
Fundamentals of machine learning
Course 10 : advanced neural networks

Mathurin Massias & Titouan Vayer
email: mathurin.massias@inria.fr, titouan.vayer@inria.fr

March 31, 2025



Neural networks in image processing

https://www.egmont-petersen.nl/science/Journal-papers/Egmont-PR-Review2002.pdf

I Applications: pattern recognition, face recognition, optical character
recognition, video surveillance

I Other applications: driverless cars, robots design, virtual personal
assistant

https://www.egmont-petersen.nl/science/Journal-papers/Egmont-PR-Review2002.pdf


Neural networks in image classification

I Around 2010: big successes of NN in image classification.

I Massive databases of labeled images were being accumulated

I MNIST: collection of 70000 handwritten 28 × 28 grayscale digits

I CIFAR-10 : 60000 32x32 colour images in 10 classes, with 6000
images per class.

I CIFAR-100 : 60000 32x32 colour images in 100 classes (20
superclasses, with five classes each)
https://www.cs.toronto.edu/~kriz/cifar.html

I ImageNet: > 14 millions of images manually annotated, objects
classified in > 20.000 classes https://www.image-net.org/

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.image-net.org/


Convolutional neural networks (CNN)

I A special family of networks for image classification

I CNNs mimic how humans classify images: recognize specific features
or patterns

I They are composed of convolution and pooling layers + a standard
feedforward classification network

I AlexNet: 2012 Imagenet winner, Neurips 2022 test of time award,
140 k citations



How do they work?

I CNN first identifies low-level features (small edges, patches of color)

I Low-level features are combined to form higher-level features (ears,
eyes)

I Presence/absence of higher-level features contributes to the
probability of any output class



Convolution layers

I A convolution layer is made up of a large number of convolution
filters

I Each filter determines whether a particular local feature is present in
an image.

I A convolution filter relies on a very simple operation, called
convolution, which basically amounts to repeatedly multiplying
matrix elements and then adding the results

I https:

//towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0


︸ ︷︷ ︸

Image

1 0 1
0 1 0
1 0 1


︸ ︷︷ ︸

Filter

→


1× 1 1× 0 1× 1 0 0
0× 0 1× 1 1× 0 1 0
0× 1 0× 0 1× 1 1 1

0 0 1 1 0
0 1 1 0 0


︸ ︷︷ ︸

Convolution

→

4 3 4
2 4 3
2 3 4


︸ ︷︷ ︸
Convolved Feature

Is it fundamentlly different from a fully connected layer?

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Color input image

Repeat on all the channels and sum up.



Color input image

I If a submatrix of the original image resembles the convolution filter,
then it will have a large value in the convolved image

I Thus, the convolved image highlights regions of the original image
that resemble the convolution filter

Figure: Convolution filter contains mostly zeros (black), with a narrow strip of
ones (white) oriented either vertically or horizontally within the image



Classical image processing vs CNNs

I In a convolution layer, we use a whole bank of filters to pick out a
variety of differently-oriented edges and shapes in the image.

I Using predefined filters is standard practice in classical image
processing.

I By contrast, with CNNs the filters are learned for the specific
classification task

I The first ConvLayer is responsible for capturing the Low-Level
features such as edges, color, gradient orientation, etc.

I With added layers, the architecture adapts to the High-Level
features as well



Pooling layers

I A pooling layer provides a way to condense a large image into a
smaller image

I Max pooling: summarizes each non-overlapping 2×2 block of pixels
using the maximum value in the block.

I This reduces the size of the image by a factor of two in each
direction 

1 2 5 3
3 0 1 2
2 1 3 4
1 1 2 0

→ (
3 5
2 4

)



CNN architecture

I Each filter produces a new two-dimensional feature map.

I The number of convolution filters is akin to the number of units at a
particular hidden layer in a fully-connected neural network

I Example with 6 filters (2 for each channel)



Data augmentation

I Trick to improve the training for image analysis

I Each training image is replicated many times, with each replicate
randomly distorted

I Examples: zoom, horizontal and vertical shift, shear, small rotations,
horizontal flips.

I Effects:
I increasing the training set
I is a form of regularization and protects against overfitting.



Baseline results and pretrained networks

I CNN: https://www.cs.toronto.edu/~kriz/cifar.html

I More advanced networks: https://paperswithcode.com/sota/

image-classification-on-cifar-10

ImageNet Large Scale Visual Recognition Challenge (LSVRC)
https://www.image-net.org/challenges/LSVRC/

I AlexNet https://pytorch.org/hub/pytorch_vision_alexnet/

I VGG
https://www.robots.ox.ac.uk/~vgg/research/very_deep/

I ResNet https://arxiv.org/abs/1512.03385

https://www.cs.toronto.edu/~kriz/cifar.html
https://paperswithcode.com/sota/image-classification-on-cifar-10
https://paperswithcode.com/sota/image-classification-on-cifar-10
https://www.image-net.org/challenges/LSVRC/
https://pytorch.org/hub/pytorch_vision_alexnet/
https://www.robots.ox.ac.uk/~vgg/research/very_deep/
https://arxiv.org/abs/1512.03385


Generative adversarial networks (GANs)

I GANs are generative models: they create new data instances that
resemble your training data.

I Example: create images that look like photographs of human faces,
even though the faces don’t belong to any real person.

I https://developers.google.com/machine-learning/gan

https://developers.google.com/machine-learning/gan


Components of a GAN

I GANs= generator (which learns to produce the target output) +
discriminator (learns to distinguish true data from the output of the
generator)

I The generator tries to fool the discriminator, and the discriminator
tries to keep from being fooled.



Generator vs discriminator

I Generative models can generate new data instances (generate new
photos of animals that look like real animals)

I Discriminative models discriminate between different kinds of data
instances (tell a dog from a cat)

I Formally, given a set of data instances X and a set of labels Y:
I Generative models capture the joint probability p(X ,Y )
I Discriminative models capture the conditional probability p(Y |X ).



Training of the GAN



Training of the GAN

I The generator learns to generate plausible data. The generated
instances become negative training examples for the discriminator.



Training of the GAN

I The discriminator learns to distinguish the generator’s fake data
from real data. The discriminator penalizes the generator for
producing implausible results.



Training of the GAN



Training of the GAN

Alternating Training

1. The discriminator trains for one or more epochs.

2. The generator trains for one or more epochs.

3. Repeat steps 1 and 2 to continue to train the generator and
discriminator networks.

Convergence
The training of G depends on the feedback of D: important that one is
not overtrained over the other, and to stop at the right time. → For a
GAN, convergence is often a fleeting, rather than stable, state.



Loss function: the Minimax Loss

G minimizes while D maximizes the following function:

Ex(log(D(x))) + Ez(log(1− D(G (z))))

I D(x) is the discriminator’s estimate of the probability x is real.

I Ex is the expected value over all real data instances.

I G (z) is the generator’s output when given noise z .

I D(G (z)) is the discriminator’s estimate of the probability that a fake
instance is real.

I Ez is the expected value over all generated fake instances G (z)

I The formula derives from the cross-entropy between the real and
generated distributions.

I The generator can’t directly affect the log(D(x)) term in the
function, so, for the generator, minimizing the loss is equivalent to
minimizing log(1− D(G (z))).

I More advanced GANs use other loss functions (e.g., Wasserstein loss
for TF-GAN )



Extensions of GANs: Image-to-Image
Translation

Satellite to Google Maps, day to night, sketches to color photo, black
and white to color..
https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/


Text-to-Image Translation (text2image)

Generate realistic looking photographs from textual descriptions



Photograph Editing

Photograph Editing (reconstruct photographs with specific specified
features, such as changes in hair color, style, facial expression, age)



Classical solution of partial differential
equations (PDEs)

A PDE problem
Given a domain Ω ⊂ Rd , we consider the following differential system:{

L(u(z)) = g(z) for z ∈ Ω

B(u(z)) = b(z) for z ∈ ∂Ω

where L and B are two (possibly nonlinear) differential operators and g
and b are two given functions.

Linear case
L is a linear operator. The PDE
is discretized on a mesh, yielding
a linear system:

Lu = g



Example: Poisson’s equation ∆u(z) = r(z)

1D case
Equation: Ω = [a, b], z ∈ R, u′′(z) = r(z)

Choose a mesh with m interior points

Discretize second order derivative

u′′(zi ) ∼
u(zi+1 − 2u(zi ) + u(zi−1)

h2
, h =

1

m + 1
,

Solve the system
Lu = r

L =
1

h2


−2 1 . . .
1 −2 1 . . .

. . .

. . . 1 −2

 , g =


g(a)
g(z1)

...
g(zm)
g(b)

 u =


u(a)
u(z1)

...
u(zm)
u(b)





Example: Poisson’s equation ∆u(z) = r(z)

2D case

z = (x , y) ∈ R2, ∆u(z) = r(z)

∆u(z) =
∂2u

∂x2
+
∂2u

∂y2



Examples of boundary conditions

I Dirichlet: u|∂Ω = b

I Neumann: ∂u
∂z |∂Ω = b

I Robin: αu|∂Ω + β ∂u∂z |∂Ω = b



Limitations

Curse of the dimensionality

I 1D case: m points

I 2D case: m2 points

I 3D case: m3 pionts

The dimensionality of the problem increases exponentially with the
dimension of the domain.

Nonlinearity?

I Cannot simply solve a linear system

I Need for an iterative method (sequentially linearize the problem)

I Requires to solve a lot of linear systems



A new perspective: neural networks for PDEs

I Idea: Approximate the solution of the problem by a neural network
NN(z) : Rd → R such that

NNθ(z) ∼ u(z), for all z ∈ Ω

I The neural network is trained by minimization of a loss that takes
into account the physical information contained in the PDE.

I A recent development: Physics Informed Neural Networks (PINNs)

M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: A deep learning framework for solving

forward and inverse problems involving nonlinear partial differential equations, 2019.



Why this approach ?
I Natural approach for nonlinear equations

I Provides analytic and continuously differentiable expression of the
approximate solution

I The solution is meshless, well suited for problems with complex
geometries

I The training is highly parallelizable on GPU

I Allows to alleviate the effect of the curse of dimensionality

I These techniques are easy to implement and to adapt to different
kind of differential equations and boundary conditions.



How to train a PINN

Step 1: build a sampling set
z = (x , y) ∈ R2 → zΩ, z∂Ω, |zΩ| = NΩ, |z∂Ω| = N∂Ω.



How to train a PINN

Step 2: define the loss function

`(θ) =
λΩ

NΩ

NΩ∑
j=1

(L(NNθ(z jΩ))− g(z jΩ))2

︸ ︷︷ ︸
MSER

+
λ∂Ω

N∂Ω

N∂Ω∑
j=1

(B(NNθ(z j∂Ω))− b(z j∂Ω))2

︸ ︷︷ ︸
MSEB

where λΩ, λ∂Ω are some positive weights which balance the contribution
of the residual of the PDE and the residual of the boundary conditions.



Physics Informed Neural Networks (PINNs)

Step 3: minimize the loss function wrt θ
SGD, SGD + momentum, LBFGS



Current research on PINNs

1) Approximation properties
Estimates on the generalization error of Physics Informed NeuralNetworks (PINNs) for approximating PDEs. S. Mishra and R.

Molinaro, 2021

2) On the spectral bias of neural networks

⇒ PINNs are not effective in approximating highly oscillatory solutions



Mscale networks

Z.Q. Liu, W. Cai, and Z.Q. John Xu, Multi-scale Deep Neural Network (MscaleDNN) forSolving Poisson-Boltzmann Equation in

Complex Domains, 2020

Idea: simultaneous training of frequency-selective subnetworks



Recurrent neural networks (RNNs)

I Designed to handle data sources that are sequential in nature

I Examples: Translation of text, speech recognition (transforming
spoken words into text), classification of events at every point in a
movie

I Humans don’t start their thinking from scratch every second.

I Example: while reading you understand each word based on your
understanding of previous words.

I RNNs: networks with loops in them, allowing information to persist,
connecting previous information to the present task



Structure of a RNN

I Input object X is a sequence

I Example: a document X = {X1,X2, . . . ,XL}, where each Xl

represents a word

I The output Y can be a sequence (language translation), or a scalar
(binary sentiment label of a movie review document)



Structure of a RNN

I The same weights W ,U,B are used for each element in the sequence

I This is a form of weight sharing

I The activations Al accumulate a history of what has been seen
before: the learned context can be used for prediction

I Example: Historical trading statistics from the New York Stock
Exchange. We wish to predict trading volume on any day, given the
history on all earlier days (Train: 1962-1980)



LSTM-RNN

I More elaborate versions use long term and short term memory
(LSTM).

I Two tracks of hidden-layer activations are maintained

I Al gets input from hidden units both further back in time and closer
in time

I A set of gates is used to control when information enters the
memory, when it’s output, and when it’s forgotten.



Interpolation and Double Descent,
overparametrized networks

I Bias-variance trade-off: statistical learning methods tend to perform
the best (test error) for an intermediate level of model complexity.

I Test error has a U-shape, training error decreases monotonically

I It is generally not a good idea to interpolate the training data

I Double descent phenomenon: in certain specific settings it is
possible for a statistical learning method that interpolates the
training data to perform well



I This is particularly true in problems with high signal-to-noise ratio,
such as natural image recognition and language translation

I SGD has a natural bias: tends to select a “smooth” interpolating
model that has good test-set performance on these kinds of problems

I The double-descent phenomenon does not contradict the
bias-variance trade-off, it’s a different regime

I Most of the statistical learning methods do not exhibit double
descent (regularized models)

I Very good test-set performance can be obtained with good
regularization, usually much better than with interpolation

I Huge number of parameters: we typically do not want to rely on this
behavior.



NN: an always evolving topic

Some open research directions

I Introduce sparsity in neural networks

I NN training and inference in low/mixed precision

I Characterize approximation properties of NN

I New architectures: transformers (NLP), MIT’s “Liquid”
Machine-Learning System (adapts to changing conditions)

I New hardware: GPUs, FPGAs, TPUs


