . . , 1]T

The decision function is then:

f (x) = sgn((θ∗)Tφ(x) + b∗) = sgn(
m∑
i=1

λ∗i yik(xi , x) + b∗)

f is linear in the feature space, nonlinear in the input space

Most common kernels

I Polynomial kernel: k(x , z) = (xT z + 1)p, p ∈ N, p ≥ 1

I Gaussian kernel (or RBF) k(x , z) = e−‖x−z‖
2/2σ2

I Hyperbolic tangent k(x , z) = tanh(βxT z + γ), β, γ ∈ R

Libraries for SVM

I LIBSVM: https://www.csie.ntu.edu.tw/~cjlin/libsvm/,
LIBLINEAR:
https://www.csie.ntu.edu.tw/~cjlin/liblinear/

I sklearn: sklearn.svm.SVC(C=1.0, kernel=’rbf’..) (from LIBSVM)
I sklearn: sklearn.svm.LinearSVC(penalty=’l2’, ..) (from LIBLINEAR)

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/

References I

I The elements of statistical learning, Hastie, Tibshirani, Friedman,
Sprienger (2009)

I Statistical learning theory, Vapnik, Wiley, New York (1998)

I The nature of statistical learning theory, Vapnik, Springer-Verlag,
New York (1995)

	Linear classification

