FRANCAISE &zm — w —
.r;':r-' ENS DE LYON

Trees, forests and boosting

Mathurin Massias

https://mathurinm.github.io
Inria, OCKHAM team

26/02/2025

https://mathurinm.github.io

Motivation: nonlinear data

80

60 -

40 1

hours per week

20

20 30 40 50 60 70 80 90

How would logistic regression perform on this dataset?

100 A

80

hours-per-week

£

o
o
L

A potential classifier?

20

age

60

80

100

Outline

Ensemble methods: bagging and random forests

Adaboost

What is a tree?

Trees partition the whole space into rectangular cells:

A node has exactly either zero or two children

Each split (= question) defines two child nodes, the left and right child nodes
A node with zero children is called a leaf

We pass from a node to the left or right children by answering a question of type “Is
x; > " for some coordinate j and threshold «

age > 28.57

hours/week > 40 ?

CART: Classification and Regression Trees

CART = an algorithm to build a tree out of a training set {(x1,y1)},

o Partition the space, use constant prediction over leaves
e Objective : split the space to fit training data well
o Adapted to two settings:

o y; qualitative with K modalities (y; € {1, ..., K}): classification tree
(DecisionTreeClassifier)

e y; quantitative, y; € R: regression tree (DecisionTreeRegressor)

Pros of trees:
Easy to interpret
Nonparametric model: no assumption on the data distribution.

Example of classification tree

age > 2857

hours/week > 40 ?

Example of regression tree

age > 2857

? revenue

hours/week > 40 7 ~ 30Ky
revenue revenue
= 60k/y = 40k/y

Building a tree = partitioning the space

Building a tree aims at finding a partition of the input space into a set of rectangles that
separates blue points from orange points

L] L]
80 80
% 60 ° ° %60 . °
g]
H ° ° 2 ° °
5 oo T e[e | ee ° 5 oo o ofe | oo .
o ° o o a . b o
5401 © esessgles o 0 ¢ o o 5401 © evesegles o o 4 o oo
£ ° ° P) < ° ° e o
o® 0 0 [° ° v
L %
20{ o e ° . 20{ o o ° .
° °
. .
20 30 40 50 60 70 20 30 40 50 60 70

age age

How to classify new samples?
Classification — A simple majority vote to predict class probabilities

e select C'(x) the cell containing x
e predict majority class inside C'(x):

~ _ +1 if Zi:xiEC(x)]]-yqv,:l > ExieC(x)]]‘yi:—l
g(x) = .
—1 otherwise.

How to classify new samples?
Classification — A simple majority vote to predict class probabilities
» select C(x) the cell containing x

e predict majority class inside C'(x):

IN _ +1if Zi:xieC‘(x) Ly,=1 > Ex,-eC(x) Ly,=—
(%) = .
—1 otherwise.

hours per week
o
S

IS
S

age

How to classify new samples?

Regression — A simple average in each leaf to predict a value (in each region the
predicted value is constant)

» select C'(x) the cell containing x
o predict mean of target of training points inside C'(x):

N - Zi:XfEC(x) Yi
]

How to classify new samples?

Regression — A simple average in each leaf to predict a value (in each region the
predicted value is constant)

» select C'(x) the cell containing x

o predict mean of target of training points inside C'(x):

Q(X) . Zi:x,',GC(x) Yi
[C()
.
80
pred: 46 k/y
ored: 25 k
¥ 60 . .
H ° . 60k/y 30K/
5 (X} g o> ® 060k/y |& Y
¢ ° P e ok 50k/y
340 o e cegee ...l ., ./y§0k/..20k/y
o® . . hd
%
20{ o o . .
.
.

20 30 40 50 60 70
age

An algorithm to build a tree: CART

« The CART algorithm builds the partition recursively (split after split)

e At each step, the method splits an existing cell into two regions according to a split
variable (j in z;) and a threshold point (¢): the question is: “z; > ?”

1004

age > 28.57

hours-per-week

hours/week > 40 7

This is the best tree found by scikit-learn. How were the splits found?

Penguin time

Ol-grow_a_tree.ipynb

How to build the optimal tree? Recap after notebook
Iteratively (split after split)
e We want to split a node N into a left child node N, and a right child node Ny
» The children depend on the cut = the (feature, threshold) pair denoted by (j,t)
Np(j,t)={xz e N:zj <t} Ng(j,t)={re N:z; >t}
e a measure of cell “purity” is used; take split that maximizes gain in purity

o for all current leaves N, all possible feature/threshold pairs, compute purity gain if
we used this split. Pick split with maximal gain.

How many splits to try?

How to split?

Heuristic: greedy algorithm

At each new cut, choose a split so that the two new regions are as homogeneous as
possible

Homogeneous nodes

For classification: class proportions should be as close as possible to (0,1) or (1,0)
For regression: labels should be very concentrated around their mean in a node/cell

How to quantify homogeneity?

Gini index, Entropy (classification)
Variance (regression)

Regression: split measure

e Impurity is the variance of the target y inside the node N:

_ _ 1)
V(N) = Z(yi—yN)z yN:W Z yi IN[=H{i:x; € N}
X, EN X, EN

e Information gain is given by

NG

_ INR(, D)
IV

IG(j,t) = V(N)]

V(NL(jvt)) V(NR(.]’t))

Regression: Finding the best split

Maximize the information gain:
. o 2 . L 2
max |min. Z (ys = 9)* +min- Z (v — Ur)
i:x; ENL (4,t) i:x;, ENR(j,t)
For any (4,t) the inner minimization is solved by

Zi:xieNL oY Zi:xieNR(j,t) Yi

yL = - YR = .

For each j, finding ¢ can be done quickly — determination of the best (3,) is feasible!

Classification: split measure

Given the classes distribution inside cell N, py = (pn,1,- - ., PN,k), With
pN,k - |N‘

(if two classes only: py = (p,1 — p))

e Two possible impurity measures:

K
G(N)=G(pn) = ZPN,k(l —pnk) Giniindex
k=1

K

H(N)=H(pn) =~ Y _pnrlogy(pni) Entropy
k=1

basically: maximal when Py = (1/K,...,1/K) (cell is not pure!)
e Information gainis given by (I = G or I = H):

~INL()]
IV

e best split: enumerate all possible splits...

1G(j.1) = I(V) (N,)) - Wz(wm,)

CART algorithm

CART builds the partition iteratively. At each iteration:
e Find the best (node, feature, threshold) triplet (N, j, ¢) that maximizes IG (N, j, t)
o Create the two new children of the leaf
e Stop if some stopping criterion is met

e Otherwise continue

Stopping criterion?

CART algorithm
CART builds the partition iteratively. At each iteration:

e Find the best (node, feature, threshold) triplet (N, j, ¢) that maximizes IG (N, j, t)
o Create the two new children of the leaf
e Stop if some stopping criterion is met

e Otherwise continue

Stopping criterion?
e Maximum depth of the tree

All leaves have less then a chosen number of samples

Impurity in all leafs is small enough

Testing error is increasing

see parameters in sklearn.tree.DecisionTreeClassifier

Post processing: pruning

What should we do here?

20

Final remarks on trees

® leads to nice interpretable results

© insensitive to datascaling (no preprocessing needed!)
® usually overfit

® usually not the best for prediction

® but the basis of more powerful techniques: random forests, boosting (ensemble
methods)

21

Trees

Adaboost

Outline

22

Ensemble methods

Basic idea
Aggregate multiple models or “weak learners” trained for the same problem. Weak
models combined rightly give accurate model

e Bagging: multiple weak models of the same type that learn from different data sets
in parallel and are combined to decrease the variance on the prediction

e Boosting: weak models learn sequentially and adaptively to improve model
predictions of a learning algorithm.

23

Bagging: training models on bootstrap samples

xy n
T2 Y2
z3 Y3
a,
" Yn
€ R"*P cR”

Bootstrap copies:
(sampling w. replacement)

@1 Y1 X9 Y2 x Y1
x3 Y3 z3 Ys a1 Y1
z3 Y3 Ty Ya T3 Y2
T
n=3 Yn-3 Tn Yn Tn-1 Yn—1
c RxpP cR" e R"XP c R” c R**P c R®
train model 1 train model 2 train model N

Final model = aggregation of N models (majority vote or averaging)

24

Bagging

Bootstrap sample 1 Bootstrap sample 2 Bootstrap sample 3 Bootstrap sample 4 Bootstrap sample !

-2.5 0.0 2.5 -25 0.0 25 -25 0.0 25 -25 0.0 25 -25 0.0 25

ootstrap sample 1 Bootstrap sample 2 Bootstrap sample 3 Bootstrap sample 4 Bootstrap sample !

25

Bagging: averaging the 5 models

overfits way less than individual models!

26

A refinement of bagging: Random Forests

fore more robustness, in bagging we can also subsample features for each
bootstrap copy

see sklearn.ensemble.BaggingClassifier

Random forest can subsample features at each split (no need for absolute best
split) — weak learners are not treated as black boxes!

See sklearn.ensemble.RandomForestClassifier

check more ensemble classifiers in the sklearn.ensemble submodule

Pros and cons of bagging and RFs?

27

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/api/sklearn.ensemble.html

Pros and cons of RFs

many models to train

many models to evaluate for prediction

model can be trained in parallel (n_jobs parameter)

base models are usually simple/small

aggregating models gives more expressivity (vs linear models)

RF is the go to estimator to try on real data: fast to train, easy to tune

28

Outline

Trees

Ensemble methods: bagging and random forests

29

Adaboost

Freund & Schapire 1995 (Godel prize 2003)

setup: binary classification, y; € {—1,1}

(very) weak learners h(®) learnt on weighted training points
iteratively give more weight to misclassified points

Final classifier: H(x) = sign(3_;_, a®h(®(x))

30

(4] ») W N

O O N O

Adaboost

Algorithm 1 Adaboost

Data: D,, = (x;, ;)7 € (R x {~1,1})"
wl) = (1/’1’L, ey 1/TL) € R™ // uniform weight initialization
fort=1,...,Tdo
h(t) = yeak_ 1earner(D,“w()) // base learner with weighted loss
(t) = Z ’LUZh(t)(XL)yZ // edge: 1 - 2 X error
(
a(t) =1 10g <1+’Y(t)) // coefficient of h(*)

fori=1,...,ndo

if h(t) (Xl) 7é Y; then
t+1 t
‘ wz(= wz()1_17@)

else

-+ _ @ _1
‘ w; Wi 1
Return f(T) = 2T a®p®)

3

weak learner

total model

Adaboost

Boosting iteration 1 Boosting iteration 2 Boosting iteration 3 Boosting iteration 4 Boosting iteration 5

b

-2 0 2 4 -2 0 2 4

point size is proportional to weights

white points are points which were misclassified by the weak learner at previous
iteration

32

Adaboost generalization: gradient boosting

Handles any loss, beyond binary
many implementations: Xgboost (apple), lightGBM (MS), CatBoost (yandex)

supports feature binning (sklearn HistGradientBoostingClassifier), robust to
preprocessing

tree-based models outperform deep learning on tabular data: “Why do tree-based
models still outperform deep learning on tabular data?”

almost always involved in winning submission on Kaggle

33

https://arxiv.org/abs/2207.08815
https://arxiv.org/abs/2207.08815

	Trees
	Ensemble methods: bagging and random forests
	Adaboost

