

Bridging Arbitrary and Tree Metrics via Differentiable Gromov Hyperbolicity

Pierre Houedry

Nicolas Courty

Florestan Martin-Baillon

Laetitia Chapel

Titouan Vayer

Motivations

Representation learning

Motivations

Representation learning

Motivations

Representation learning

Geometries

	Euclidean
Curvature	0
Parallel lines	1
Triangles are	normal
Shape	

Geometries

	Euclidean	Spherical
Curvature	0	> 0
Parallel lines	1	0
Triangles are	normal	thick
Shape		

Geometries

	Euclidean	Spherical	Hyperbolic
Curvature	0	> 0	< 0
Parallel lines	1	0	∞
Triangles are	normal	thick	thin
Shape			

geodesic v

Gromov product

$$(x | y)_{w} = \frac{1}{2} \left(d(x, w) + d(y, w) - d(x, y) \right)$$

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

 $0 \leq (x | y)_{w} \leq \min\{d(x, w), d(y, w)\}$ car $(x | y)_{w} \leq \frac{1}{2} \left(d(x, y) + d(y, w) + d(y, w) - d(x, y) \right)$

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

✦ Interpretation

 $0 \leq (\mathbf{x} \mid \mathbf{y})_{w} \leq \min\{d(\mathbf{x}, w), d(\mathbf{y}, w)\}$

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

✦ Interpretation

 $0 \leq (x \mid y)_{w} \leq \min\{d(x, w), d(y, w)\}$

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, y) \right)$$

(X, d)

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

✦ Interpretation

(X, d)

 $(x | y)_w$ measures how long geodesics \overline{wx} and \overline{wy} travel the same distance before diverging

 $\exists !(a, b, c) \ge 0$ d(x, w) = a + bd(x, y) = b + cd(y, w) = a + c

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

(X, d)

 $(x | y)_w$ measures how long geodesics \overline{wx} and \overline{wy} travel the same distance before diverging

 $\exists ! (a, b, c) \ge 0$ d(x, w) = a + b $d(x, y) = b + c \implies a = (x \mid y)_w$ d(y, w) = a + c

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

✦ Interpretation

 $0 \leq (x \mid y)_{w} \leq \min\{d(x, w), d(y, w)\}$

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

(X, d)

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

Gromov δ-hyperbolicity

 $0 \le (\mathbf{x} \mid \mathbf{y})_{w} \le \min\{d(\mathbf{x}, w), d(\mathbf{y}, w)\}$

(X, d) is δ -hyperbolic (for $\delta \ge 0$) if

 $\forall x, y, z, w \in X, (x | y)_{w} \ge \min\{(y | z)_{w}, (x | z)_{w}\} - \delta$

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

Gromov δ-hyperbolicity

 $0 \leq (\mathbf{x} \mid \mathbf{y})_{w} \leq \min\{d(\mathbf{x}, w), d(\mathbf{y}, w)\}$

(X, d) is δ -hyperbolic (for $\delta \ge 0$) if

 $\forall x, y, z, w \in X, (x | y)_{w} \ge \min\{(y | z)_{w}, (x | z)_{w}\} - \delta$

• Interpretation: δ -slim triangles

(X, d) is δ -hyperbolic iff each side of any Δ is contained within the δ -neighborhood of the union of the two other sides

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

Gromov δ-hyperbolicity

 $0 \leq (x \mid y)_{w} \leq \min\{d(x, w), d(y, w)\}$

(X, d) is δ -hyperbolic (for $\delta \ge 0$) if

 $\forall x, y, z, w \in X, (x | y)_{w} \ge \min\{(y | z)_{w}, (x | z)_{w}\} - \delta$

• Interpretation: δ -slim triangles

(X, d) is δ -hyperbolic iff each side of any Δ is contained within the δ -neighborhood of the union of the two other sides

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

Gromov δ-hyperbolicity

 $0 \le (\mathbf{x} \mid \mathbf{y})_{w} \le \min\{d(\mathbf{x}, w), d(\mathbf{y}, w)\}$

(X, d) is δ -hyperbolic (for $\delta \ge 0$) if

 $\forall x, y, z, w \in X, (x | y)_{w} \ge \min\{(y | z)_{w}, (x | z)_{w}\} - \delta$

• Interpretation: δ -slim triangles

(X, d) is δ -hyperbolic iff each side of any Δ is contained within the δ -neighborhood of the union of the two other sides $\forall p \in [x,y], \, \exists q \in [y,w] \cup [x,w], \, d(p,q) \leq \delta$

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

Gromov δ-hyperbolicity

 $0 \leq (x \mid y)_{w} \leq \min\{d(x, w), d(y, w)\}$

(X, d) is δ -hyperbolic (for $\delta \ge 0$) if

 $\forall x, y, z, w \in X, (x | y)_{w} \ge \min\{(y | z)_{w}, (x | z)_{w}\} - \delta$

• Interpretation: δ -slim triangles

(X, d) is δ -hyperbolic iff each side of any Δ is contained within the δ -neighborhood of the union of the two other sides $\forall p \in [x,y], \, \exists q \in [y,w] \cup [x,w], \, d(p,q) \leq \delta$

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

Gromov δ-hyperbolicity

 $0 \le (\mathbf{x} \mid \mathbf{y})_{w} \le \min\{d(\mathbf{x}, w), d(\mathbf{y}, w)\}$

(X, d) is δ -hyperbolic (for $\delta \ge 0$) if

 $\forall x, y, z, w \in X, (x | y)_{w} \ge \min\{(y | z)_{w}, (x | z)_{w}\} - \delta$

• Interpretation: δ -slim triangles

(X, d) is δ -hyperbolic iff each side of any Δ is contained within the δ -neighborhood of the union of the two other sides

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

Gromov δ-hyperbolicity

 $0 \le (\mathbf{x} \mid \mathbf{y})_{w} \le \min\{d(\mathbf{x}, w), d(\mathbf{y}, w)\}$

(X, d) is δ -hyperbolic (for $\delta \ge 0$) if

 $\forall x, y, z, w \in X, (x | y)_{w} \ge \min\{(y | z)_{w}, (x | z)_{w}\} - \delta$

• Interpretation: δ -slim triangles

- Triangles in δ -hyperbolic spaces are « thin »
- igstarrow The smaller δ the thinner

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

Gromov δ-hyperbolicity

 $0 \leq (\mathbf{x} \mid \mathbf{y})_{w} \leq \min\{d(\mathbf{x}, w), d(\mathbf{y}, w)\}$

(X, d) is δ -hyperbolic (for $\delta \ge 0$) if

 $\forall x, y, z, w \in X, (x | y)_{w} \ge \min\{(y | z)_{w}, (x | z)_{w}\} - \delta$

• Interpretation: δ -slim triangles

- Triangles in δ -hyperbolic spaces are « thin »
- igstarrow The smaller δ the thinner $\overset{_{y}}{}$
- ✤ Trees are 0-hyperbolic

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

 $0 \le (x | y)_w \le \min\{d(x, w), d(y, w)\}$

Gromov δ-hyperbolicity

(X, d) is δ -hyperbolic (for $\delta \ge 0$) if

 $\forall x, y, z, w \in X, (x | y)_{w} \ge \min\{(y | z)_{w}, (x | z)_{w}\} - \delta$

• Interpretation: δ -slim triangles

- Triangles in δ -hyperbolic spaces are « thin »
- igstarrow The smaller δ the thinner $\overset{'}{}$
- ✤ Trees are 0-hyperbolic
- ✤ If (X, d) is 0-hyperbolic it is isometric to a tree

$$\begin{array}{c} x_i \\ x_j \\ x_j \end{array} \qquad \begin{array}{c} \Phi : X \to T \\ x_i \\ d(x_i, x_j) = d_T(\Phi(x_i), \Phi(x_j)) \end{array}$$

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

Gromov δ-hyperbolicity

 $0 \le (\mathbf{x} \mid \mathbf{y})_{w} \le \min\{d(\mathbf{x}, w), d(\mathbf{y}, w)\}$

(X, d) is δ -hyperbolic (for $\delta \ge 0$) if

 $\forall x, y, z, w \in X, (x | y)_{w} \ge \min\{(y | z)_{w}, (x | z)_{w}\} - \delta$

• Finite metric space $X = \{x_1, \dots, x_n\}$

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

Gromov δ-hyperbolicity

 $0 \leq (\mathbf{x} \mid \mathbf{y})_{w} \leq \min\{d(\mathbf{x}, w), d(\mathbf{y}, w)\}$

(X, d) is δ -hyperbolic (for $\delta \ge 0$) if

 $\forall x, y, z, w \in X, (x | y)_{w} \ge \min\{(y | z)_{w}, (x | z)_{w}\} - \delta$

★ Finite metric space X = {x₁, ..., x_n} $\delta_X = \max_{x,y,z,w} \left(\min\{(y \mid z)_w, (x \mid z)_w\} - (x \mid y)_w \right)$

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

Gromov δ-hyperbolicity

 $0 \le (\mathbf{x} \mid \mathbf{y})_{w} \le \min\{d(\mathbf{x}, w), d(\mathbf{y}, w)\}$

(X, d) is δ -hyperbolic (for $\delta \ge 0$) if

 $\forall x, y, z, w \in X, (x | y)_{w} \ge \min\{(y | z)_{w}, (x | z)_{w}\} - \delta$

★ Finite metric space X = {x₁, ..., x_n} $\delta_X = \max_{x,y,z,w} \left(\min\{(y \mid z)_w, (x \mid z)_w\} - (x \mid y)_w \right)$

- Take z = w = y this implies $\delta_X \ge 0$
- Computation in $O(n^4)$
- Depends only on *d*, we note $\delta_d, \delta_D \dots$

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

 $\Phi: X \to T$

Gromov δ-hyperbolicity

 $0 \le (\mathbf{x} \mid \mathbf{y})_{w} \le \min\{d(\mathbf{x}, w), d(\mathbf{y}, w)\}$

(X, d) is δ -hyperbolic (for $\delta \ge 0$) if

 $\forall x, y, z, w \in X, (x | y)_{w} \ge \min\{(y | z)_{w}, (x | z)_{w}\} - \delta$

• Finite metric space $X = \{x_1, \dots, x_n\}$

 $\exists T \text{ a tree, } \Phi : X \to T$ $d(x_i, x_j) - 2\delta_X \log(n-2) \le d_T(\Phi(x_i), \Phi(x_j)) \le d(x_i, x_j)$

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

 $0 \le (x | y)_w \le \min\{d(x, w), d(y, w)\}$

 $\Phi: X \to T$

Gromov δ-hyperbolicity

(X, d) is δ -hyperbolic (for $\delta \ge 0$) if

 $\forall x, y, z, w \in X, (x | y)_{w} \ge \min\{(y | z)_{w}, (x | z)_{w}\} - \delta$

• Finite metric space $X = \{x_1, \dots, x_n\}$

 $\exists T \text{ a tree, } \Phi : X \to T$ $d(x_i, x_j) - 2\delta_X \log(n-2) \le d_T(\Phi(x_i), \Phi(x_j)) \le d(x_i, x_j)$

- It can be computed in $O(n^2)$
- Single Linkage Hierarchical Clustering algorithm

• This is the **Gromov embedding** Φ , T = Gromov(X, d)

Gromov product

$$(\mathbf{x} | \mathbf{y})_{w} = \frac{1}{2} \left(d(\mathbf{x}, w) + d(\mathbf{y}, w) - d(\mathbf{x}, \mathbf{y}) \right)$$

Gromov δ-hyperbolicity

(X, d) is δ -hyperbolic (for $\delta \ge 0$) if

 $\forall x, y, z, w \in X, (x | y)_{w} \ge \min\{(y | z)_{w}, (x | z)_{w}\} - \delta$

Conclusion

◆ *δ*-hyperbolicity quantifies to which extent (*X*, *d*) is hyperbolic

• The smaller δ the more (*X*, *d*) has a « tree structure »

Motivation

Embedding with a hierarchical structure

- Control how much « tree structure » we want
- ✦ Faithful to the original metric
- ✦ Reasonable in terms of computation

◆Observation: $|d^* \in \underset{d' \in M_n}{\operatorname{argmin}} \mu ||d - d'||_{\infty} + \delta_{d'}$ ∀*i*, *j* d'(x_i, x_j) ≤ d(x_i, x_j)

 $|\Phi, T = \operatorname{Gromov}(X, d^{\star})|$

◆Observation: $|d^* \in \underset{d' \in M_n}{\operatorname{argmin}} \mu ||d - d'||_{\infty} + \delta_{d'}$ ∀*i*, *j* d'(*x_i*, *x_j*) ≤ d(*x_i*, *x_j*)

 $|\Phi, T = \operatorname{Gromov}(X, d^{\star})|$

 $d(x_i, x_j) - 2\delta_X \log(n-2) + (2\log(n-2)\mu - 1) \|d - d^{\star}\|_{\infty} \le d_T(\Phi(x_i), \Phi(x_j)) \le d(x_i, x_j)$

◆ When $\mu \ge 1/(2 \log(n - 2))$ we improve the lower bound

Optimization problem

◆ Space of metrics on *n* points

$$\mathcal{D}_n = \{D : \operatorname{diag}(D) = 0, D = D^{\mathsf{T}}, D_{ij} \le D_{ik} + D_{kj}\}$$

$$\min_{\substack{D' \in \mathcal{D}_n}} L(D) := \mu \|D - D'\|_F^2 + \delta_{D'}$$
$$D' \le D$$

 $D_{ij} = d(x_i, x_j)$

Optimization problem

♦ Space of metrics on *n* points

$$\mathcal{D}_n = \{ D : \text{diag}(D) = 0, D = D^{\top}, D_{ij} \le D_{ik} + D_{kj} \}$$

$$\min_{\substack{D' \in \mathscr{D}_n}} L(D) := \mu \|D - D'\|_F^2 + \delta_{D'}$$
$$D' \le D$$

- ◆ Trade-off between fidelity to *D* and small δ -hyperbolicity
- ♦ $D \rightarrow \delta_D$ is piecewise affine and not convex
- Complexity in $O(n^4)$ + not everywhere differentiable
- How to handle the constraints ?

 $D_{ij} = d(x_i, x_j)$

\bullet Smoothing δ -hyperbolicity

• We replace the min , max in δ -hyperbolicity by a smooth surrogate

\bullet Smoothing δ -hyperbolicity

♦ We replace the min , max in δ -hyperbolicity by a smooth surrogate

\bullet Smoothing δ -hyperbolicity

• We replace the min , max in δ -hyperbolicity by a smooth surrogate

$$LSE_{\lambda}(x) = \frac{1}{\lambda} \log(\sum_{i} e^{\lambda x_{i}})$$

♦ Smoothed δ-hyperbolicity: differentiable but still $O(n^4)$

$$\delta^{(\lambda)} = \text{LSE}_{\lambda} \left(\left\{ \text{LSE}_{-\lambda} \{ (y \mid z)_{w}, (x \mid z)_{w} \} - (x \mid y)_{w} \right\}_{x, y, z, w} \right)$$

$$\delta - \frac{\log(2)}{\lambda} \le \delta^{(\lambda)} \le \delta + \frac{4\log(n)}{\lambda}$$

\bullet Smoothing δ -hyperbolicity

♦ We replace the min , max in δ -hyperbolicity by a smooth surrogate

$$LSE_{\lambda}(x) = \frac{1}{\lambda} \log(\sum_{i} e^{\lambda x_{i}})$$

◆ Smoothed δ-hyperbolicity: differentiable but still $O(n^4)$

$$\delta^{(\lambda)} = \mathrm{LSE}_{\lambda} \left(\left\{ \mathrm{LSE}_{-\lambda} \{ (y \mid z)_{w}, (x \mid z)_{w} \} - (x \mid y)_{w} \right\}_{x, y, z, w} \right)$$

+ Batched δ -hyperbolicity

- Sample *m* points among the *n*
- ◆ Do that *K* times: gives $X_1, \dots, X_K \subset X$
- \diamond Compute $\delta_{X_1}^{(\lambda)}, \dots, \delta_{X_K}^{(\lambda)}$
- Complexity $O(K \cdot m^4)$

\bullet Smoothing δ -hyperbolicity

♦ We replace the min , max in δ -hyperbolicity by a smooth surrogate

$$LSE_{\lambda}(x) = \frac{1}{\lambda} \log(\sum_{i} e^{\lambda x_{i}})$$

◆ Smoothed δ-hyperbolicity: differentiable but still $O(n^4)$

$$\delta^{(\lambda)} = \mathrm{LSE}_{\lambda} \left(\left\{ \mathrm{LSE}_{-\lambda} \{ (y \mid z)_{w}, (x \mid z)_{w} \} - (x \mid y)_{w} \right\}_{x, y, z, w} \right)$$

+ Batched δ -hyperbolicity

Sample *m* points among the *n*Do that *K* times: gives X₁, …, X_K ⊂ X
Compute δ^(λ)_{X₁}, …, δ^(λ)_{X_K}
Complexity O(K · m⁴) ↓ Under some hypothesis, close to δ with high prob.

Optimization problem

◆ Space of metrics on *n* points

$$\mathcal{D}_n = \{D : \operatorname{diag}(D) = 0, D = D^{\mathsf{T}}, D_{ij} \leq D_{ik} + D_{kj}\}$$

$$\min_{\substack{D' \in \mathcal{D}_n}} L(D) := \mu \|D - D'\|_F^2 + \delta_{D',K,m}^{(\lambda)}$$
$$D' \leq D$$

 $D_{ij} = d(x_i, x_j)$

Optimization problem

♦ Space of metrics on *n* points

$$\mathcal{D}_n = \{ D : \text{diag}(D) = 0, D = D^{\mathsf{T}}, D_{ij} \le D_{ik} + D_{kj} \}$$

$$\min_{\substack{D' \in \mathcal{D}_n}} L(D) := \mu \|D - D'\|_F^2 + \delta_{D',K,m}^{(\lambda)}$$
$$D' \le D$$

Projected gradient descent

Algorithm $G_t = \nabla L(D_t)$ $D_{t+\frac{1}{2}} = \text{Adam}(G_t, D_t)$ $D_t = \Pi(D_{t+\frac{1}{2}})$

$$\Pi(W) = \underset{D \in \mathcal{D}_n: D \le W}{\operatorname{argmin}} \|D - W\|_F^2$$

- How to compute this projection ?
- Answer: this is a shortest path problem

 $D_{ij} = d(x_i, x_j)$

The metric nearest problem

The metric nearest problem

(Brickell, 2008)

$$\forall p, \operatorname{argmin}_{D \in \mathcal{D}_n: D \le W} \|D - W\|_{\ell_p} = \operatorname{ShortestPath}(W)$$

The metric nearest problem

The metric nearest problem

Floyd-Warshall

(Brickell, 2008)

◆ Finds
ShortestPath(W)
◆ Runs in O(n³)

✦ DeltaZero

$$G_{t} = \nabla L(D_{t}) // O(K \cdot m^{4} + n^{2})$$

$$D_{t+\frac{1}{2}} = \text{Adam}(G_{t}, D_{t})$$

$$D_{t} = \text{FloydWarshall}(D_{t+\frac{1}{2}}) // O(n^{3})$$

if output tree: $\Phi, T = \text{Gromov}(D_{\infty}) // O(n^{2})$

✦ Ilustrations

+ Ilustrations

Original Graph

LaveringTree TreeRep

Gromov

HCC

Neighbor Joining DeltaZero (ours)

On stochastic block model

- SBM with 5 communities. Gives a shortest path matrix D
- \blacklozenge Objective: clustering the nodes of the graph given *D*
- We compute D' = DeltaZero(D)
- We compare clustering (single linkage) with D vs D'

(a) All pairs Shortest-Paths (b) Dendrograms from original and opti-(c) t-SNE plots from original and optidistance matrix D (b) Dendrograms from original and opti-(c) t-SNE plots from original and opti-

On stochastic block model

- SBM with 5 communities. Gives a shortest path matrix D
- \blacklozenge Objective: clustering the nodes of the graph given *D*
- We compute D' = DeltaZero(D)
- We compare clustering (single linkage) with D vs D'

Distorsion on real datasets

• We compute the tree metric D_T = DeltaZero(D) + Gromov

◆ We evaluate	$ D_T - D _{\infty}$
---------------	-----------------------

	Unweighted graphs				Non-graph metrics		
Datasets	C-ELEGAN	CS PhD	CORA	AIRPORT	WIKI	ZEISEL	IBD
n	452	1025	2485	3158	2357	3005	396
Diameter	7	28	19	12	9	0.87	0.99
NJ	2.97	16.81	13.42	4.18	6.32	0.51	0.90
TR	$5.90\pm$ 0.72	21.01 ± 3.34	$16.86 \pm$ 2.11	$10.00 \pm$ 1.02	9.97 ± 0.93	0.66 ± 0.10	$1.60\pm$ 0.22
HCC	$4.31\pm$ 0.46	$23.35 \pm$ 2.07	$12.28\pm$ 0.96	7.71 ± 0.72	$7.20\pm$ 0.60	$0.53\pm$ 0.07	$1.25\pm$ 0.11
LayeringTree	5.07 ± 0.25	25.48 ± 0.60	7.76 ± 0.54	$\underline{2.97} \pm 0.26$	$\underline{4.08} \pm 0.27$	_	_
Gromov	$3.33\pm$ 0.45	$\underline{13.28} \pm 0.61$	$9.34 \pm$ 0.53	$4.08 \pm$ 0.27	$5.54 \pm$ 0.49	0.43 ± 0.02	1.01 ± 0.04
DeltaZero	1.87 ± 0.08	10.31 ± 0.62	7.59 ± 0.38	2.79 ± 0.15	3.56 ± 0.20	0.24 ± 0.00	0.70 ± 0.03
Improvement (%)	43.8%	22.3%	2.3%	6.0%	12.7%	44.1 %	22.2%

Distorsion on real datasets

• We compute the tree metric D_T = DeltaZero(D) + Gromov

• We evaluate $ D_T - D _{\infty}$								
		Unweighted graphs				Non-graph metrics		
Datasets	C-ELEGAN	CS PHD	CORA	AIRPORT	WIKI	ZEISEL	IBD	
n	452	1025	2485 /	3158	2357	3005	396	
Diameter	7	28	19	12	9	0.87	0.99	
NJ	2.97	16.81	13.42	4.18	6.32	0.51	0.90	
TR	$5.90\pm$ 0.72	21.01 ± 3.34	16.86 ± 2.11	$10.00 \pm$ 1.02	9.97 ± 0.93	$0.66\pm$ 0.10	1.60 ± 0.22	
HCC	$4.31\pm$ 0.46	23.35 ± 2.07	$12.28\pm$ 0.96	7.71 ± 0.72	$7.20\pm$ 0.60	$0.53\pm$ 0.07	$1.25\pm$ 0.11	
LayeringTree	5.07 ± 0.25	25.48 ± 0.60	7.76 ± 0.54	$\underline{2.97} \pm 0.26$	$\underline{4.08} \pm 0.27$	_	_	
Gromov	$3.33\pm$ 0.45	$\underline{13.28} \pm 0.61$	$9.34 \pm$ 0.53	$4.08 \pm$ 0.27	$5.54 \pm$ 0.49	0.43 ± 0.02	$1.01\pm$ 0.04	
DeltaZero	$ig $ 1.87 \pm 0.08	10.31 ± 0.62	7.59 ± 0.38	2.79 ± 0.15	3.56 ± 0.20	0.24 ± 0.00	0.70 ± 0.03	
Improvement (%)	43.8%	22.3%	2.3%	6.0%	12.7%	44.1 %	22.2%	

Sensitivity analysis

55