Publication

You can also find my articles on my Google Scholar profile.

* Indicates equal contribution.

Preprints

  1. Pouliquen, C., Massias, M., & Vayer, T. (2024). Schur’s Positive-Definite Network: Deep Learning in the SPD cone with structure.
  2. Van Assel, H., Vincent-Cuaz, C., Courty, N., Flamary, R., Frossard, P., & Vayer, T. (2024). Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein Projection.
  3. Vayer, T., Lasalle, E., Gribonval, R., & Gonçalves, P. (2023). Compressive Recovery of Sparse Precision Matrices.

2023

  1. Van Assel, H., Vayer, T., Flamary, R., & Courty, N. (2023). Optimal Transport with Adaptive Regularisation. NeurIPS 2023 Workshop Optimal Transport and Machine Learning.
  2. Van Assel, H., Vincent-Cuaz, C., Vayer, T., Flamary, R., & Courty, N. (2023). Interpolating between Clustering and Dimensionality Reduction with Gromov-Wasserstein. NeurIPS 2023 Workshop Optimal Transport and Machine Learning.
  3. Vayer, T., & Gribonval, R. (2023). Controlling Wasserstein Distances by Kernel Norms with Application to Compressive Statistical Learning. Journal of Machine Learning Research, 24(149), 1–51.
  4. Hippert-Ferrer, A., Bouchard, F., Mian, A., Vayer, T., & Breloy, A. (2023). Learning Graphical Factor Models with Riemannian Optimization. In D. Koutra, C. Plant, M. Gomez Rodriguez, E. Baralis, & F. Bonchi (Eds.), Machine Learning and Knowledge Discovery in Databases: Research Track (pp. 349–366). Springer Nature Switzerland.
  5. Collas, A., Vayer, T., Flamary, R., & Breloy, A. (2023). Entropic Wasserstein component analysis. IEEE International Workshop on Machine Learning for Signal Processing (MLSP).
  6. Pouliquen, C., Gonçalves, P., Massias, M., & Vayer, T. (2023). Implicit Differentiation for Hyperparameter Tuning the Weighted Graphical Lasso. GRETSI 2023 - XXIXème Colloque Francophone De Traitement Du Signal Et Des Images, 1–4.
  7. Van Assel, H., Vayer, T., Flamary, R., & Courty, N. (2023). SNEkhorn: Dimension Reduction with Symmetric Entropic Affinities. Neural Information Processing Systems (NeurIPS).

2022

  1. Vayer, T., Tavenard, R., Chapel, L., Flamary, R., Courty, N., & Soullard, Y. (2022). Time Series Alignment with Global Invariances. Transactions on Machine Learning Research.
  2. Vincent-Cuaz, C., Flamary, R., Corneli, M., Vayer, T., & Courty, N. (2022). Template based Graph Neural Network with Optimal Transport Distances. Neural Information Processing Systems (NeurIPS).
  3. Vincent-Cuaz, C., Flamary, R., Corneli, M., Vayer, T., & Courty, N. (2022). Semi-relaxed Gromov-Wasserstein divergence and applications on graphs. International Conference on Learning Representations (ICLR).
  4. Marcotte, S., Barbe, A., Gribonval, R., Vayer, T., Sebban, M., Borgnat, P., & Gonçalves, P. (2022, May). Fast Multiscale Diffusion on Graphs. International Conference on Acoustics, Speech and Signal Processing (ICASSP).

2021

  1. Bonet, C., Vayer, T., Courty, N., Septier, F., & Drumetz, L. (2021). Subspace Detours Meet Gromov–Wasserstein. Algorithms, 14(12), 366.
  2. Flamary*, R., Courty*, N., Gramfort*, A., Alaya, M. Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N. T. H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D. J., … Vayer, T. (2021). POT: Python Optimal Transport. Journal of Machine Learning Research (JMLR), 22(78), 1–8.
  3. Barbe, A., Gonçalves, P., Sebban, M., Borgnat, P., Gribonval, R., & Vayer, T. (2021). Optimization of the Diffusion Time in Graph Diffused-Wasserstein Distances: Application to Domain Adaptation. IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), 786–790.
  4. Vincent-Cuaz, C., Vayer, T., Flamary, R., Corneli, M., & Courty, N. (2021). Online Graph Dictionary Learning. International Conference on Machine Learning (ICML), 139, 10564–10574.

2020

  1. Vayer, T., Chapel, L., Flamary, R., Tavenard, R., & Courty, N. (2020). Fused Gromov-Wasserstein distance for structured objects. Algorithms, 13(9), 212. https://doi.org/10.3390/a13090212
  2. Vayer*, T., Redko*, I., Flamary*, R., & Courty*, N. (2020). CO-Optimal Transport. Neural Information Processing Systems (NeurIPS), 33.

2019

  1. Vayer, T., Flamary, R., Courty, N., Tavenard, R., & Chapel, L. (2019). Sliced Gromov-Wasserstein. Neural Information Processing Systems (NeurIPS), 32.
  2. Vayer, T., Courty, N., Tavenard, R., Chapel, L., & Flamary, R. (2019). Optimal Transport for structured data with application on graphs. International Conference on Machine Learning (ICML), 97, 6275–6284.