
Deep learning 1/2

Mathurin Massias

https://mathurinm.github.io

Inria, OCKHAM team

12/03/2025

https://mathurinm.github.io


Artificial neural networks (ANNs)

• Computing systems inspired by the biological neural networks that constitute
biological brains.

• Collection of connected units or nodes called artificial neurons

• An artificial neuron receives signals then processes them and can signal neurons
connected to it.

• Connection edge, like synapses, can transmit a signal (a real number) to other
neurons.

2



ANNs: weighted directed graphs

ANNs are parametric models

θ = (w1,1, w1,2, . . . , b1, . . . , w9,1, w9,2, . . . , b15)

• Neurons and edges typically have a weight that increases or decreases the strength
of the signal at a connection.

3



ANNs: a flexible model

ANNs are parametric models used for regression or classification

4



ANNs: many different architectures

5



Feedforward neural networks

For today we study just the simple feedforward, fully connected neural network model

which however can be already quite complex (million of variables)

6



ANNs: two main tasks

• (supervised) Training: how the optimal values of the weights are found based on the
training set

• Forward pass: after training, how the input is propagated through the network to
produce the output

Di�erently from other models we have seen, the forward pass may be expensive ! (long
series of large matrix-vector multiplications)

7



Forward pass: information propagation through a neuron

• Neurons and edges typically have a weight that increases or decreases the strength
of the signal at a connection.

Output of neuron k:
yk = ϕ(wT

k x + bk︸ ︷︷ ︸
linear

)

︸ ︷︷ ︸
non linear 8



Activation functions: introduce nonlinearity

• Linear ϕ(x) = x

• Rectified linear (ReLU) ϕ(x) = max(x, 0)

• Sigmoid ϕ(x) = 1
1+e−x

• Hyperbolic tangent ϕ(x) = tanh(x)

• ELU, GELU, SiLU, CELU, PReLU, LeakyReLU, Swish, ...

ϕ is applied componentwise: For x ∈ Rn, ϕ(x) =

ϕ(x1)
...

ϕ(xn)


9



Multiple neurons

10



Multiple layer networks

11



Matrix notation

TODOW` has wrong shape The output of layer ` is
y` = ϕ(W`y`−1 + b`)

The output of the network is
F (x) = ϕ(WL(ϕ(WL−1(. . . ϕ(W1ϕ(W0x+ b0) + b1) · · ·+ bL−1) + bL)

F (x) = yL ◦ · · · ◦ y0(x)

12



How good are neural networks?

Three error components:

• approximation error

• statistical error

• optimization error

• h̃m our network,

• hm a perfectly trained network on the dataset,

• ĥ function minimizing the problem with infinitely many data,

• u∗ the function we are trying to model

13



How good are neural networks?

Three error components:

• approximation error

• statistical error

• optimization error

• h̃m our network,

• hm a perfectly trained network on the dataset,

• ĥ function minimizing the problem with infinitely many data,

• u∗ the function we are trying to model
13



Outline

NNs are universal approximators

Training: SGD

Training: momentum

How to compute the gradients: backpropagation

14



Approximation property: two universal approximation theorems

Theorem (1 layer on compact sets)
Let φ be non polynomial. Let f : Rn → Rd be continuous. Then for every compact
K ⊂ Rn, every ε > 0, there exists k ∈ N, A ∈ Rk×n, b ∈ Rk, C ∈ Rm×k such that:

sup
x∈K
‖f(x)− g(x)‖ ≤ ε

where g(x) = Cφ(Ax+ b).

15



Approximation property: two universal approximation theorems

Theorem (ReLU activation, arbitrary depth, minimal width)
For any Lebesgue p-integrable function f : Rn → Rm and any ε > 0, there exists a fully
connected ReLU network F of width exactly dm = max{n+ 1,m}, satisfying∫

Rn

‖f(x)− F (x)‖p dx < ε.

Moreover, there exists a function f ∈ Lp(Rn,Rm) and some ε > 0 for which there is no
fully connected ReLU network of width less than dm = max{n+ 1,m} satisfying the
above approximation bound.

Many other variants exists with di�erent assumptions

15



Outline

NNs are universal approximators

Training: SGD

Training: momentum

How to compute the gradients: backpropagation

16



How to train a neural network?

Given the training set {(x1, y1), . . . , (xn, yn)}, find the best parameters θ ∈ Rm,
θ = {W1,b1, . . . ,WL,bL} to fit the data.

ERM principle

min
θ
L(θ) = E(X,Y )`(Y, Fθ(X))) ∼ min

θ
Ln(θ) :=

1

n

n∑
i=1

`(yi, Fθ(xi))

Minimization problem

min
θ
f(θ) f : Rm → R, f(θ) =

n∑
i=1

fi(θ) with m,n very large

17



Gradient descent (GD)

• Input: θ(0) starting weights

• Update rule: for k = 1, . . . , set θ(k + 1) = θ(k)− α(k)∇f(θ(k))

• Stopping criterion: stop if ‖∇f(θ(k))‖ < ε

Limitations of GD in the training framework

• Compute ∇f(θ(k)) =
∑n
i=1∇fi(θ(k)) with n very large: expensive

• Compute α(k): best way line-search→ m very large: expensive

18



How to improve gradient descent?

θ(k + 1) = θ(k)− α(k)
1

n

n∑
i=1

∇θ`(yi, Fθ(xi))

↪→ Replace the mean by a cheaper estimate?

19



Reduce the cost of the training

Stochastic gradient descent (SGD) for NN training
For all k ≥ 1, choose randomly ik ∈ {1, . . . , n} and set

θ(k + 1) = θ(k)− α(k)∇θL(yik , Fθ(xik))

Advantages: much cheaper

• Uses just one sample for the gradient: ∇fik(θ(k)) rather than
∑n
i=1∇fi(θ(k))

• Heuristic strategies to update α(k) or fixed α

Disadvantages: slow convergence

• Uses just partial information

• In general, needs limk→∞ α(k) = 0 to converge

20



Convergence results

Assume f strongly convex, θ ∈ Rm

• GD converges linearly:

f(θ(k))− f∗ ≤ O(ρk), ρ ∈ (0, 1),

→ number of iterations is proportional to log(1/ε).

• SGD with αk = O(1/k) converges sublinearly in expectation [Theorem 4.7
https://epubs.siam.org/doi/epdf/10.1137/16M1080173]:

E(f(θ(k))− f∗) = O(1/k).

• GD cost : m log(1/ε) (each iteration costs m)

• SGD cost: 1/ε, but does not depend on m!

• In the big data regime where m is large, m log(1/ε)� 1/ε.

• exercise: compare 1 iteration cost for f(θ) = 1
2‖Xθ − y‖

2

21

https://epubs.siam.org/doi/epdf/10.1137/16M1080173


Choosing the learning rate

Iterations vs epochs
Iteration: one update of the parameters, epoch: a full pass over the data

22



SGD vs GD, minibatches

23



Outline

NNs are universal approximators

Training: SGD

Training: momentum

How to compute the gradients: backpropagation

24



Improvement #2: momentum

• The gradient in a plateau is negligible or zero→ very small steps.

• The path followed by gradient descent is very jittery

https://distill.pub/2017/momentum/

25

https://distill.pub/2017/momentum/


Momentum: keep memory of the past

• Define the step as the average of past gradients instead of the gradient at the
current iteration.

• Cannot consider all the gradients with equal weightage.

• Need to use some sort of weighted average

26



Momentum: keep memory of the past

• Define the step as the average of past gradients instead of the gradient at the
current iteration.

• Cannot consider all the gradients with equal weightage.

• Need to use some sort of weighted average
26



Exponential Moving Average (EMA)

Consider a noisy sequence y(t). The EMA s(t) for a series y(t) may be calculated
recursively as:

s(t) =

{
y(1) if t = 1,

βs(t− 1) + (1− β)y(t) if t > 1

where β ∈ [0, 1] represents the degree of weighting increase. A lower β discounts older
observations faster.

27



EMA for gradients

• Instead of ∆θ(k) = γg(k), where g(k) is the gradient approximation (full gradient,
or a mini-batch or stochastic gradient), use

∆θ(k) = β∆θ(k − 1) + (1− β)γg(k)

• Often β → β(k) and (1− β)γ → α(k)

θ(k + 1) = θ(k)− α(k)g(k)︸ ︷︷ ︸
standard gradient step

+β(k)(θ(k)− θ(k − 1))︸ ︷︷ ︸
momentum term

,

• Special cases:

• βk = 0 for all k ∈ N: classical GD/SGD

• αk = α and βk = β: heavy ball method.

28



Heavy ball momentum

• By expanding the update:

θ(k + 1) = θ(k)− α
k∑
j=1

βk−jg(k)

each step is an exponentially decaying average of past gradients.

• Let’s analyze the contribution of β. Assume α = 1.

• β = 0.1: At k = 3; g3 will contribute 100% of its value, g2 10% and g1 1%:
contribution from earlier gradients decreases rapidly.

• β = 0.9: g3 will contribute 100% of its value, g2 90% and g1 81%.

• Usually β ∼ 0.9

29



How does momentum help?

With gradient descent:

• LR too small: small steps, convergence takes a lot of time even when the gradient is
high.

• LR too high: the sequence oscillates around the minima

How does momentum fix this?

• All the past gradients have the same sign: the summation term will become large and
we will take large steps

• Di�erent signs: the summation term will become small and the steps will be small,
damping the oscillations. 30



Nesterov accelerated gradient vs heavy ball

• Treats the future approximate position θ̃(k) = θ(k) + β(k)(θ(k)− θ(k − 1)) as a
”lookahead”

• It computes the gradient at θ̃(k) instead of at the old position θ(k)

• In momentum: first gradient descent step and then momentum term, in Nesterov:
first momentum then gradient descent (with the gradient evaluated at θ̃(k), not at
θ(k)).

• Nesterov has better theoretical rates: see Chap 5 in M2 Lecture Notes:
https://mathurinm.github.io/assets/2022_ens/class.pdf

31

https://mathurinm.github.io/assets/2022_ens/class.pdf


Outline

NNs are universal approximators

Training: SGD

Training: momentum

How to compute the gradients: backpropagation

32



Reminder: the Jacobian and the chain rule

On board; check Section 0.1 of M2 notes:
https://mathurinm.github.io/assets/2022_ens/class.pdf

33

https://mathurinm.github.io/assets/2022_ens/class.pdf


How to actually compute the gradient?

Backpropagation algorithm
There exists a very e�cient algorithm, called the backpropagation algorithm
http://neuralnetworksanddeeplearning.com/chap2.html .

Backpropagation is about understanding how changing the weights and biases in a
network a�ects the loss function.
Given the loss function L(y(x), aL(x)) where aL(x) is the output of the network, y(x) the
true output, we want to compute ∂L

∂w and ∂L
∂b for every weight w and bias b

34

http://neuralnetworksanddeeplearning.com/chap2.html


Mathematical formulation

Recall the propagation rule in a neural network:

a`j = σ

(∑
k

w`j,ka
`−1
k + b`j

)

• ` = 1, . . . , L indexing the layers

• k = 1, . . . ,K indexing the neurons in the `− 1-th layer

• j = 1, . . . , J indexing the neurons in the `-th layer

35



Mathematical formulation

In vector form:

a` = σ(W `a`−1 + b`)

z` = W `a`−1 + b` (preactivation)

with
W ∈ RJ×K ,a`−1 ∈ RK , b` ∈ RJ

and σ applied componentwise.

36



Hadamard product

Given two vectors of the same size x,y ∈ Rm, the Hadamard product is the
componentwise product:

x� y =


x1y1
x2y2

...
xmym


Example [

1
3

]
�
[
4
7

]
=

[
4
21

]

37



Backpropagation: 4 fundamental equations

Backpropagation is based on 4 equations that allows to compute the gradient in an
”analytical” way.
We define an intermediary quantity that will be useful:

δ`j :=
∂L
∂z`j

38



Backpropagation: an equation for δ in the output layer

Scalar case aL ∈ R:
δL =

∂L
∂aL

σ′(zL) (BP1)

• Everything in (BP1) is easily computed: we compute zL in the forward pass, and it’s
only a small additional overhead to compute σ′(zL). For instance for the sigmoid
σ′(x) = σ(x)(1− σ(x))

• The exact form of ∂L
∂aL

will depend on the choice of loss, but can be computed
analytically

• Exercice: for the quadratic loss?

L =
1

2n

n∑
i=1

(yi − aL(xi))
2

∂L
∂aL

=
1

n

n∑
i=1

(yi − aL(xi))

39



Backpropagation: an equation for δ in the output layer

Scalar case aL ∈ R:
δL =

∂L
∂aL

σ′(zL) (BP1)

• Everything in (BP1) is easily computed: we compute zL in the forward pass, and it’s
only a small additional overhead to compute σ′(zL). For instance for the sigmoid
σ′(x) = σ(x)(1− σ(x))

• The exact form of ∂L
∂aL

will depend on the choice of loss, but can be computed
analytically

• Exercice: for the quadratic loss?

L =
1

2n

n∑
i=1

(yi − aL(xi))
2

∂L
∂aL

=
1

n

n∑
i=1

(yi − aL(xi))

39



Proof of BP1: the chain rule

By definition
δL1 = δL =

∂L
∂zL

By the chain rule

δL =
∂L
∂aL

∂aL

∂zL

and because aL = σ(zL)
∂aL

∂zL
= σ′(zL).

40



Backpropagation: a recursive equation for δ

δ` = (W `+1)T δ`+1 � σ′(z`) (BP2)

Why backpropagation?
By combining (BP2) with (BP1) we can compute the error for any layer in the network. We
start by using (BP1) to compute δL, then apply (BP2) to compute δL−1, then (BP2) again
to compute δL−2, and so on, all the way back through the network

41



Backpropagation: an equation for the rate of change of the loss with
respect to any bias

∂L
∂b`j

= δ`j (BP3)

Good news, δ`j is exactly equal to the rate of change ∂L
∂b`j

and (BP1) and (BP2) have already
told us how to compute it!

42



Backpropagation: An equation for the rate of change of the loss with
respect to any weight

∂L
∂w`j,k

= a`−1k δ`j (BP4)

This tells us how to compute the partial derivatives ∂L
∂w`

j,k

in terms of the quantities δ`,
a`−1, which we already know how to compute.

43



The backpropagation algorithm

• Given input x, set the corresponding activation a1 for the input layer:
a1 = σ(W 1x + b1)

• Feedforward pass: for each ` = 2, 3, . . . , L compute z` = W `a`−1 + b` and a` = σ(z`).

• Compute δL = ∂L
∂aL

σ′(zL).

• Backpropagate the error: For each ` = L− 1, L− 2, . . . , 1 compute
δ` = ((W `+1)T δ`+1)� σ′(z`).

• Output: The gradient of the cost function is given by ∂L
∂w`

j,k

= a`−1k δ`j and ∂L
∂b`j

= δ`j

44



Full training of a neural network

For each epoch:

• At each iteration select a batch B of training samples.

• For each training example x in the batch perform the following steps:

• Forward pass

• Compute δL = ∂LB

∂aL
σ′(zL).

• Backpropagate the error and obtain ∂LB

∂w`
j,k

and ∂LB

∂b`j

• Gradient descent: For each ` = L,L− 1, . . . , 1 update the parameters:

w`j,k ← w`j,k − α
∂LB
∂w`j,k

b`j ← b`j − α
∂LB
∂b`j

• When all the training examples have been used, start a new epoch
45



Backpropagation is a fast algorithm

• Alternative to compute the derivatives for some weight w: finite di�erences
∂L
∂wj

∼ L(w + hej)− L(w)

h

where h > 0 small, ej is the unit vector in the jth direction.

• It’s simple conceptually, easy to implement, but extremely slow!

• For each wj we need to compute L(w + hej): millions of weights→ compute the
loss function a million times, thus a million forward passes through the network.

• With backpropagation we simultaneously compute all the partial derivatives with
just one forward pass through the network, followed by one backward pass

• Computational cost of the backward pass is about the same as the forward pass
(dominant cost in the forward pass is multiplying by the weight matrices, while in
the backward pass it’s multiplying by the transposes of the weight matrices)

• Total cost of backpropagation is roughly the same as making just two forward
passes through the network.

46


	NNs are universal approximators
	Training: SGD
	Training: momentum
	How to compute the gradients: backpropagation

