
Trees, forests and boosting

Mathurin Massias

https://mathurinm.github.io

Inria, OCKHAM team

26/02/2025

https://mathurinm.github.io

Motivation: nonlinear data

20 30 40 50 60 70 80 90
age

0

20

40

60

80

100

ho
ur

s p
er

 w
ee

k

<= 50k
>50k

How would logistic regression perform on this dataset?
2

A potential classifier?

3

Outline

Trees

Ensemble methods: bagging and random forests

Adaboost

4

What is a tree?
Trees partition the whole space into rectangular cells:

• A node has exactly either zero or two children

• Each split (= question) defines two child nodes, the left and right child nodes

• A node with zero children is called a leaf

• We pass from a node to the left or right children by answering a question of type “Is
xj ≥ α?” for some coordinate j and threshold α

5

CART: Classification and Regression Trees

CART = an algorithm to build a tree out of a training set {(x1, y1)}ni=1

• Partition the space, use constant prediction over leaves

• Objective : split the space to fit training data well

• Adapted to two settings:

• yi qualitative with K modalities (yi ∈ {1, . . . ,K}): classification tree
(DecisionTreeClassifier)

• yi quantitative, yi ∈ R: regression tree (DecisionTreeRegressor)

Pros of trees:
Easy to interpret
Nonparametric model: no assumption on the data distribution.

6

Example of classification tree

7

Example of regression tree

revenue
 = 30k/y

revenue
 = 60k/y

revenue
 = 40k/y

8

Building a tree = partitioning the space

Building a tree aims at finding a partition of the input space into a set of rectangles that
separates blue points from orange points

9

How to classify new samples?

Classification→ A simple majority vote to predict class probabilities

• select C(x) the cell containing x

• predict majority class inside C(x):

ŷ(x) =

{
+1 if

∑
i:xi∈C(x) 1yi=1 >

∑
xi∈C(x) 1yi=−1

−1 otherwise.

10

How to classify new samples?

Classification→ A simple majority vote to predict class probabilities

• select C(x) the cell containing x

• predict majority class inside C(x):

ŷ(x) =

{
+1 if

∑
i:xi∈C(x) 1yi=1 >

∑
xi∈C(x) 1yi=−1

−1 otherwise.

10

How to classify new samples?

Regression→ A simple average in each leaf to predict a value (in each region the
predicted value is constant)

• select C(x) the cell containing x

• predict mean of target of training points inside C(x):

ŷ(x) =

∑
i:xi∈C(x) yi

|C(x)|

30k/y

30k/y
30k/y

60k/y
60k/y
50k/y

20k/y

pred: 25 k/y
pred: 46 k/y

11

How to classify new samples?

Regression→ A simple average in each leaf to predict a value (in each region the
predicted value is constant)

• select C(x) the cell containing x

• predict mean of target of training points inside C(x):

ŷ(x) =

∑
i:xi∈C(x) yi

|C(x)|

30k/y

30k/y
30k/y

60k/y
60k/y
50k/y

20k/y

pred: 25 k/y
pred: 46 k/y

11

An algorithm to build a tree: CART

• The CART algorithm builds the partition recursively (split after split)

• At each step, the method splits an existing cell into two regions according to a split
variable (j in xj) and a threshold point (t): the question is: “xj > t?”

This is the best tree found by scikit-learn. How were the splits found?
12

Penguin time

01-grow a tree.ipynb

13

How to build the optimal tree? Recap after notebook

Iteratively (split after split)

• We want to split a node N into a left child node NL and a right child node NR
• The children depend on the cut = the (feature, threshold) pair denoted by (j, t)

NL(j, t) = {x ∈ N : xj < t} NR(j, t) = {x ∈ N : xj ≥ t}.
• a measure of cell “purity” is used; take split that maximizes gain in purity

• for all current leaves N , all possible feature/threshold pairs, compute purity gain if
we used this split. Pick split with maximal gain.

How many splits to try? 14

How to split?

Heuristic: greedy algorithm
At each new cut, choose a split so that the two new regions are as homogeneous as
possible

Homogeneous nodes
For classification: class proportions should be as close as possible to (0, 1) or (1, 0)
For regression: labels should be very concentrated around their mean in a node/cell

How to quantify homogeneity?
Gini index, Entropy (classification)
Variance (regression)

15

Regression: split measure

• Impurity is the variance of the target y inside the node N :

V (N) =
∑

i:xi∈N
(yi − ȳN)2 ȳN =

1

|N |
∑

i:xi∈N
yi |N | = |{i : xi ∈ N}|

• Information gain is given by

IG(j, t) = V (N)− |NL(j, t)|
|N |

V (NL(j, t))− |NR(j, t)|
|N |

V (NR(j, t))

16

Regression: Finding the best split

Maximize the information gain:

max
j,t

min
ȳL

∑
i:xi∈NL(j,t)

(yi − ȳL)2 + min
ȳR

∑
i:xi∈NR(j,t)

(yi − ȳR)2


For any (j, t) the inner minimization is solved by

ȳL =

∑
i:xi∈NL(j,t) yi

|NL(j, t)|
; ȳR =

∑
i:xi∈NR(j,t) yi

|NR(j, t)|

For each j, finding t can be done quickly→ determination of the best (j, t) is feasible!

17

Classification: split measure

Given the classes distribution inside cell N , pN = (pN,1, . . . , pN,K), with
pN,k = |{i:xi∈N, yi=k|}

|N |
(if two classes only: pN = (p, 1− p))

• Two possible impurity measures:

G(N) = G(pN) =

K∑
k=1

pN,k(1− pN,k) Gini index

H(N) = H(pN) = −
K∑
k=1

pN,k log2(pN,k) Entropy

basically: maximal when PN = (1/K, . . . , 1/K) (cell is not pure!)

• Information gain is given by (I = G or I = H):

IG(j, t) = I(N)− |NL(j, t)|
|N |

I(NL(j, t))− |NR(j, t)|
|N |

I(NR(j, t))

• best split: enumerate all possible splits...
18

CART algorithm

CART builds the partition iteratively. At each iteration:

• Find the best (node, feature, threshold) triplet (N, j, t) that maximizes IG(N, j, t)

• Create the two new children of the leaf

• Stop if some stopping criterion is met

• Otherwise continue

Stopping criterion?

• Maximum depth of the tree

• All leaves have less then a chosen number of samples

• Impurity in all leafs is small enough

• Testing error is increasing

• see parameters in sklearn.tree.DecisionTreeClassifier

19

CART algorithm

CART builds the partition iteratively. At each iteration:

• Find the best (node, feature, threshold) triplet (N, j, t) that maximizes IG(N, j, t)

• Create the two new children of the leaf

• Stop if some stopping criterion is met

• Otherwise continue

Stopping criterion?

• Maximum depth of the tree

• All leaves have less then a chosen number of samples

• Impurity in all leafs is small enough

• Testing error is increasing

• see parameters in sklearn.tree.DecisionTreeClassifier

19

Post processing: pruning

What should we do here?

20

Final remarks on trees

• , leads to nice interpretable results

• , insensitive to datascaling (no preprocessing needed!)

• / usually overfit

• / usually not the best for prediction

• , but the basis of more powerful techniques: random forests, boosting (ensemble
methods)

21

Outline

Trees

Ensemble methods: bagging and random forests

Adaboost

22

Ensemble methods

Basic idea
Aggregate multiple models or “weak learners” trained for the same problem. Weak
models combined rightly give accurate model

• Bagging: multiple weak models of the same type that learn from di�erent data sets
in parallel and are combined to decrease the variance on the prediction

• Boosting: weak models learn sequentially and adaptively to improve model
predictions of a learning algorithm.

23

Bagging: training models on bootstrap samples

...

...

Bootstrap copies:
(sampling w. replacement)

...

train model 1 train model 2 train model N

Final model = aggregation of N models (majority vote or averaging)
24

Bagging

2.5 0.0 2.5
2

0

2

4
Bootstrap sample 1

2.5 0.0 2.5
2

0

2

4
Bootstrap sample 2

2.5 0.0 2.5
2

0

2

4
Bootstrap sample 3

2.5 0.0 2.5
2

0

2

4
Bootstrap sample 4

2.5 0.0 2.5
2

0

2

4
Bootstrap sample 5

2.5 0.0 2.5
2

0

2

4
Bootstrap sample 1

2.5 0.0 2.5
2

0

2

4
Bootstrap sample 2

2.5 0.0 2.5
2

0

2

4
Bootstrap sample 3

2.5 0.0 2.5
2

0

2

4
Bootstrap sample 4

2.5 0.0 2.5
2

0

2

4
Bootstrap sample 5

25

Bagging: averaging the 5 models

2 1 0 1 2 3 4

2

1

0

1

2

3

4

overfits way less than individual models!
26

A refinement of bagging: Random Forests

• fore more robustness, in bagging we can also subsample features for each
bootstrap copy

• see sklearn.ensemble.BaggingClassifier

• Random forest can subsample features at each split (no need for absolute best
split) ↪→ weak learners are not treated as black boxes!

• see sklearn.ensemble.RandomForestClassifier

• check more ensemble classifiers in the sklearn.ensemble submodule

Pros and cons of bagging and RFs?

27

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/api/sklearn.ensemble.html

Pros and cons of RFs

• many models to train

• many models to evaluate for prediction

• model can be trained in parallel (n jobs parameter)

• base models are usually simple/small

• aggregating models gives more expressivity (vs linear models)

• RF is the go to estimator to try on real data: fast to train, easy to tune

28

Outline

Trees

Ensemble methods: bagging and random forests

Adaboost

29

Adaboost

• Freund & Schapire 1995 (Gödel prize 2003)

• setup: binary classification, yi ∈ {−1, 1}

• (very) weak learners h(t) learnt on weighted training points

• iteratively give more weight to misclassified points

• Final classifier: H(x) = sign(
∑T
t=1 α

(t)h(t)(x))

30

Adaboost

Algorithm 1 Adaboost
Data: Dn = (xi, yi)

n
1 ∈ (Rd × {−1, 1})n

1 w(1) = (1/n, . . . , 1/n) ∈ Rn // uniform weight initialization

2 for t = 1, . . . , T do
3 h(t) = weak learner(Dn,w

(t)) // base learner with weighted loss

4 γ(t) =
∑n

1 wih
(t)(xi)yi // edge: 1 - 2 × error

5 α(t) = 1
2 log

(
1+γ(t)

1−γ(t)

)
// coefficient of h(t)

6 for i = 1, . . . , n do
7 if h(t)(xi) 6= yi then
8 w

(t+1)
i = w

(t)
i

1
1−γ(t)

9 else
10 w

(t+1)
i = w

(t)
i

1
1+γ(t)

11 Return f (T) =
∑T
t=1 α

(t)h(t)

31

Adaboost

2 0 2 4
2

0

2

we
ak

 le
ar

ne
r

Boosting iteration 1

2 0 2 4
2

0

2

Boosting iteration 2

2 0 2 4
2

0

2

Boosting iteration 3

2 0 2 4
2

0

2

Boosting iteration 4

2 0 2 4
2

0

2

Boosting iteration 5

2 0 2 4
2

0

2

to
ta

l m
od

el

2 0 2 4
2

0

2

2 0 2 4
2

0

2

2 0 2 4
2

0

2

2 0 2 4
2

0

2

• point size is proportional to weights

• white points are points which were misclassified by the weak learner at previous
iteration

32

Adaboost generalization: gradient boosting

• Handles any loss, beyond binary

• many implementations: Xgboost (apple), lightGBM (MS), CatBoost (yandex)

• supports feature binning (sklearn HistGradientBoostingClassifier), robust to
preprocessing

• tree-based models outperform deep learning on tabular data: “Why do tree-based
models still outperform deep learning on tabular data?”

• almost always involved in winning submission on Kaggle

33

https://arxiv.org/abs/2207.08815
https://arxiv.org/abs/2207.08815

	Trees
	Ensemble methods: bagging and random forests
	Adaboost

