
Bridging Arbitrary and Tree Metrics via 
Differentiable Gromov Hyperbolicity

Pierre Houedry Nicolas Courty Titouan VayerFlorestan Martin-Baillon Laetitia Chapel1



Motivations
✦ Representation learning

Dataset Geometry

Dij
« Interesting » embedding space

2



Motivations
✦ Representation learning

Dataset Geometry

Dij
« Interesting » embedding space

✦ Hierarchical representations

Trees embedding

3



Motivations
✦ Representation learning

Dataset Geometry

Dij
« Interesting » embedding space

✦ Hierarchical representations

Trees embedding

(a) Intermediate embedding after 20 epochs (b) Embedding after convergence

Figure 2: Two-dimensional Poincaré embeddings of transitive closure of the WORDNET mammals
subtree. Ground-truth is-a relations of the original WORDNET tree are indicated via blue edges. A
Poincaré embedding with d = 5 achieves mean rank 1.26 and MAP 0.927 on this subtree.

embeddings show a greatly improved performance while using an embedding that is smaller by an
order of magnitude. Furthermore, the results of Poincaré embeddings in the link prediction task are
very robust with regard to the embedding dimension. We attribute this result to the structural bias of
Poincaré embeddings, what could lead to reduced overfitting on this kind of data with a clear latent
hierarchy. In Figure 2 we show additionally a visualization of a two-dimensional Poincaré embedding.
For purpose of clarity, this embedding has been trained only on the mammals subtree of WORDNET.

4.2 Network Embeddings

Next, we evaluated the performance of Poincaré embeddings for link prediction in networks. Since
edges in complex networks can often be explained via latent hierarchies over their nodes [8], we are
interested in the benefits of Poincaré embeddings both in terms representation size and generalization
performance. We performed our experiments on four commonly used social networks, i.e, ASTROPH,
CONDMAT, GRQC, and HEPPH. These networks represent scientific collaborations such that there
exists an undirected edge between two persons if they co-authored a paper. For these networks, we
model the probability of an edge as proposed by Krioukov et al. [16] via the Fermi-Dirac distribution

P ((u, v) = 1 | ⇥) =
1

e(d(u,v)�r)/t + 1
(7)

where r, t > 0 are hyperparameters. Here, r corresponds to the radius around each point u such that
points within this radius are likely to have an edge with u. The parameter t specifies the steepness of
the logistic function and influences both average clustering as well as the degree distribution [16].
We use the cross-entropy loss to learn the embeddings and sample negatives as in Section 4.1.

For evaluation, we split each dataset randomly into train, validation, and test set. The hyperparameters
r and t where tuned for each method on the validation set. Table 2 lists the MAP score of Poincaré
and Euclidean embeddings on the test set for the hyperparameters with the best validation score.
Additionally, we again list the reconstruction performance without missing data. Translational
embeddings are not applicable to these datasets as they consist of undirected edges. It can be
seen that Poincaré embeddings perform again very well on these datasets and – especially in the
low-dimensional regime – outperform Euclidean embeddings.

4.3 Lexical Entailment

An interesting aspect of Poincaré embeddings is that they allow us to make graded assertions about
hierarchical relationships as hierarchies are represented in a continuous space. We test this property
on HYPERLEX [32], which is a gold standard resource for evaluating how well semantic models
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Abstract

Visual scenes are naturally organized in a hierarchy, where
a coarse semantic is recursively comprised of several fine
details. Exploring such a visual hierarchy is crucial to
recognize the complex relations of visual elements, leading
to a comprehensive scene understanding. In this paper,
we propose a Visual Hierarchy Mapper (Hi-Mapper), a
novel approach for enhancing the structured understanding
of the pre-trained Deep Neural Networks (DNNs). Hi-
Mapper investigates the hierarchical organization of
the visual scene by 1) pre-defining a hierarchy tree
through the encapsulation of probability densities; and
2) learning the hierarchical relations in hyperbolic
space with a novel hierarchical contrastive loss. The
pre-defined hierarchy tree recursively interacts with
the visual features of the pre-trained DNNs through
hierarchy decomposition and encoding procedures, thereby
effectively identifying the visual hierarchy and enhancing
the recognition of an entire scene. Extensive experiments
demonstrate that Hi-Mapper significantly enhances the
representation capability of DNNs, leading to an improved
performance on various tasks, including image classification
and dense prediction tasks. The code is available at
https://github.com/kwonjunn01/Hi-Mapper.

1. Introduction
Recognizing and representing the visual scene of any content
is the fundamental pursuit of the computer vision field [1–
4]. In particular, understanding what constitutes a scene
and how each element is comprised of plays a key role in
various visual recognition tasks such as image retrieval [1, 2],
human-object interaction [3, 5], and dense prediction [6, 7].
This goes beyond merely learning discriminative feature
representations, as it requires to reason about the fine details
as well as their associations to comprehend the structured
nature of the complex visual scene.
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Figure 1. (a) A visual scene can be decomposed into a hierarchical
structure based on the semantics of each visual element. (b)
Euclidean space is suboptimal in representing the hierarchical
structure due to its flat nature. The relational distance is inaccurately
captured, being unaware of the semantic similarity of visual
elements (Red line). Hi-Mapper maps the hierarchical elements
in hyperbolic space, which effectively preserves their semantic
relations and distances due to its constant negative curvature.

Over the decades, the development of deep neural
networks (DNNs) has contributed towards advances
in representing the complex visual scene. Notably,
convolutional neural networks (CNNs) have achieved
capturing fine details through the local convolutional
filters while Vision Transformer (ViT) [8] has enabled
coarse context modeling with multi-head self-attention
mechanisms. Owing to their different desirable properties,
hybrid architectures [9–12] and multi-scale variants of
ViTs [13–15] have been extensively explored to capitalize on
the complementary features of CNNs and ViTs. Subsequent
works [16, 17] have further imposed interaction between
multi-scale image patches to facilitate information exchange
between fine details and coarse semantics.
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Figure 2: �-slim tri-
angle.

The �-hyperbolicity generalizes this condition by allowing a bounded deviation.
Specifically, a metric space (X, dX) is �-hyperbolic if, for all x, y, z, w 2 X ,
the following inequality holds

dX(x, y)+dX(z, w)  max {dX(x, z) + dX(y, w), dX(x,w) + dX(y, z)}+2�.

This is known as the four-point condition. It offers an alternative characteriza-
tion of �-hyperbolicity (see [18, Ch. 2,§1]), providing a quantitative measure
of how far a given metric deviates from being a tree metric, and thereby cap-
turing an intrinsic notion of negative curvature in the space. An alternative and
more geometrically intuitive way to understand �-hyperbolicity is through the
concept of �-slim geodesic triangles. In this perspective, a geodesic metric
space (X, dX) is �-hyperbolic if and only if every geodesic triangle in X is
�-slim (up to a multiplicative constant on �, see [18, Ch.2, §3, Proposition 21]), meaning that each
side of the triangle is contained within the �-neighbourhood of the union of the two other sides (see
Figure 2).

This captures the idea that geodesic triangles in hyperbolic spaces are “thin”, more closely resembling
tripods than the broad, wide-angled triangles characteristic of Euclidean geometry. In this sense,
Gromov hyperbolicity quantifies the extent to which the space deviates from tree-like behaviour:
the smaller the value of �, the more the geodesic triangles resemble those in a tree, where all three
sides reduce to a union of two overlapping segments. Thus, the �-slim triangle condition offers a
compelling geometric counterpart to the more algebraic formulations via the Gromov product or the
four-point condition.

Computing the Gromov hyperbolicity. Computing the Gromov hyperbolicity of a discrete metric
space is computationally demanding, as it requires examining all quadruples of points to evaluate
the four-point condition. The naive brute-force approach runs in O(n4) time for a space with n

points, making it impractical for large-scale applications. Then, several works have addressed the
computational bottlenecks inherent in computing Gromov hyperbolicity. Notably, Fournier et al. [16]
show that the computation of hyperbolicity from a fixed base-point can be reduced to a (max,min)
matrix product. Leveraging the fast algorithm for this class of matrix products, it leads to an overall
O(n3.69) time complexity.

In graph settings, the notion of far-apart vertex pairs plays a key role in accelerating hyperbolicity
computation. This concept underpins a structural result [9] stating that certain far-apart pairs suffice
to witness the maximum in the definition of Gromov hyperbolicity. Consequently, one can avoid
exhaustive examination of all quadruples and focus on a carefully selected subset; this leads to a
pruning approach that significantly reduces computational cost [10].

Contrary to these approaches, which aim to accelerate the exact computation of Gromov hyperbolicity,
we take a different route: we introduce a smooth, differentiable surrogate of the hyperbolicity function.
This relaxation enables gradient-based optimization, and we further propose a batched approximation
scheme to make the computation tractable and independent of the size of the graph.

2.2 Embedding of a �-hyperbolic space into a tree

The �-hyperbolicity can play a significant theoretical role in establishing guarantees for embedding
arbitrary metric spaces into trees. Indeed, a result by Gromov [19] shows that any �-hyperbolic metric
space on n points admits a tree-metric approximation with additive distortion O(� log n), and that
this embedding can be computed in O(n2) time.
Theorem 2.3 ([18, Ch.2, §2, Theorem 12]). Let (X, dX) be a finite �-hyperbolic metric space over n

points. For every w 2 X , there exists a finite metric tree (T, dT ), and a map � : X �! T such that

1. The distance to the basepoint is preserved: dT (�(x),�(w)) = dX(x,w) for all x 2 X,

2. dX(x, y)� 2� log2(n� 2)  dT (�(x),�(y))  dX(x, y) for all x, y 2 X.

The approximation of distances provided in the previous theorem is particularly notable due to the
non-expansiveness of the mapping, meaning that the embedded distances in the tree never exceed the
original graph distances. This ensures that the distortion introduced is purely additive and one-sided,
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✦ Gromov product

(X, d)

(x |y)w =
1
2 (d(x, w) + d(y, w) − d(x, y))

w

x

y

✦ Gromov -hyperbolicityδ

∀x, y, z, w ∈ X, (x |y)w ≥ min{(y |z)w , (x |z)w} − δ

 is -hyperbolic (for ) if(X, d) δ δ ≥ 0

✦ Conclusion
✦ -hyperbolicity quantifies to which extent  is hyperbolicδ (X, d)
✦ The smaller  the more  has a « tree structure »δ (X, d)
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To DeltaZero
✦ Motivation

xi

xj

Dij = d(xi, xj)

✦ Faithful to the original metric

✦ Control how much « tree structure » we want

Embedding with a hierarchical structure

✦ Reasonable in terms of computation

33



✦ Motivation

xi

xj

Dij = d(xi, xj)

✦ Faithful to the original metric

✦ Control how much « tree structure » we want

Embedding with a hierarchical structure

✦ Reasonable in terms of computation

d⋆ ∈ argmin
d′ ∈ Mn

∀i, j d′ (xi, xj) ≤ d(xi, xj)

μ∥d − d′ ∥∞ + δd′ 
✦Observation:

To DeltaZero
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✦ Motivation

xi

xj

Dij = d(xi, xj)

✦ Faithful to the original metric

✦ Control how much « tree structure » we want

Embedding with a hierarchical structure

✦ Reasonable in terms of computation

d⋆ ∈ argmin
d′ ∈ Mn

∀i, j d′ (xi, xj) ≤ d(xi, xj)

μ∥d − d′ ∥∞ + δd′ 
✦Observation:

Φ, T = Gromov(X, d⋆)

To DeltaZero
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✦ Motivation

xi

xj

Dij = d(xi, xj)

✦ Faithful to the original metric

✦ Control how much « tree structure » we want

Embedding with a hierarchical structure

✦ Reasonable in terms of computation

d⋆ ∈ argmin
d′ ∈ Mn

∀i, j d′ (xi, xj) ≤ d(xi, xj)

μ∥d − d′ ∥∞ + δd′ 
✦Observation:

d(xi, xj) − 2δX log(n − 2) + (2 log(n − 2)μ − 1)∥d − d⋆∥∞ ≤ dT(Φ(xi), Φ(xj)) ≤ d(xi, xj)

Φ, T = Gromov(X, d⋆)

✦ When  we improve the lower boundμ ≥ 1/(2 log(n − 2))

To DeltaZero
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✦ Optimization problem

✦ Space of metrics on  pointsn
xi

xj

Dij = d(xi, xj)

min
D′ ∈ 𝒟n

D′ ≤ D

L(D) := μ∥D − D′ ∥2
F + δD′ 

To DeltaZero

𝒟n = {D : diag(D) = 0, D = D⊤, Dij ≤ Dik + Dkj}
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✦ Optimization problem

✦ Space of metrics on  pointsn
xi

xj

Dij = d(xi, xj)

min
D′ ∈ 𝒟n

D′ ≤ D

L(D) := μ∥D − D′ ∥2
F + δD′ 

✦ Trade-off between fidelity to  and small -hyperbolicityD δ

✦  is piecewise affine and not convexD → δD

✦ Complexity in  + not everywhere differentiableO(n4)

✦ How to handle the constraints ?

To DeltaZero

𝒟n = {D : diag(D) = 0, D = D⊤, Dij ≤ Dik + Dkj}
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✦ Smoothing -hyperbolicityδ

Smooth and batched -hyperbolicityδ

LSEλ(x) =
1
λ

log(∑
i

eλxi)

✦ We replace the  in -hyperbolicity by a smooth surrogatemin , max δ

max(x) ≤ LSEλ(x) ≤ max(x) +
log(n)

λ
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✦ Smoothing -hyperbolicityδ

Smooth and batched -hyperbolicityδ

LSEλ(x) =
1
λ

log(∑
i

eλxi)

max(x) = max
q∈Σn

⟨x, q⟩ LSEλ(x) = argmax
q∈Σn

⟨x, q⟩ −
1
λ

entropy(q)

✦ We replace the  in -hyperbolicity by a smooth surrogatemin , max δ

max(x) ≤ LSEλ(x) ≤ max(x) +
log(n)

λ

✦ Corresponds to regularizing a linear problem
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✦ Smoothing -hyperbolicityδ

Smooth and batched -hyperbolicityδ

LSEλ(x) =
1
λ

log(∑
i

eλxi)

✦ We replace the  in -hyperbolicity by a smooth surrogatemin , max δ

✦ Smoothed -hyperbolicity: differentiable but still  δ O(n4)

δ(λ) = LSEλ ({LSE−λ{(y |z)w , (x |z)w} − (x |y)w}x,y,z,w)
δ −

log(2)
λ

≤ δ(λ) ≤ δ +
4 log(n)

λ
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✦ Smoothing -hyperbolicityδ

Smooth and batched -hyperbolicityδ

LSEλ(x) =
1
λ

log(∑
i

eλxi)

✦ We replace the  in -hyperbolicity by a smooth surrogatemin , max δ

✦ Smoothed -hyperbolicity: differentiable but still  δ O(n4)

δ(λ) = LSEλ ({LSE−λ{(y |z)w , (x |z)w} − (x |y)w}x,y,z,w)
✦ Batched -hyperbolicityδ

✦ Sample  points among the  m n

✦ Do that  times: gives  K X1, ⋯, XK ⊂ X

✦ Compute δ(λ)
X1

, ⋯, δ(λ)
XK

✦ Complexity O(K ⋅ m4)
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✦ Smoothing -hyperbolicityδ

Smooth and batched -hyperbolicityδ

LSEλ(x) =
1
λ

log(∑
i

eλxi)

✦ We replace the  in -hyperbolicity by a smooth surrogatemin , max δ

✦ Smoothed -hyperbolicity: differentiable but still  δ O(n4)

δ(λ) = LSEλ ({LSE−λ{(y |z)w , (x |z)w} − (x |y)w}x,y,z,w)
✦ Batched -hyperbolicityδ

✦ Sample  points among the  m n

✦ Do that  times: gives  K X1, ⋯, XK ⊂ X

✦ Compute δ(λ)
X1

, ⋯, δ(λ)
XK

δ(λ)
K,m = LSEλ(δ(λ)

X1
, ⋯, δ(λ)

XK
)

✦ Complexity O(K ⋅ m4) ✦ Under some hypothesis, close to  with high prob.δ
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✦ Optimization problem

𝒟n = {D : diag(D) = 0, D = D⊤, Dij ≤ Dik + Dkj}

✦ Space of metrics on  pointsn
xi

xj

Dij = d(xi, xj)

min
D′ ∈ 𝒟n

D′ ≤ D

L(D) := μ∥D − D′ ∥2
F + δ(λ)

D′ ,K,m

DeltaZero

44



✦ Optimization problem

𝒟n = {D : diag(D) = 0, D = D⊤, Dij ≤ Dik + Dkj}

✦ Space of metrics on  pointsn
xi

xj

Dij = d(xi, xj)

min
D′ ∈ 𝒟n

D′ ≤ D

L(D) := μ∥D − D′ ∥2
F + δ(λ)

D′ ,K,m

DeltaZero

✦ Projected gradient descent

Π(W ) = argmin
D∈𝒟n:D≤W

∥D − W∥2
FGt = ∇L(Dt)

Dt+ 1
2

= Adam(Gt, Dt)
Dt = Π(Dt+ 1

2
)

Algorithm

✦ How to compute this projection ?
✦ Answer: this is a shortest path problem
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✦ The metric nearest problem

Wij ≥ 0

D = ShortestPath(W ) =
0

⋱
0

Dij

xi

xj

Dij = Wij

∃k, Dij = Dik + Dkj

✦ Case 1)
∀(i, j) :

✦ Case 2)

DeltaZero
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∀p, argmin
D∈𝒟n:D≤W

∥D − W∥ℓp
= ShortestPath(W )

✦ The metric nearest problem

Wij ≥ 0

D = ShortestPath(W ) =
0

⋱
0

Dij

xi

xj

(Brickell, 2008)

Dij = Wij

∃k, Dij = Dik + Dkj

✦ Case 1)
∀(i, j) :

✦ Case 2)

DeltaZero
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∀p, argmin
D∈𝒟n:D≤W

∥D − W∥ℓp
= ShortestPath(W )

✦ The metric nearest problem

Wij ≥ 0

D = ShortestPath(W ) =
0

⋱
0

Dij

xi

xj

(Brickell, 2008)

Dij = Wij

∃k, Dij = Dik + Dkj

✦ Case 1)
∀(i, j) :

✦ Case 2)

✦ Floyd-Warshall

for i ∈ {1,⋯, n}
for j ∈ {1,⋯, n}

for k ∈ {1,⋯, n}

Dij = min{Dij, Dik + Dkj}

✦ Runs in O(n3)

✦ Finds 
ShortestPath(W )

D = W

DeltaZero
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∀p, argmin
D∈𝒟n:D≤W

∥D − W∥ℓp
= ShortestPath(W )

✦ The metric nearest problem

Wij ≥ 0

D = ShortestPath(W ) =
0

⋱
0

Dij

xi

xj

(Brickell, 2008)

Dij = Wij

∃k, Dij = Dik + Dkj

✦ Case 1)
∀(i, j) :

✦ Case 2)

✦ Floyd-Warshall

for i ∈ {1,⋯, n}
for j ∈ {1,⋯, n}

for k ∈ {1,⋯, n}

Dij = min{Dij, Dik + Dkj}

✦ Runs in O(n3)

✦ Finds 
ShortestPath(W )

D = W

DeltaZero

✦ DeltaZero

Gt = ∇L(Dt)
Dt+ 1

2
= Adam(Gt, Dt)

Dt = FloydWarshall(Dt+ 1
2
)

Φ, T = Gromov(D∞)if output tree:

// O(K ⋅ m4 + n2)

// O(n3)

// O(n2)
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✦ Ilustrations
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Figure 1: Illustration of the tree metric embedding problem (best viewed with colors). Given an
original graph (first column) and the corresponding shortest path distances between nodes (represented
on the bottom row as a lower-triangular matrix), we aim at finding a tree and the corresponding tree
metric that best approximates the original distances. Competing state-of-the-art methods and our
method DELTAZERO results are presented along with the corresponding distortion.

we first evaluate DELTAZERO in a controlled setting to assess its ability to provide hierarchical
clusters. We then measure its ability to generate low distortion tree metric approximations in two
contexts, where unweighted and weighted graphs are at stake. Finally, we draw some conclusions
and perspectives.

2 Background on �-hyperbolicity

At the heart of our approach lies the concept of �-hyperbolicity. In this section, we present the
foundational principles of this notion and offer intuitive insights into its geometric interpretation. We
also discuss relevant computational aspects.

2.1 From Gromov product to �-hyperbolicity

A key concept used to define �-hyperbolicity is the Gromov product, denoted (x|y)w, which intuitively
measures the overlap between geodesic paths from a base point w to the points x and y. It is defined
as follows.
Definition 2.1 (Gromov Product). Let (X, dX) be a metric space and let x, y, w 2 X . The Gromov

product of x and y with respect to the basepoint w is defined as

(x|y)w =
1

2
(dX(x,w) + dX(y, w)� dX(x, y)) .

With the Gromov product in hand, we now define �-hyperbolicity.
Definition 2.2 (�-hyperbolicity and Gromov hyperbolicity). A metric space (X, dX) is said to be
�-hyperbolic if there exists � � 0 such that for all x, y, z, w 2 X , the Gromov product satisfies

(x|z)w � min {(x|y)w, (y|z)w}� �.

The Gromov hyperbolicity, denoted by �X , is the smallest value of � that satisfies the above property.
Consequently, every finite metric space (X, dX) has a Gromov hyperbolicity equal to

�X = max
x,y,z,w2X

(min {(x|y)w, (y|z)w}� (x|z)w) . (2)

The concept of �-hyperbolicity may initially appear abstract, but it has deep and elegant connections
to tree metrics. In fact, a metric dX is a tree metric if and only if, for every four points x, y, z, w 2 X ,
two largest among the following three sums

dX(x, y) + dX(z, w), dX(x, z) + dX(y, w), dX(x,w) + dX(y, z)

are equal [5].

3
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Figure 1: Illustration of the tree metric embedding problem (best viewed with colors). Given an
original graph (first column) and the corresponding shortest path distances between nodes (represented
on the bottom row as a lower-triangular matrix), we aim at finding a tree and the corresponding tree
metric that best approximates the original distances. Competing state-of-the-art methods and our
method DELTAZERO results are presented along with the corresponding distortion.

we first evaluate DELTAZERO in a controlled setting to assess its ability to provide hierarchical
clusters. We then measure its ability to generate low distortion tree metric approximations in two
contexts, where unweighted and weighted graphs are at stake. Finally, we draw some conclusions
and perspectives.

2 Background on �-hyperbolicity

At the heart of our approach lies the concept of �-hyperbolicity. In this section, we present the
foundational principles of this notion and offer intuitive insights into its geometric interpretation. We
also discuss relevant computational aspects.

2.1 From Gromov product to �-hyperbolicity

A key concept used to define �-hyperbolicity is the Gromov product, denoted (x|y)w, which intuitively
measures the overlap between geodesic paths from a base point w to the points x and y. It is defined
as follows.
Definition 2.1 (Gromov Product). Let (X, dX) be a metric space and let x, y, w 2 X . The Gromov

product of x and y with respect to the basepoint w is defined as

(x|y)w =
1

2
(dX(x,w) + dX(y, w)� dX(x, y)) .

With the Gromov product in hand, we now define �-hyperbolicity.
Definition 2.2 (�-hyperbolicity and Gromov hyperbolicity). A metric space (X, dX) is said to be
�-hyperbolic if there exists � � 0 such that for all x, y, z, w 2 X , the Gromov product satisfies

(x|z)w � min {(x|y)w, (y|z)w}� �.

The Gromov hyperbolicity, denoted by �X , is the smallest value of � that satisfies the above property.
Consequently, every finite metric space (X, dX) has a Gromov hyperbolicity equal to

�X = max
x,y,z,w2X

(min {(x|y)w, (y|z)w}� (x|z)w) . (2)

The concept of �-hyperbolicity may initially appear abstract, but it has deep and elegant connections
to tree metrics. In fact, a metric dX is a tree metric if and only if, for every four points x, y, z, w 2 X ,
two largest among the following three sums

dX(x, y) + dX(z, w), dX(x, z) + dX(y, w), dX(x,w) + dX(y, z)

are equal [5].
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(a) Connected Erdős–Rényi graph with 10 nodes
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(b) Another connected Erdős–Rényi graph with 10 nodes
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(c) Stochastic block model with 2 components and 40 nodes
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(d) (4, 4)-grid graph

Figure 5: Visual illustration of the different methods on different graphs.
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✦ On stochastic block model

DeltaZero

✦ SBM with 5 communities. Gives a shortest path matrix  D
✦ Objective: clustering the nodes of the graph given D
✦ We compute D′ = DeltaZero(D)
✦ We compare clustering (single linkage) with  vs D D′ 

(a) All pairs Shortest-Paths
distance matrix

(b) Dendrograms from original and opti-
mized distance matrices
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Figure 3: Illustration of the impact of optimizing the distance matrix on a simple Stochastic Block
Model with 5 communities (best viewed in colors).

Synthetic Stochastic Block Models dataset. We consider the setting of Hierarchical Clustering
(HC) which iteratively merges clusters based on pairwise dissimilarities. The resulting tree-like
structure is known as a dendrogram and encodes a hierarchy of nested groupings. Our first objective
is to qualitatively and quantitatively analyse the impact of the optimization problem of Eq. (6) on
HC within the context of a simple stochastic block model (SBM) graph with a varying number of
communities.
In such a probabilistic model of graph structure, we set
the intra- and inter-communities connection probabili-
ties to pin = 0.6 and pout = 0.2. Sizes of communities
are fixed to 50. This yields a shortest path distance ma-
trix depicted in Figure 3a for a SBM with 5 communities.
We then follow the distance optimization procedure de-
scribed in Section 3.2 to obtain a new distance matrix
(parameters are µ = 1 and � = 100). This yields two
different dendrograms, shown in Figure 3b, both com-
puted using Ward’s method [37] as implemented by the
linkage function of Scipy [36]. The color threshold is
manually adjusted to magnify 5 clusters. At this point,
we can see that the dendrogram corresponding to the
optimized distance exhibit a better, more balanced, hi-
erarchical structure with a clear separation between the
5 clusters. This point is also illustrated in Figure 3c
where t-SNE [35] is computed from the distance ma-
trices with a similar perplexity (set to 30). One can
observe a stronger clustering effect from the optimized
distance.

Figure 4: Performances of Hierarchical clus-
tering with varying number of communities

We then compute accuracy scores by comparing the true labels with the optimal permutation of
predicted labels, using the fcluster function of Scipy. This evaluation is conducted under varying
number of communities (3, 5 and 7), introducing increasing levels of difficulty. For each setting, 30
repetitions are performed. The results are summarized as boxplots in Figure 4. As one can observe,
our optimization strategy increases drastically the performances in terms of accuracy on this simple
example. It suggests that our optimization produces a metric which effectively homogenizes intra-
and inter- cluster distances.

Distortions on real datasets. We evaluate the ability of our method, DELTAZERO, to embed
finite metric spaces into tree metrics with low distortion. Our benchmark includes both unweighted
graph datasets and general metric datasets to showcase the versatility of our approach. We consider
five standard unweighted graphs: C-ELEGAN, CS PHD from [30], CORA, AIRPORT from [32]
and WIKI [14]. For graphs with multiple connected components, we extract the largest connected
component. We then compute the shortest-path distance matrix, which serves as input to all tree
metric fitting algorithms.
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✦ Distorsion on real datasets

DeltaZero

✦ We compute the tree metric DT = DeltaZero(D) + Gromov
✦ We evaluate ∥DT − D∥∞

Table 1: `1 error (lower is better). Best result in bold. The last row reports the relative improvement
(%) of DELTAZERO over the second-best method (underlined) for each dataset.

Unweighted graphs Non-graph metrics
Datasets C-ELEGAN CS PHD CORA AIRPORT WIKI ZEISEL IBD
n 452 1025 2485 3158 2357 3005 396
Diameter 7 28 19 12 9 0.87 0.99

NJ 2.97 16.81 13.42 4.18 6.32 0.51 0.90
TR 5.90± 0.72 21.01± 3.34 16.86± 2.11 10.00± 1.02 9.97± 0.93 0.66± 0.10 1.60± 0.22
HCC 4.31± 0.46 23.35± 2.07 12.28± 0.96 7.71± 0.72 7.20± 0.60 0.53± 0.07 1.25± 0.11
LayeringTree 5.07± 0.25 25.48± 0.60 7.76± 0.54 2.97± 0.26 4.08± 0.27 – –
Gromov 3.33± 0.45 13.28± 0.61 9.34± 0.53 4.08± 0.27 5.54± 0.49 0.43± 0.02 1.01± 0.04
DELTAZERO 1.87± 0.08 10.31± 0.62 7.59± 0.38 2.79± 0.15 3.56± 0.20 0.24± 0.00 0.70± 0.03

Improvement (%) 43.8% 22.3% 2.3% 6.0% 12.7% 44.1 % 22.2%

To evaluate DELTAZERO beyond graph-induced metrics, we also include two datasets: ZEISEL [39]
and IBD [27]. These datasets are not naturally represented as graphs but instead as high-dimensional
feature matrices. We construct a pairwise dissimilarity matrix using cosine distance, a standard
choice in bioinformatics. Note that LAYERINGTREE [8], which requires an unweighted graph as
input, is not applicable in this setting. We compare DELTAZERO against the following tree fitting
methods: TREEREP (TR) [33], NEIGHBORJOIN (NJ) [31], HCCROOTEDTREEFIT (HCC) [38],
LAYERINGTREE (LT) [8], and the classical GROMOV (see Algorithm 2). Among these, HCC, LT,
and GROMOV are pivot-based methods: for a given distance matrix, they require selecting a root node.
We report the average and standard deviation of distortion over 100 runs using the same randomly
sampled roots across methods. TREEREP does not require a root but incorporates stochastic elements;
we therefore report mean and standard deviation over 100 independent runs. For C-ELEGAN, CS
PHD, CORA, and AIRPORT, we report the values of [38]. In contrast, NEIGHBORJOIN is deterministic
that neither requires a root nor involves stochasticity, and is thus evaluated once per dataset.

For DELTAZERO, we perform grid search over the following hyperparameters: learning rate ✏ 2
{0.1, 0.01, 0.001}, distance regularization coefficient µ 2 {0.1, 0.01, 1.0}, and �-scaling parameter
� 2 {0.01, 0.1, 1.0, 10.0}. We fix the number of training epochs to T = 1000, batch size m = 32,
and vary the number of batches K 2 {100, 500, 1000, 3000, 5000}. For each setting, we select
the best configuration which leads to the minimal distortion. To ensure stability, we apply early
stopping with a patience of 50 epochs and retain the model with the best training loss. Final results
are reported in Table 1. In addition to worst-case distortion defined in eq. (1), we evaluate the average
embedding quality using the `1 distance between the original and tree-fitted distance matrices. We
also report the execution time of each method to assess their computational efficiency. Results are
presented in Appendix D.1 We also provide an analysis of its robustness and stability with respect to
hyperparameter in Appendix D.2. All implementations details are given in Appendix E.

Table 1 demonstrates that DELTAZERO consistently achieves the lowest `1 distortion across all
datasets, both for unweighted graphs and general metric spaces. Notably, the largest relative improve-
ments are observed on C-ELEGAN and ZEISEL, with reductions in distortion of 43.8% and 44.1%
respectively, compared to the second-best methods. On CORA the improvement is more modest
(2.3%), yet DELTAZERO still outperforms all baselines. This suggests that while our approach is
robust across datasets, gains vary depending on the geometry of the input metric space. Overall, the
results validate the effectiveness of our optimization-based method in producing low-distortion tree
metric embeddings.

5 Conclusion and Discussion

In this study, we introduced an innovative method for computing a tree metric from a given graph
metric or distances derived from an embedding. Our approach leverages a soft and differentiable
approximation of Gromov Hyperbolicity, a measure of the tree-likeness of the metric. Initial results
demonstrate the competitive performance of our method in generating low-distortion tree metrics
across a diverse range of datasets. One potential limitation of our approach is its scalability to very
large graphs. This constraint primarily arises from the complexity of projecting onto the cone of
metrics, which involves solving all-pairs shortest path problems with a cubic complexity relative
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Figure 9: Approximation �
(�)
D,K,m computed on the CS-PHD dataset for different batch sizes m.
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Figure 10: Sensitivity analysis of optimization hyperparameters on the C-ELEGAN dataset. In each
plot, non-varied hyperparameters are set to their optimal values from a prior grid search. Results are
averaged over 5 runs, and distortion values averaged over 100 root samples per run.

100 randomly sampled root nodes. This procedure was repeated across 5 independent runs and we
plot the mean and standard deviation of the `1 distortion across these repetitions.

We first study the influence of the regularization coefficient µ on the `1 distortion in Figure 10a.
One can notice that, for the lowest µ values, the distortion is high, indicating that the solution is
insufficiently driven by the data; for the highest values, the distortion is also high, which suggest
that the tree-likeness of the solution is lost. For a good tradeoff between proximity to the original
metric and tree-likeness of the solution, an optimum is reached. This further showcases the interest of
introducing a term related to the Gromov hyperbolicity into the tree metric approximation problem.

We then study the impact of the � parameter in Figure 10b, for different batch sizes. Results suggest
that a good trade-off between large values (that provide an estimate close to the actual value but at
the price of sharp optimization landscape) and small ones (that provides a smooth estimate easy to
optimize) should be found to reach the best performances.

Finally, in Figure 10c, we study the impact of the batch size m, for various � parameters. One
can note that, for moderate values of �, an optimal performance is reached for a moderate size of
batch size, which suggests that m could be set with a relatively low value, enhancing the ability of
DELTAZERO to tackle moderated-size datasets.
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